Search results for: acoustic modeling
2829 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination
Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana
Abstract:
Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization
Procedia PDF Downloads 5152828 Integration of LCA and BIM for Sustainable Construction
Authors: Laura Álvarez Antón, Joaquín Díaz
Abstract:
The construction industry is turning towards sustainability. It is a well-known fact that sustainability is based on a balance between environmental, social and economic aspects. In order to achieve sustainability efficiently, these three criteria should be taken into account in the initial project phases, since that is when a project can be influenced most effectively. Thus the aim must be to integrate important tools like BIM and LCA at an early stage in order to make full use of their potential. With the synergies resulting from the integration of BIM and LCA, a wider approach to sustainability becomes possible, covering the three pillars of sustainability.Keywords: building information modeling (BIM), construction industry, design phase, life cycle assessment (LCA), sustainability
Procedia PDF Downloads 4532827 Decision Support System for the Management of the Shandong Peninsula, China
Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle
Abstract:
A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling
Procedia PDF Downloads 1962826 River Habitat Modeling for the Entire Macroinvertebrate Community
Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo
Abstract:
Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling
Procedia PDF Downloads 1002825 Imaging 255nm Tungsten Thin Film Adhesion with Picosecond Ultrasonics
Authors: A. Abbas, X. Tridon, J. Michelon
Abstract:
In the electronic or in the photovoltaic industries, components are made from wafers which are stacks of thin film layers of a few nanometers to serval micrometers thickness. Early evaluation of the bounding quality between different layers of a wafer is one of the challenges of these industries to avoid dysfunction of their final products. Traditional pump-probe experiments, which have been developed in the 70’s, give a partial solution to this problematic but with a non-negligible drawback. In fact, on one hand, these setups can generate and detect ultra-high ultrasounds frequencies which can be used to evaluate the adhesion quality of wafer layers. But, on the other hand, because of the quiet long acquisition time they need to perform one measurement, these setups remain shut in punctual measurement to evaluate global sample quality. This last point can lead to bad interpretation of the sample quality parameters, especially in the case of inhomogeneous samples. Asynchronous Optical Sampling (ASOPS) systems can perform sample characterization with picosecond acoustics up to 106 times faster than traditional pump-probe setups. This last point allows picosecond ultrasonic to unlock the acoustic imaging field at the nanometric scale to detect inhomogeneities regarding sample mechanical properties. This fact will be illustrated by presenting an image of the measured acoustical reflection coefficients obtained by mapping, with an ASOPS setup, a 255nm thin-film tungsten layer deposited on a silicone substrate. Interpretation of the coefficient reflection in terms of bounding quality adhesion will also be exposed. Origin of zones which exhibit good and bad quality bounding will be discussed.Keywords: adhesion, picosecond ultrasonics, pump-probe, thin film
Procedia PDF Downloads 1622824 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 1652823 Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows
Authors: Levente Kovács, Fruzsina Luca Kézér, Ottó Szenci
Abstract:
Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving.Keywords: reticuloruminal pH, reticuloruminal temperature, rumination time, dairy cows, dystocia
Procedia PDF Downloads 3182822 Augmented and Virtual Reality Experiences in Plant and Agriculture Science Education
Authors: Sandra Arango-Caro, Kristine Callis-Duehl
Abstract:
The Education Research and Outreach Lab at the Donald Danforth Plant Science Center established the Plant and Agriculture Augmented and Virtual Reality Learning Laboratory (PAVRLL) to promote science education through professional development, school programs, internships, and outreach events. Professional development is offered to high school and college science and agriculture educators on the use and applications of zSpace and Oculus platforms. Educators learn to use, edit, or create lesson plans in the zSpace platform that are aligned with the Next Generation Science Standards. They also learn to use virtual reality experiences created by the PAVRLL available in Oculus (e.g. The Soybean Saga). Using a cost-free loan rotation system, educators can bring the AVR units to the classroom and offer AVR activities to their students. Each