Search results for: thermal sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4731

Search results for: thermal sensors

3171 Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnects Coating

Authors: Seyedeh Narjes Hosseini, Mohammad Hossein Enayati, Fathallah Karimzadeh, Nigel Mark Sammes

Abstract:

The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcinations is described herein. The samples were characterized by X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the as-prepared powders at 800 and 1000°C for 5 hours showed that the 2 ratio results in the formation of desired copper spinel single phase at both calcinations temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decomposes to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react to each other to form copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were obtained 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively.

Keywords: SOFC interconnect coatings, Copper ferrite, Spinels, electrical conductivity, Glycine–nitrate process

Procedia PDF Downloads 479
3170 University Students Sport’s Activities Assessment in Harsh Weather Conditions

Authors: Ammar S. M. Moohialdin, Bambang T. Suhariadi, Mohsin Siddiqui

Abstract:

This paper addresses the application of physiological status monitoring (PSM) for assessing the impact of harsh weather conditions on sports activities in universities in Saudi Arabia. Real sports measurement was conducted during sports activities such that the physiological status (HR and BR) of five students were continuously monitored by using Zephyr BioHarnessTM 3.0 sensors in order to identify the physiological bonds and zones. These bonds and zones were employed as indicators of the associated physiological risks of the performed sports activities. Furthermore, a short yes/no questionnaire was applied to collect information on participants’ health conditions and opinions of the applied PSM sensors. The results show the absence of a warning system as a protective aid for the hazardous levels of extremely hot and humid weather conditions that may cause dangerous and fatal circumstances. The applied formulas for estimating maximum HR provides accurate estimations for Maximum Heart Rate (HRmax). The physiological results reveal that the performed activities by the participants are considered the highest category (90–100%) in terms of activity intensity. This category is associated with higher HR, BR and physiological risks including losing the ability to control human body behaviors. Therefore, there is a need for immediate intervention actions to reduce the intensity of the performed activities to safer zones. The outcomes of this study assist the safety improvement of sports activities inside universities and athletes performing their sports activities. To the best of our knowledge, this is the first paper to represent a special case of the application of PSM technology for assessing sports activities in universities considering the impacts of harsh weather conditions on students’ health and safety.

Keywords: physiological status monitoring (PSM), heart rate (HR), breathing rate (BR), Arabian Gulf

Procedia PDF Downloads 199
3169 Conceptual Design of Low Energy Consumption House in Khartoum, Sudan

Authors: Sawsan M. H. Domi

Abstract:

Approximately 50% of the energy used in buildings, including houses, provide environmental comfortable levels of thermal living. In Khartoum - the city under study- cooling uses the largest portion of energy and the basic idea of Low energy houses is to minimize energy consumption. Therefore, houses are designed to use natural climate strategies to provide thermal comfort. Strategies such as semi-open spaces, shading devices, small high windows and thick walls. The study aims to review these strategies and then, apply them. It aims to change house microclimate by using vegetation, green areas, and other components. A low energy house is being designed s. It will be the first low energy house in Khartoum designed to create a low-cost energy efficient building without any mechanical systems. Three different types of houses in Khartoum are examined and evaluated according to their energy loads which provides the basis for the designed house. The designed house uses passive design strategies to reduce the need for cooling. These results show that the house reduced energy cooling loads by more than 60% compared to the average of the three given types. The design house is economically viable when taking into consideration the energy prices in Sudan.

Keywords: building envelope, climate, energy loads, ventilation

Procedia PDF Downloads 243
3168 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine

Authors: Nadia Allouache

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 72
3167 Polarization of Glass with Positive and Negative Charge Carriers

Authors: Valentina V. Zhurikhina, Mihail I. Petrov, Alexandra A. Rtischeva, Mark Dussauze, Thierry Cardinal, Andrey A. Lipovskii

Abstract:

Polarization of glass, often referred to as thermal poling, is a well-known method to modify the glass physical and chemical properties, that manifest themselves in loosing central symmetry of the medium, glass structure and refractive index modification. The usage of the poling for second optical harmonic generation, fabrication of optical waveguides and electrooptic modulators was also reported. Nevertheless, the detailed description of the poling of glasses, containing multiple charge carriers is still under discussion. In particular, the role of possible migration of electrons in the space charge formation usually remains out of the question. In this work, we performed the numerical simulation of thermal poling of a silicate glass, containing Na, K, Mg, and Ca. We took into consideration the contribution of electrons in the polarization process. The possible explanation of migration of electrons can be the break of non-bridging oxygen bonds. It was found, that the modeled depth of the space charge region is about 10 times higher if the migration of the negative charges is taken under consideration. The simulated profiles of cations, participating in the polarization process, are in a good agreement with the experimental data, obtained by glow discharge spectroscopy.

