Search results for: time series prediction
19877 Metaphor Institutionalization as Phase Transition: Case Studies of Chinese Metaphors
Abstract:
Metaphor institutionalization refers to the propagation of a metaphor that leads to its acceptance in speech community as a norm of the language. Such knowledge is important to both theoretical studies of metaphor and practical disciplines such as lexicography and language generation. This paper reports an empirical study of metaphor institutionalization of 14 Chinese metaphors. It first explores the pattern of metaphor institutionalization by fitting the logistic function (or S-shaped curve) to time series data of conventionality of the metaphors that are automatically obtained from a large-scale diachronic Chinese corpus. Then it reports a questionnaire-based survey on the propagation scale of each metaphor, which is measured by the average number of subjects that can easily understand the metaphorical expressions. The study provides two pieces of evidence supporting the hypothesis that metaphor institutionalization is a phrase transition: (1) the pattern of metaphor institutionalization is an S-shaped curve and (2) institutionalized metaphors generally do not propagate to the whole community but remain in equilibrium state. This conclusion helps distinguish metaphor institutionalization from topicalization and other types of semantic change.Keywords: metaphor institutionalization, phase transition, propagation scale, s-shaped curve
Procedia PDF Downloads 17319876 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model
Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung
Abstract:
The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation
Procedia PDF Downloads 17319875 A Study of Behavioral Phenomena Using an Artificial Neural Network
Authors: Yudhajit Datta
Abstract:
Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story
Procedia PDF Downloads 38219874 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea
Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui
Abstract:
It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution
Procedia PDF Downloads 30719873 Numerical Simulation of the Fractional Flow Reserve in the Coronary Artery with Serial Stenoses of Varying Configuration
Authors: Mariia Timofeeva, Andrew Ooi, Eric K. W. Poon, Peter Barlis
Abstract:
Atherosclerotic plaque build-up, commonly known as stenosis, limits blood flow and hence oxygen and nutrient supplies to the heart muscle. Thus, assessment of its severity is of great interest to health professionals. Numerical simulation of the fractional flow reserve (FFR) has proved to be well correlated with invasively measured FFR used for physiological assessment of the severity of coronary stenosis in arteries. Atherosclerosis may impact the diseased artery in several locations causing serial stenoses, which is a complicated subset of coronary artery disease that requires careful treatment planning. However, hemodynamic of the serial sequential stenoses in coronary arteries has not been extensively studied. The hemodynamics of the serial stenoses is complex because the stenoses in the series interact and affect the flow through each other. To address this, serial stenoses in a 3.4 mm left anterior descending (LAD) artery are examined in this study. Two diameter stenoses (DS) are considered, 30 and 50 percent of the reference diameter. Serial stenoses configurations are divided into three groups based on the order of the stenoses in the series, spacing between them, and deviation of the stenoses’ symmetry (eccentricity). A patient-specific pulsatile waveform is used in the simulations. Blood flow within the stenotic artery is assumed to be laminar, Newtonian, and incompressible. Results for the FFR are reported. Based on the simulation results, it can be deduced that the larger drop in pressure (smaller value of the FFR) is expected when the percentage of the second stenosis in the series is bigger. Varying the distance between the stenoses affects the location of the maximum drop in the pressure, while the minimal FFR in the artery remains unchanged. Eccentric serial stenoses are characterized by a noticeably larger decrease in pressure through the stenoses and by the development of the chaotic flow downstream of the stenoses. The largest drop in the pressure (about 4% difference compared to the axisymmetric case) is obtained for the serial stenoses, where both the stenoses are highly eccentric with the centerlines deflected to the different sides of the LAD. In conclusion, varying configuration of the sequential serial stenoses results in a different distribution of FFR through the LAD. Results presented in this study provide insight into the clinical assessment of the severity of the coronary serial stenoses, which is proved to depend on the relative position of the stenoses and the deviation of the stenoses’ symmetry.Keywords: computational fluid dynamics, coronary artery, fractional flow reserve, serial stenoses