activity has user guides and activity protocols for both teachers and students. The PAVRLL also offers activities for 3D plant modeling. High school students work in teams of art-, science-, and technology-oriented students to design and create 3D models of plant species that are under research at the Danforth Center and present their projects at scientific events. Those 3D models are open access through the zSpace platform and are used by PAVRLL for professional development and the creation of VR activities. Both teachers and students acquire knowledge of plant and agriculture content and real-world problems, gain skills in AVR technology, 3D modeling, and science communication, and become more aware and interested in plant science. Students that participate in the PAVRLL activities complete pre- and post-surveys and reflection questions that evaluate interests in STEM and STEM careers, students’ perceptions of three design features of biology lab courses (collaboration, discovery/relevance, and iteration/productive failure), plant awareness, and engagement and learning in AVR environments. The PAVRLL was established in the fall of 2019, and since then, it has trained 15 educators, three of which will implement the AVR programs in the fall of 2021. Seven students have worked in the 3D plant modeling activity through a virtual internship. Due to the COVID-19 pandemic, the number of teachers trained, and classroom implementations have been very limited. It is expected that in the fall of 2021, students will come back to the schools in person, and by the spring of 2022, the PAVRLL activities will be fully implemented. This will allow the collection of enough data on student assessments that will provide insights on benefits and best practices for the use of AVR technologies in the classrooms. The PAVRLL uses cutting-edge educational technologies to promote science education and assess their benefits and will continue its expansion. Currently, the PAVRLL is applying for grants to create its own virtual labs where students can experience authentic research experiences using real Danforth research data based on programs the Education Lab already used in classrooms.Keywords: assessment, augmented reality, education, plant science, virtual reality
Procedia PDF Downloads 1792821 Planing the Participation of Units Bound to Demand Response Programs with Regard to Ancillary Services in the PQ Power Market
Authors: Farnoosh Davarian
Abstract:
The present research focuses on organizing the cooperation of units constrained by demand response (DR) programs, considering ancillary services in the P-Q power market. Moreover, it provides a comprehensive exploration of the effects of demand reduction and redistribution across several predefined scenarios (in three pre-designed demand response programs, for example, ranging from 5% to 20%) on system voltage and losses in a smart distribution system (in the studied network, distributed energy resources (DERs) such as synchronous distributed generators and wind turbines offer their active and reactive power for the proposed market).GAMS, a specialized software for high-powered modeling, is used for optimizing linear, nonlinear, and integer programming challenges. GAMS modeling is separate from its solution method, which is a notable feature. Thus, by providing changes in the solver, it is possible to solve the model using various methods (linear, nonlinear, integer, etc.). Finally, the combined active and reactive market challenge in smart distribution systems, considering renewable distributed sources and demand response programs in GAMS, will be evaluated. The active and reactive power trading by the distribution company is carried out in the wholesale market. What is demanded is active power. By using the buy-back/payment program, it is possible for responsive loads or aggregators to participate in the market. The objective function of the proposed market is to minimize the price of active and reactive power for DERs and distribution companies and the penalty cost for CO2 emissions and the cost of the buy-back/payment program. In this research, the objective function is to minimize the cost of active and reactive power from distributed generation sources and distribution companies, the cost of carbon dioxide emissions, and the cost of the buy-back/payment program. The effectiveness of the proposed method has been evaluated in a case study.Keywords: consumer behavior, demand response, pollution cost, combined active and reactive market
Procedia PDF Downloads 182820 Modeling Salam Contract for Profit and Loss Sharing
Authors: Dchieche Amina, Aboulaich Rajae
Abstract:
Profit and loss sharing suggests an equitable sharing of risks and profits between the parts involved in a financial transaction. Salam is a contract in which advance payment is made for goods to be delivered at a future date. The purpose of this work is to price a new contract for profit and loss sharing based on Salam contract, using Khiyar Al Ghabn which is an agreement of choice in case of misrepresent facts.Keywords: Islamic finance, shariah compliance, profit and loss sharing, derivatives, risks, hedging, salam contract