Keywords: glass poling, charge transport, modeling, concentration profiles

Procedia PDF Downloads 359
3166 Comparative Performance Analysis of Parabolic Trough Collector Using Twisted Tape Inserts

Authors: Atwari Rawani, Hari Narayan Singh, K. D. P. Singh

Abstract:

In this paper, an analytical investigation of the enhancement of thermal performance of parabolic trough collector (PTC) with twisted tape inserts in the absorber tube is being reported. A comparative study between the absorber with various types of twisted tape inserts and plain tube collector has been performed in turbulent flows conditions. The parametric studies were conducted to investigate the effects of system and operating parameters on the performance of the collector. The parameters such as heat gain, overall heat loss coefficient, air rise temperature and efficiency are used to analyze the relative performance of PTC. The results show that parabolic through collector with serrated twisted tape insert shows the best performance under same set of conditions under range of parameters investigated. Results reveal that for serrated twisted tape with x=1, Nusselt number/heat transfer coefficient is found to be 4.38 and 3.51 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 15.7% and 5.41% respectively.

Keywords: efficiency, heat transfer, twisted tape ratio, turbulent flow

Procedia PDF Downloads 289
3165 Using Pump as Turbine in Drinking Water Networks to Monitor and Control Water Processes Remotely

Authors: Sara Bahariderakhshan, Morteza Ahmadifar

Abstract:

Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. In the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PaT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and, therefore, more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore due to increasing the area of the network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PaT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.

Keywords: new energies, pump as turbine, drinking water, distribution network, remote control equipments

Procedia PDF Downloads 463
3164 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 388
3163 Efficient Utilization of Negative Half Wave of Regulator Rectifier Output to Drive Class D LED Headlamp

Authors: Lalit Ahuja, Nancy Das, Yashas Shetty

Abstract:

LED lighting has been increasingly adopted for vehicles in both domestic and foreign automotive markets. Although this miniaturized technology gives the best light output, low energy consumption, and cost-efficient solutions for driving, the same is the need of the hour. In this paper, we present a methodology for driving the highest class two-wheeler headlamp with regulator and rectifier (RR) output. Unlike usual LED headlamps, which are driven by a battery, regulator, and rectifier (RR) driven, a low-cost and highly efficient LED Driver Module (LDM) is proposed. The positive half of magneto output is regulated and used to charge batteries used for various peripherals. While conventionally, the negative half was used for operating bulb-based exterior lamps. But with advancements in LED-based headlamps, which are driven by a battery, this negative half pulse remained unused in most of the vehicles. Our system uses negative half-wave rectified DC output from RR to provide constant light output at all RPMs of the vehicle. With the negative rectified DC output of RR, we have the advantage of pulsating DC input which periodically goes to zero, thus helping us to generate a constant DC output equivalent to the required LED load, and with a change in RPM, additional active thermal bypass circuit help us to maintain the efficiency and thermal rise. The methodology uses the negative half wave output of the RR along with a linear constant current driver with significantly higher efficiency. Although RR output has varied frequency and duty cycles at different engine RPMs, the driver is designed such that it provides constant current to LEDs with minimal ripple. In LED Headlamps, a DC-DC switching regulator is usually used, which is usually bulky. But with linear regulators, we’re eliminating bulky components and improving the form factor. Hence, this is both cost-efficient and compact. Presently, output ripple-free amplitude drivers with fewer components and less complexity are limited to lower-power LED Lamps. The focus of current high-efficiency research is often on high LED power applications. This paper presents a method of driving LED load at both High Beam and Low Beam using the negative half wave rectified pulsating DC from RR with minimum components, maintaining high efficiency within the thermal limitations. Linear regulators are significantly inefficient, with efficiencies typically about 40% and reaching as low as 14%. This leads to poor thermal performance. Although they don’t require complex and bulky circuitry, powering high-power devices is difficult to realise with the same. But with the input being negative half wave rectified pulsating DC, this efficiency can be improved as this helps us to generate constant DC output equivalent to LED load minimising the voltage drop on the linear regulator. Hence, losses are significantly reduced, and efficiency as high as 75% is achieved. With a change in RPM, DC voltage increases, which can be managed by active thermal bypass circuitry, thus resulting in better thermal performance. Hence, the use of bulky and expensive heat sinks can be avoided. Hence, the methodology to utilize the unused negative pulsating DC output of RR to optimize the utilization of RR output power and provide a cost-efficient solution as compared to costly DC-DC drivers.