Procedia PDF Downloads 18519872 Observing Upin and Ipin Animation Roles in Early Childhood Education
Authors: Juhanita Jiman
Abstract:
Malaysia is a unique country with multifaceted society; rich with its beautiful cultural values. It has been a long assimilation process for Malaysia to emerge its national identity. Malaysian government has been working hard for centuries to keep its people together in harmony. Cultural identity is identified to be ‘container’ that brings Malaysians together. The uniqueness of Malaysian cultures can actually be exploited for the benefit of the nation. However, this unique culture is somehow being threatened by those imported foreign values. If not closely monitored, these foreign influences can bring more damages than good. This paper aims to study elements in Upin and Ipin animation series and investigate how this series could help to educate local children with good moral and behaviour without being too serious and sententious. Upin and Ipin is chosen as a study to investigate the effectiveness of animation as a media of communication to promote positive values amongst pre-school children. Purposive sampling method was employed to determine the sample of studies hence pre-school children from Putrajaya Presint 9(2) school were chosen to take part in this study. The findings of this study demonstrate positive suggestions on how animation programmes being shown on TV can play significant roles in children social development and inculcate good moral behaviour as well as social skills among children and people around them.Keywords: animation characters, children informal education, foreign influences, moral values
Procedia PDF Downloads 18719871 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes
Authors: Husham Bayazed
Abstract:
Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry
Procedia PDF Downloads 9319870 The Development of Space-Time and Space-Number Associations: The Role of Non-Symbolic vs. Symbolic Representations
Authors: Letizia Maria Drammis, Maria Antonella Brandimonte
Abstract:
The idea that people use space representations to think about time and number received support from several lines of research. However, how these representations develop in children and then shape space-time and space-number mappings is still a debated issue. In the present study, 40 children (20 pre-schoolers and 20 elementary-school children) performed 4 main tasks, which required the use of more concrete (non-symbolic) or more abstract (symbolic) space-time and space-number associations. In the non-symbolic conditions, children were required to order pictures of everyday-life events occurring in a specific temporal order (Temporal sequences) and of quantities varying in numerosity (Numerical sequences). In the symbolic conditions, they were asked to perform the typical time-to-position and number-to-position tasks by mapping time-related words and numbers onto lines. Results showed that children performed reliably better in the non-symbolic Time conditions than the symbolic Time conditions, independently of age, whereas only pre-schoolers performed worse in the Number-to-position task (symbolic) as compared to the Numerical sequence (non-symbolic) task. In addition, only older children mapped time-related words onto space following the typical left-right orientation, pre-schoolers’ performance being somewhat mixed. In contrast, mapping numbers onto space showed a clear left-right orientation, independently of age. Overall, these results indicate a cross-domain difference in the way younger and older children process time and number, with time-related tasks being more difficult than number-related tasks only when space-time tasks require symbolic representations.Keywords: space-time associations, space-number associations, orientation, children
Procedia PDF Downloads 34119869 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation
Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling
Abstract:
The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling
Procedia PDF Downloads 34219868 Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams
Authors: Jiin-Yuh Jang, Yu-Feng Gan
Abstract:
In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm.Keywords: controlled cooling, H-Beam, optimization, thermal stress
Procedia PDF Downloads 37319867 Synthesis of a Library of Substituted Isoquinolines Based on a Triazolization Strategy, and Their Anti-HIV and C-X-C Chemokine Receptor Type 4 Antagonist Activity
Authors: Mastaneh Safarnejad Shad, Wim Dehaen, Steven De Jonghe
Abstract:
Since CXCR4 is the main coreceptor of HIV-1 and plays an important role in human immunodeficiency virus (HIV) entry, numerous efforts were directed towards the discovery of new classes of small molecules that act as CXCR4 antagonists. In addition, CXCR4 antagonists are potentially useful in the treatment of several other disorders, such as cancer cell metastasis, leukemia cell proliferation, rheumatoid arthritis, and pulmonary fibrosis. Since AMD3100 (plerixafor) is the only CXCR4 antagonist which obtained approval by the Food and Drug Administration (FDA), we were motivated to investigate a new category of molecules as CXCR4 antagonists. Most of the scaffolds which have been studied so far as CXCR4 antagonists are based on the tetrahydroquinoline (THQ) moiety in which AMD11070 (mavorixafor), GSK-812394, and TIQ15 displayed the most potent CXCR4 antagonism. Due to the high potency of these scaffolds, two different series of compounds were prepared in this work. In the first set, the THQ moiety is coupled to an amine chain and various isoquinoline derivatives (prepared by an in-house developed triazolization strategy), of which the upper part of molecules is identical to AMD11070 and TIQ15. In the second category of compounds, the THQ moiety was simplified by the synthesis of a substituted pyridine moiety. In order to investigate if CXCR4 antagonism requires the presence of an isoquinoline moiety, the corresponding pyridine analogues were also prepared. In both series of compounds, potent CXCR4 antagonism was noticed.Keywords: CXCR4 coreceptor, CXCR4 antagonists, HIV inhibitor, tetrahydroquinoline
Procedia PDF Downloads 19419866 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder
Procedia PDF Downloads 29419865 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods
Authors: Ksenija Dumičić, Anita Čeh Časni, Berislav Žmuk
Abstract:
The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates.Keywords: European Union countries, exponential smoothing methods, forecast accuracy unemployment rate
Procedia PDF Downloads 37019864 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings
Authors: Nadish Anand, Richard D. Gould
Abstract:
A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance
Procedia PDF Downloads 27019863 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment
Authors: Said Alshukri, Mazhar Hussain Malik
Abstract:
Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest
Procedia PDF Downloads 8119862 Kinetics of Sugar Losses in Hot Water Blanching of Water Yam (Dioscorea alata)
Authors: Ayobami Solomon Popoola
Abstract:
Yam is majorly a carbohydrate food grown in most parts of the world. It could be boiled, fried or roasted for consumption in a variety of ways. Blanching is an established heat pre-treatment given to fruits and vegetables prior to further processing such as dehydration, canning, freezing etc. Losses of soluble solids during blanching has been a great problem because a reasonable quantity of the water-soluble nutrients are inevitably leached into the blanching water. Without blanching, the high residual levels of reducing sugars after extended storage produce a dark, bitter-tasting product because of the Maillard reactions of reducing sugars at frying temperature. Measurement and prediction of such losses are necessary for economic efficiency in production and to establish the level of effluent treatment of the blanching water. This paper aims at resolving this problem by investigating the effects of cube size and temperature on the rate of diffusional losses of reducing sugars and total sugars during hot water blanching of water-yam. The study was carried out using four temperature levels (65, 70, 80 and 90 °C) and two cubes sizes (0.02 m³ and 0.03 m³) at 4 times intervals (5, 10, 15 and 20 mins) respectively. Obtained data were fitted into Fick’s non-steady equation from which diffusion coefficients (Da) were obtained. The Da values were subsequently fitted into Arrhenius plot to obtain activation energies (Ea-values) for diffusional losses. The diffusion co-efficient were independent of cube size and time but highly temperature dependent. The diffusion coefficients were ≥ 1.0 ×10⁻⁹ m²s⁻¹ for reducing sugars and ≥ 5.0 × 10⁻⁹ m²s⁻¹ for total sugars. The Ea values ranged between 68.2 to 73.9 KJmol⁻¹ and 7.2 to 14.30 KJmol⁻¹ for reducing sugars and total sugars losses respectively. Predictive equations for estimating amount of reducing sugars and total sugars with blanching time of water-yam at various temperatures were also presented. The equation could be valuable in process design and optimization. However, amount of other soluble solids that might have leached into the water along with reducing and total sugars during blanching was not investigated in the study.Keywords: blanching, kinetics, sugar losses, water yam
Procedia PDF Downloads 17019861 The Impact of Foreign Direct Investment on Economic Growth of Ethiopia: Econometrics Cointegration Analysis
Authors: Dejene Gizaw Kidane
Abstract:
This study examines the impact of foreign direct investment on economic growth of Ethiopia using yearly time-series data for 1974 through 2013. Economic growth is proxies by real per capita gross domestic product and foreign direct investment proxies by the inflow of foreign direct investment. Other control variables such as gross domestic saving, trade, government consumption and inflation has been incorporated. In order to fully account for feedbacks, a vector autoregressive model is utilized. The results show that there is a stable, long-run relationship between foreign direct investment and economic growth. The variance decomposition results show that the main sources of Ethiopia economic growth variations are due largely own shocks. The pairwise Granger causality results show that there is a unidirectional causality that runs from FDI to economic growth of Ethiopia. Hence, the researcher therefore recommends that, FDI facilitate economic growth, so the government has to exert much effort in order to attract more FDI into the country.Keywords: real per capita GDP, FDI, co-integration, VECM, Granger causality
Procedia PDF Downloads 44019860 Rice Blessing Ceremony of Thailand and Vietnam: The Relation of Southeast Asia
Authors: Patthida Bunchavalit, Saharot Kittimahacharoen
Abstract:
The objective of this article is to compare rice blessing ceremony between Thailand and Vietnam. Both countries are located in Southeast Asia where agriculture is the main occupation. As a result of the study, it is found that the rice blessing ceremony of Thai and Vietnamese societies have differences and similarities. A person leading the ceremony is a person who has the highest position in the country. For Thailand, it is the king or royal family member while for Vietnam, it is the president. In Thailand, the ceremony began in Ayutthaya period which derived from Buddhism and Brahmanism ideology. It is annually organized in the beginning of raining season. In Vietnam, it is annually organized in the beginning of spring. The first time it occurred was in Tien Le Monarchy period of Thien Phuc era deriving from Chinese ideology. The differences are ideas, believes, objectives and details of the ceremony. It is, in Thailand, to boost farmer’s morale and to predict the fertility of crops in each year. Additionally, there is a prediction using royal cows. Meanwhile, in Vietnam the purpose is to worship god of weather for seasonal rain and productive harvesting. Therefore, it is presumed that the rice blessing ceremony of Thailand and Vietnam somewhat have similarities in spite of having different origin but are on the same basis of belief.Keywords: agriculture, ceremony, culture, Thailand, Vietnam
Procedia PDF Downloads 18819859 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 32819858 Prioritized Processor-Sharing with a Maximum Permissible Sojourn Time
Authors: Yoshiaki Shikata
Abstract:
A prioritized processor-sharing (PS) system with a maximum permissible sojourn time (MPST) is proposed. In this PS system, a higher-priority request is allocated a larger service ratio than a lower-priority request. Moreover, each request receiving service is guaranteed the maximum permissible sojourn time determined by each priority class, regardless of its service time. Arriving requests that cannot receive service due to this guarantee are rejected. We further propose a guarantee method for implementing such a system, and discuss performance evaluation procedures for the resulting system. Practical performance measures, such as the relationships between the loss probability or mean sojourn time of each class request and the maximum permissible sojourn time are evaluated via simulation. At the arrival of each class request, its acceptance or rejection is judged using extended sojourn times of all requests receiving service in the server. As the MPST increases, the mean sojourn time increases almost linearly. However, the logarithm of the loss probability decreases almost linearly. Moreover with an MPST, the difference in the mean sojourn time for different MPSTs increases with the traffic rate. Conversely, the difference in the loss probability for different MPSTs decreases as the traffic rate increases.Keywords: prioritized processor sharing, priority ratio, permissible sojourn time, loss probability, mean sojourn time, simulation
Procedia PDF Downloads 19619857 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.Keywords: land suitability, machine learning, random forest, sustainable agriculture
Procedia PDF Downloads 9219856 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 2519855 Viability of Eggshells Ash Affecting the Setting Time of Cement
Authors: Fazeera Ujin, Kamran Shavarebi Ali, Zarina Yasmin Hanur Harith
Abstract:
This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement. Chemical properties of both eggshells ash and cement are compared. From the results obtained, both eggshells ash and cement have the same chemical composition and primary composition which is the calcium compounds. Results from the setting time show that by adding the eggshells ash to the cement, the setting time of the cement decreases. In short, the higher amount of eggshells ash, the faster the rate of setting and apply to all percentage of eggshells ash that were used in this investigation. Both initial and final setting times fulfill the setting time requirements by Malaysian Standard. Hence, it is suggested that eggshells ash can be used as an admixture in concrete mix.Keywords: construction materials, eggshells ash, solid waste, setting time
Procedia PDF Downloads 39619854 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy
Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao
Abstract:
This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.Keywords: MBE, AlN/GaN, RTDs, double NDR
Procedia PDF Downloads 6719853 New Hybrid Method to Model Extreme Rainfalls
Authors: Youness Laaroussi, Zine Elabidine Guennoun, Amine Amar
Abstract:
Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose in the present paper a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.Keywords: extreme values theory, fractals dimensions, peaks Over threshold, rainfall occurrences
Procedia PDF Downloads 36719852 Pavement Roughness Prediction Systems: A Bump Integrator Approach
Authors: Manish Pal, Rumi Sutradhar
Abstract:
Pavement surface unevenness plays a pivotal role on roughness index of road which affects on riding comfort ability. Comfort ability refers to the degree of protection offered to vehicle occupants from uneven elements in the road surface. So, it is preferable to have a lower roughness index value for a better riding quality of road users. Roughness is generally defined as an expression of irregularities in the pavement surface which can be measured using different equipment like MERLIN, Bump integrator, Profilometer etc. Among them Bump Integrator is quite simple and less time consuming in case of long road sections. A case study is conducted on low volume roads in West District in Tripura to determine roughness index (RI) using Bump Integrator at the standard speed of 32 km/h. But it becomes too tough to maintain the requisite standard speed throughout the road section. The speed of Bump Integrator (BI) has to lower or higher in some distinctive situations. So, it becomes necessary to convert these roughness index values of other speeds to the standard speed of 32 km/h. This paper highlights on that roughness index conversional model. Using SPSS (Statistical Package of Social Sciences) software a generalized equation is derived among the RI value at standard speed of 32 km/h and RI value at other speed conditions.Keywords: bump integrator, pavement distresses, roughness index, SPSS
Procedia PDF Downloads 24919851 Impact of Climate Variation on Natural Vegetations and Human Lives in Thar Desert, Pakistan
Authors: Sujo Meghwar, Zulfqar Ali laghari, Kanji Harijan, Muhib Ali Lagari, G. M. Mastoi, Ali Mohammad Rind
Abstract:
Thar Desert is the most populous Desert of the world. Climate variation in Thar Desert has induced an increase in the magnitude of drought. The variation in climate variation has caused a decrease in natural vegetations. Some plant species are eliminated forever. We have applied the SPI (standardized precipitation index) climate model to investigate the drought induced by climate change. We have gathered the anthropogenic response through a developed questionnaire. The data was analyzed in SPSS version 18. The met-data of two meteorological station elaborated by the time series has suggested an increase in temperature from 1-2.5 centigrade, the decrease in rain fall rainfall from 5-25% and reduction in humidity from 5-12 mm in the 20th century. The anthropogenic responses indicate high impact of climate change on human life and vegetations. Triangle data, we have collected, gives a new insight into the understanding of an association between climate change, drought and human activities.Keywords: Thar desert, human impact, vegetations, temperature, rainfall, humidity
Procedia PDF Downloads 40719850 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm
Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz
Abstract:
Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations
Procedia PDF Downloads 13819849 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method
Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang
Abstract:
Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time
Procedia PDF Downloads 27619848 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros
Authors: Fernando Maass, Pablo Martin, Jorge Olivares
Abstract:
The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations
Procedia PDF Downloads 258