Procedia PDF Downloads 3352819 Modeling Driving Distraction Considering Psychological-Physical Constraints
Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang
Abstract:
Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints
Procedia PDF Downloads 972818 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth
Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.Keywords: treeline, dynamic, climate, modeling
Procedia PDF Downloads 952817 A Configurational Approach to Understand the Effect of Organizational Structure on Absorptive Capacity: Results from PLS and fsQCA
Authors: Murad Ali, Anderson Konan Seny Kan, Khalid A. Maimani
Abstract:
Based on the theory of organizational design and the theory of knowledge, this study uses complexity theory to explain and better understand the causal impacts of various patterns of organizational structural factors stimulating absorptive capacity (ACAP). Organizational structure can be thought of as heterogeneous configurations where various components are often intertwined. This study argues that impact of the traditional variables which define a firm’s organizational structure (centralization, formalization, complexity and integration) on ACAP is better understood in terms of set-theoretic relations rather than correlations. This study uses a data sample of 347 from a multiple industrial sector in South Korea. The results from PLS-SEM support all the hypothetical relationships among the variables. However, fsQCA results suggest the possible configurations of centralization, formalization, complexity, integration, age, size, industry and revenue factors that contribute to high level of ACAP. The results from fsQCA demonstrate the usefulness of configurational approaches in helping understand equifinality in the field of knowledge management. A recent fsQCA procedure based on a modeling subsample and holdout subsample is use in this study to assess the predictive validity of the model under investigation. The same type predictive analysis is also made through PLS-SEM. These analyses reveal a good relevance of causal solutions leading to high level of ACAP. In overall, the results obtained from combining PLS-SEM and fsQCA are very insightful. In particular, they could help managers to link internal organizational structural with ACAP. In other words, managers may comprehend finely how different components of organizational structure can increase the level of ACAP. The configurational approach may trigger new insights that could help managers prioritize selection criteria and understand the interactions between organizational structure and ACAP. The paper also discusses theoretical and managerial implications arising from these findings.Keywords: absorptive capacity, organizational structure, PLS-SEM, fsQCA, predictive analysis, modeling subsample, holdout subsample
Procedia PDF Downloads 3352816 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China
Authors: Yiyuan Tao
Abstract:
Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin
Procedia PDF Downloads 1282815 Sociocultural Influences on Men of Color’s Body Image Concerns: A Structural Equation Modeling Study
Authors: Zikun Li, Regine Talleyrand
Abstract:
Negative body image is one of the most common causes of eating disorders, and it is not only happening to women. Regardless of the increasing attention that researchers and practitioners have been paying to the male population and their body image concerns, men of color have yet to be fully represented or studied. Given the consensus that the sociocultural experiences of people of color may play a significant role in their health and well-being, this study focused on assessing the mechanism through which sociocultural factors may influence men of color’s perceptions of body image. In particular, this study focused on untangling how interpersonal and media pressure, as well as ethnic-racial identities and perceptions, would impact body dissatisfaction in terms of muscularity, body fat, and height in men of color and how this mechanism is moderated across different ethnic-racial groups. The structural equation modeling approach was therefore applied to achieve the research goal. With the sample size of 181 self-identified Black, Indigenous, and People of Color male participants aged 20-50 (M=33.33, SD=6.9) through surveying on Amazon’s MTurk platform, the proposed model achieved a modestly acceptable model fit with the pooled sample, X2(836) = 1412.184, CFI = 0.900, RMSEA = 0.062 [0.056, 0.067]. And SRMR = 0.088, And it explained 89.5% of the variance in body dissatisfaction. The results showed that of all the direct effects on body dissatisfaction, interpersonal