Keywords: class D LED headlamp, regulator and rectifier, pulsating DC, low cost and highly efficient, LED driver module

Procedia PDF Downloads 67
3162 Investigation on Strength Properties of Concrete Using Industrial Waste as Supplementary Cementitious Material

Authors: Ravi Prasad Darapureddi

Abstract:

The use of industrial waste in making concrete reduce the consumption of natural resources and pollution of the environment. These materials possess problems of disposal and health hazards. An attempt has been made to use paper and thermal industrial wastes such as lime sludge and flyash. Present investigation is aimed at the utilization of Lime Sludge and Flyash as Supplementary Cementitious Materials (SCM) and influence of these materials on strength properties of concrete. Thermal industry waste fly ash is mixed with lime sludge and used as a replacement to cement at different proportions to obtain the strength properties and compared with ordinary concrete prepared without any additives. Grade of concrete prepared was M₂₅ designed according to Indian standard method. Cement has been replaced by paper industry waste and fly ash in different proportions such as 0% (normal concrete), 10%, 20%, and 30% by weight. Mechanical properties such as compressive strength, splitting tensile strength and flexural strength were assessed. Test results indicated that the use of lime sludge and Fly ash in concrete had improved the properties of concrete. Better results were observed at 20% replacement of cement with these additives.

Keywords: supplementary cementitious materials, lime sludge, fly ash, strength properties

Procedia PDF Downloads 196
3161 Process of Analysis, Evaluation and Verification of the 'Real' Redevelopment of the Public Open Space at the Neighborhood’s Stairs: Case Study of Serres, Greece

Authors: Ioanna Skoufali

Abstract:

The present study is directed towards adaptation to climate change closely related to the phenomenon of the urban heat island (UHI). This issue is widespread and common to different urban realities, but particularly in Mediterranean cities that are characterized by dense urban. The attention of this work of redevelopment of the open space is focused on mitigation techniques aiming to solve local problems such as microclimatic parameters and the conditions of thermal comfort in summer, related to urban morphology. This quantitative analysis, evaluation, and verification survey involves the methodological elaboration applied in a real study case by Serres, through the experimental support of the ENVImet Pro V4.1 and BioMet software developed: i) in two phases concerning the anteoperam (phase a1 # 2013) and the post-operam (phase a2 # 2016); ii) in scenario A (+ 25% of green # 2017). The first study tends to identify the main intervention strategies, namely: the application of cool pavements, the increase of green surfaces, the creation of water surface and external fans; moreover, it obtains the minimum results achieved by the National Program 'Bioclimatic improvement project for public open space', EPPERAA (ESPA 2007-2013) related to the four environmental parameters illustrated below: the TAir = 1.5 o C, the TSurface = 6.5 o C, CDH = 30% and PET = 20%. In addition, the second study proposes a greater potential for improvement than postoperam intervention by increasing the vegetation within the district towards the SW/SE. The final objective of this in-depth design is to be transferable in homogeneous cases of urban regeneration processes with obvious effects on the efficiency of microclimatic mitigation and thermal comfort.

Keywords: cool pavements, microclimate parameters (TAir, Tsurface, Tmrt, CDH), mitigation strategies, outdoor thermal comfort (PET & UTCI)

Procedia PDF Downloads 202
3160 Using Pump as Turbine in Urban Water Networks to Control, Monitor, and Simulate Water Processes Remotely

Authors: Morteza Ahmadifar, Sarah Bahari Derakhshan

Abstract:

Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. On the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables, therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PAT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and therefore more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore, due to increasing the area of network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PAT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.