appearance pressure exhibited the strongest effect (β = 0.410***), followed by media appearance pressure (β = 0.272**) and self-hatred feeling (β = 0.245**). The ethnic-racial related factors (i.e., stereotype endorsement, ethnic-racial salience, and nationalistic assimilation) statistically influenced body dissatisfaction through the mediators of media appearance pressure and/or self-hatred feeling. Furthermore, the moderation analysis between Black/African American men and non-Black/African American men revealed the substantial differences in how ethnic/racial identity impacts one’s perception of body image, and the Black/African American men were found to be influenced by sociocultural factors at a higher level, compared with their counterparts. The impacts of demographic characteristics (i.e., SES, weight, height) on body dissatisfaction were also examined. Instead of considering interpersonal appearance pressure and media pressure as two subscales under one construct, this study considered them as two separate and distinct sociocultural factors. The good model fit to the data indicates this rationality and encourages scholars to reconsider the impacts of two sources of social pressures on body dissatisfaction. In addition, this study also provided empirical evidence of the moderation effect existing within the population of men of color, which reveals the heterogeneity existing across different ethnic-racial groups and implies the necessity to study individual ethnic-racial groups so as to better understand the mechanism of sociocultural influences on men of color’s body dissatisfaction. These findings strengthened the current understanding of the body image concerns exciting among men of color and meanwhile provided empirical evidence for practitioners to provide tailored health prevention and treatment options for this growing population in the United States.Keywords: men of color, body image concerns, sociocultural factors, structural equation modeling
Procedia PDF Downloads 732814 Hydrogeological Factors of the Ore Genesis in the Sedimentary Basins
Authors: O. Abramova, L. Abukova, A. Goreva, G. Isaeva
Abstract:
The present work was made for the purpose of evaluating the interstitial water’s role in the mobilization of metal elements of clay deposits and occurrences in sedimentary formation in the hydro-geological basins. The experiments were performed by using a special facility, which allows adjusting the pressure, temperature, and the frequency of the acoustic vibrations. The dates for study were samples of the oil shales (Baltic career, O2kk) and clay rocks, mainly montmorillonite composition (Borehole SG-12000, the depth of selection 1000–3600 m, the Azov-Kuban trough, N1). After interstitial water squeezing from the rock samples, decrease in the original content of the rock forming components including trace metals V, Cr, Co, Ni, Cu, Zn, Zr, Mo, Pb, W, Ti, and others was recorded. The experiments made it possible to evaluate the ore elements output and organic matters with the interstitial waters. Calculations have shown that, in standard conditions, from each ton of the oil shales, 5-6 kg of ore elements and 9-10 kg of organic matter can be escaped. A quantity of matter, migrating from clays in the process of solidification, is changed depending on the lithogenesis stage: more recent unrealized deposits lose more ore and organic materials than the clay rocks, selected from depth over 3000 m. Each ton of clays in the depth interval 1000-1500 m is able to generate 3-5 kg of the ore elements and 6-8 kg of the organic matters. The interstitial waters are a freight forwarder over transferring these matters in the reservoir beds. It was concluded that the interstitial waters which escaped from the study samples are solutions with abnormal high concentrations of the metals and organic matters. In the discharge zones of the sediment basins, such fluids can create paragenetic associations of the sedimentary-catagenetic ore and hydrocarbon mineral resources accumulations.Keywords: hydrocarbons, ore genesis, paragenesis, pore water
Procedia PDF Downloads 2602813 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas
Authors: Anand Malik
Abstract:
The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.Keywords: debris flow, geospatial data, GIS based modeling, flow-R
Procedia PDF Downloads 2772812 Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner
Authors: Lancelot Boulet, Pierre Benard, Ghislain Lartigue, Vincent Moureau, Nicolas Chauvet, Sheddia Didorally
Abstract:
International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned.Keywords: conjugate heat transfer, fire resistance test, large-eddy simulation, radiative transfer, turbulent combustion
Procedia PDF Downloads 2252811 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques
Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair
Abstract:
Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting
Procedia PDF Downloads 3592810 The Acute Effects of a Warm-Up Including Different Dynamic Stretching on Hamstring Stiffness, Flexibility, and Strength
Authors: Che Hsiu Chen, Kuo Wei Tseng, Zih Jian Huang, Hon Wen Cheng
Abstract:
A typical warm-up contains both stretching exercises and jogging. The static stretching prior to training or competition may cause detrimental effects to athletic performance. However, it is unclear whether different types of dynamic stretching exercises had different acute effects on knee flexors stiffness, flexibility, and strength. The purpose of this study was to analyze the knee flexors stiffness, flexibility, and strength gains after dynamic straight leg raise (DSLR) and dynamic modified toe-touch (MTT) stretching. Sixteen healthy university active men (height 176.27 ± 4.03 cm; weight 72.27 ± 8.90 kg; age 22.09 ± 2.31 years). After 5 minutes (8km/h) of running subjects performed 2 randomly ordered stretching protocols: DSLR and MTT stretching protocols. There were a total of six, 30 seconds bouts of dynamic stretching (15 repetitions) with 30seconds rest between bouts. The outcome measures were maximal voluntary isokinetic concentric hamstring strength (60°/s), muscle flexibility test by passive straight leg raise (PSLR), active straight leg raise (ASLR), and muscle stiffness using ultrasound Acoustic Radiation Forced Impulse (ARFI) elastography before and immediately after stretching. The muscle stiffness and concentric strength decreased significantly (p < .05), the flexibility no significant change after DSLR protocol (p > .05). The concentric strength decreased significantly (p < .05), the flexibility and muscle stiffness no significant change after MTT protocol (p > .05), whereas no significant differences were found for the DSLR and MTT. Our findings suggest that dynamic stretching (30s x 6 bouts) resulted in change in muscle stiffness or may be induced slack in the musculotendinous unit thereby, reducing force production. Therefore, 30s x 6 bouts of dynamic stretching adversely affects efforts of hamstring muscle maximal concentric strength.Keywords: sport injury, ultrasound, eccentric exercise, performance
Procedia PDF Downloads 2892809 The Role of Innovative Marketing on Achieving Quality in Petroleum Company
Authors: Malki Fatima Zahra Nadia, Kellal Chaimaa, Brahimi Houria
Abstract:
The following research aims to measure the impact of innovative marketing in achieving product quality in the Algerian Petroleum Company. In order to achieve the aim of the study, a random sample of 60 individuals was selected and the answers were analyzed using structural equation modeling to test the study hypotheses. The research concluded that there is a strong relationship between innovative marketing and the quality of petroleum products.Keywords: marketing, innovation, quality, petroleum products
Procedia PDF Downloads 912808 Model Based Design and Development of Horticultural Produce Crate from Bamboo
Authors: Sisay Wondmagegn Molla, Mulugeta Admasu Delele, Tadelle Nigusu Mekonen
Abstract:
It is common to observe quality deterioration and mechanical injury of horticulture products as a result of suboptimal design and handling of the packaging systems. Society uses the old and primitive way of handling horticulture products, which is produced through trial and error This method is known to have many limitations on quality, environmental pollution, labor and cost. Ethiopia stands first in bamboo resources in Africa, which is 67 % of the African and 7 % of the world's bamboo resources. The purpose of this project was to design and develop bamboo-based ventilated horticultural produce crates using validated computational fluid dynamics (CFD). The model was used to predict the airflow and temperature distribution inside the loaded crate. The study included: sizing, collection of the thermo-physical properties, and designing and developing a CFD model of the bamboo-based ventilated horticultural crate. The designed crate (40×30×25cm) had a capacity of about 18 kg, and cold air temperature (130C) was used for cooling the fruit. Airflow in the loaded crate is far from uniform. There is a relatively high-velocity flow at the top, near inlet and near outlet sections, and a relatively low airflow near the center of the loaded crate. The predicted velocity variation within the bulk of the produce was relatively large, it was in the range of 0.04-7m/s. The vented produce package contributed the highest cooling airflow resistance. Similar to the airflow, the cooling characteristics of the product were not uniform. There was a difference in the cooling rate of the produce in the airflow direction and from the top to the bottom section of the loaded crate. The products that were located near the inlet side and top of the bulk showed a faster cooling rate than the rest of the bulk. The result showed that the produced volume average temperature was 17.9°C after a cooling period of 3 hr. It was reduced by 12.05°C. The result showed the potential of the CFD modeling approach in developing the bamboo-based design of horticultural produce crates in terms of airflow and heat transfer characteristics.Keywords: bamboo, modeling, cooling, horticultural, packaging