Keywords: clean energies, pump as turbine, remote control, urban water distribution network

Procedia PDF Downloads 393
3159 Instability of H2-O2-CO2 Premixed Flames on Flat Burner

Authors: Kaewpradap Amornrat, Endo Takahiro, Kadowaki Satoshi

Abstract:

The combustion of hydrogen-oxygen (H2-O2) mixtures was investigated to consider the reduction of carbon dioxide (CO2) and nitrogen oxide (NOx) as the greenhouse emission. Normally, the flame speed of combustion H2-O2 mixtures are very fast thus it is necessary to control the limit of mixtures with CO2 addition as H2-O2-CO2 combustion. The limit of hydrogen was set and replaced by CO2 with O2:CO2 ratio as 1:3.76, 1:4 and 1:5 for this study. In this study, the combustion of H2-O2 -CO2 on flat burner at equivalence ratio =0.5 was investigated for 10, 15 and 20 L/min of flow rate mixtures. When the ratio of CO2 increases, the power spectral density is lower, the size of attractor and cellular flame become larger because the decrease of hydrogen replaced by CO2 affects the diffusive-thermal instability. Moreover, the flow rate mixtures increases, the power spectral density increases, the size of reconstructed attractor and cell size become smaller due to decreasing of instability. The results show that the variation of CO2 and mixture flow rate affects the instability of cellular premixed flames on flat burner.

Keywords: instability, H2-O2-CO2 combustion, flat burner, diffusive-thermal instability

Procedia PDF Downloads 361
3158 A Design Research Methodology for Light and Stretchable Electrical Thermal Warm-Up Sportswear to Enhance the Performance of Athletes against Harsh Environment

Authors: Chenxiao Yang, Li Li

Abstract:

In this decade, the sportswear market rapidly expanded while numerous sports brands are conducting fierce competitions to hold their market shares and trying to act as a leader in professional competition sports areas to set the trends. Thus, various advancing sports equipment is being deeply explored to improving athletes’ performance in fierce competitions. Although there is plenty protective equipment such as cuff, running legging, etc., on the market, there is still blank in the field of sportswear during prerace warm-up this important time gap, especially for those competitions host in cold environment. Because there is always time gaps between warm-up and race due to event logistics or unexpected weather factors. Athletes will be exposed to chilly condition for an unpredictable long period of time. As a consequence, the effects of warm-up will be negated, and the competition performance will be degraded. However, reviewing the current market, there is none effective sports equipment provided to help athletes against this harsh environment or the rare existing products are so blocky or heavy to restrict the actions. An ideal thermal-protective sportswear should be light, flexible, comfort and aesthetic at the same time. Therefore, this design research adopted the textile circular knitting methodology to integrate soft silver-coated conductive yarns (ab. SCCYs), elastic nylon yarn and polyester yarn to develop the proposed electrical, thermal sportswear, with the strengths aforementioned. Meanwhile, the relationship between heating performance, stretch load, and energy consumption were investigated. Further, a simulation model was established to ensure providing sufficient warm and flexibility at lower energy cost and with an optimized production, parameter determined. The proposed circular knitting technology and simulation model can be directly applied to instruct prototype developments to cater different target consumers’ needs and ensure prototypes’’ safety. On the other hand, high R&D investment and time consumption can be saved. Further, two prototypes: a kneecap and an elbow guard, were developed to facilitate the transformation of research technology into an industrial application and to give a hint on the blur future blueprint.

Keywords: cold environment, silver-coated conductive yarn, electrical thermal textile, stretchable

Procedia PDF Downloads 269
3157 Simulation of Natural Ventilation Strategies as a Comparison Method for Two Different Climates

Authors: Fulya Ozbey, Ecehan Ozmehmet

Abstract:

Health and living in a healthy environment are important for all the living creatures. Healthy buildings are the part of the healthy environment and the ones that people and sometimes the animals spend most of their times in it. Therefore, healthy buildings are important subject for everybody. There are many elements of the healthy buildings from material choice to the thermal comfort including indoor air quality. The aim of this study is, to simulate two natural ventilation strategies which are used as a cooling method in Mediterranean climate, by applying to a residential building and compare the results for Asian climate. Fulltime natural and night-time ventilation strategies are simulated for three days during the summertime in Mediterranean climate. The results show that one of the chosen passive cooling strategies worked on both climates good enough without using additional shading element and cooling device, however, the other ventilation strategy did not provide comfortable indoor temperature enough. Finally, both of the ventilation strategies worked better on the Asian climate than the Mediterranean in terms of the total overheating hours during the chosen period of year.