Procedia PDF Downloads 302807 Wood Decay Fungal Strains Useful for Bio-Composite Material Production
Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino
Abstract:
Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi
Procedia PDF Downloads 1442806 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach
Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani
Abstract:
Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery
Procedia PDF Downloads 3112805 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action
Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere
Abstract:
Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results
Procedia PDF Downloads 1402804 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 822803 The Discriminate Analysis and Relevant Model for Mapping Export Potential
Authors: Jana Gutierez Chvalkovska, Michal Mejstrik, Matej Urban
Abstract:
There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.Keywords: export strategy, modeling export, calibration, export promotion
Procedia PDF Downloads 5012802 An Approach to Wind Turbine Modeling for Increasing Its Efficiency
Authors: Rishikesh Dingari, Sai Kiran Dornala
Abstract:
In this paper, a simple method of achieving maximum power by mechanical energy transmission device (METD) with integration to induction generator is proposed. METD functioning is explained and dynamic response of system to step input is plotted. Induction generator is being operated at self-excited mode with excitation capacitor at stator. Voltage and current are observed when linked to METD.Keywords: mechanical energy transmitting device(METD), self-excited induction generator, wind turbine, hydraulic actuators
Procedia PDF Downloads 3472801 Multi-Stakeholder Involvement in Construction and Challenges of Building Information Modeling Implementation
Authors: Zeynep Yazicioglu
Abstract:
Project development is a complex process where many stakeholders work together. Employers and main contractors are the base stakeholders, whereas designers, engineers, sub-contractors, suppliers, supervisors, and consultants are other stakeholders. A combination of the complexity of the building process with a large number of stakeholders often leads to time and cost overruns and irregular resource utilization. Failure to comply with the work schedule and inefficient use of resources in the construction processes indicate that it is necessary to accelerate production and increase productivity. The development of computer software called Building Information Modeling, abbreviated as BIM, is a major technological breakthrough in this area. The use of BIM enables architectural, structural, mechanical, and electrical projects to be drawn in coordination. BIM is a tool that should be considered by every stakeholder with the opportunities it offers, such as minimizing construction errors, reducing construction time, forecasting, and determination of the final construction cost. It is a process spreading over the years, enabling all stakeholders associated with the project and construction to use it. The main goal of this paper is to explore the problems associated with the adoption of BIM in multi-stakeholder projects. The paper is a conceptual study, summarizing the author’s practical experience with design offices and construction firms working with BIM. In the transition period to BIM, three of the challenges will be examined in this paper: 1. The compatibility of supplier companies with BIM, 2. The need for two-dimensional drawings, 3. Contractual issues related to BIM. The paper reviews the literature on BIM usage and reviews the challenges in the transition stage to BIM. Even on an international scale, the supplier that can work in harmony with BIM is not very common, which means that BIM's transition is continuing. In parallel, employers, local approval authorities, and material suppliers still need a 2-D drawing. In the BIM environment, different stakeholders can work on the same project simultaneously, giving rise to design ownership issues. Practical applications and problems encountered are also discussed, providing a number of suggestions for the future.Keywords: BIM opportunities, collaboration, contract issues about BIM, stakeholders of project
Procedia PDF Downloads 1062800 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform
Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee
Abstract:
This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.Keywords: Boid Algorithm, Crowd Simulation, Mobile Platform, Newtonian Laws, Virtual Heritage
Procedia PDF Downloads 280