Keywords: Asian climate, indoor air quality, Mediterranean climate, natural ventilation simulation, thermal comfort

Procedia PDF Downloads 236
3156 By Removing High-Performance Aerobic Scope Phenotypes, Capture Fisheries May Reduce the Resilience of Fished Populations to Thermal Variability and Compromise Their Persistence into the Anthropocene.

Authors: Lauren A. Bailey, Amber R. Childs, Nicola C. James, Murray I. Duncan, Alexander Winkler, Warren M. Potts

Abstract:

For the persistence of fished populations in the Anthropocene, it is critical to predict how fished populations will respond to the coupled threats of exploitation and climate change for adaptive management. The resilience of fished populations will depend on their capacity for physiological plasticity and acclimatization in response to environmental shifts. However, there is evidence for the selection of physiological traits by capture fisheries. Hence, fish populations may have a limited scope for the rapid expansion of their tolerance ranges or physiological adaptation under fishing pressures. To determine the physiological vulnerability of fished populations in the Anthropocene, the metabolic performance was compared between a fished and spatially protected Chrysoblephus laticeps population in response to thermal variability. Individual aerobic scope phenotypes were quantified using intermittent flow respirometry by comparing changes in energy expenditure of each individual at ecologically relevant temperatures, mimicking variability experienced as a result of upwelling and downwelling events. The proportion of high and low-performance individuals were compared between the fished and spatially protected population. The fished population had limited aerobic scope phenotype diversity and fewer high-performance phenotypes, resulting in a significantly lower aerobic scope curve across low (10 °C) and high (24 °C) thermal treatments. The performance of fished populations may be compromised with predicted future increases in cold upwelling events. This requires the conservation of the physiologically fittest individuals in spatially protected areas, which can recruit into nearby fished areas, as a climate resilience tool.

Keywords: climate change, fish physiology, metabolic shifts, over-fishing, respirometry

Procedia PDF Downloads 128
3155 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar

Abstract:

The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.

Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW

Procedia PDF Downloads 407
3154 Control and Automation of Sensors in Metering System of Fluid

Authors: Abdelkader Harrouz, Omar Harrouz, Ali Benatiallah

Abstract:

This paper is to present the essential definitions, roles and characteristics of automation of metering system. We discuss measurement, data acquisition and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.

Keywords: communication, metering, computer, sensor

Procedia PDF Downloads 555
3153 Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe

Authors: H. R. Goshayeshi, M. Khalouei, S. Azarberamman

Abstract:

This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions.

Keywords: experimental, oscillating heat pipe, heat transfer, magnetic field

Procedia PDF Downloads 264
3152 NiAl-Layered Double Hydroxide: Preparation, Characterization and Applications in Photo-Catalysis and Hydrogen Storage

Authors: Ahmed Farghali, Heba Amar, Mohamed Khedr

Abstract:

NiAl-Layered Double Hydroxide (NiAl-LDH), one of anionic functional layered materials, has been prepared by a simple co-precipitation process. X-ray diffraction patterns confirm the formation of the desired compounds of NiAl hydroxide single phase and the crystallite size was found to be about 4.6 nm. The morphology of the prepared samples was investigated using scanning electron microscopy and the layered structure was appeared under the transmission electron microscope. The thermal stability and the function groups of NiAl-LDH were investigated using thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) respectively. NiAl-LDH was investigated as a photo-catalyst for the degradation of some toxic dyes such as toluidine blue and bromopyrogallol red. It shows good catalytic efficiency in visible light and even in dark. For the first time NiAl-LDH was used for hydrogen storage application. NiAl-LDH samples were exposed to 20 bar applied hydrogen pressure at room temperature, 100 and -193 oC. NiAl-LDH samples appear to have feasible hydrogen storage capacity. It was capable to adsorb 0.1wt% at room temperature, 0.15 wt% at 100oC and storage capacity reached 0.3 wt% at -193 oC.

Keywords: NiAl-LDH, preparation, characterization, photo-catalysis, hydrogen storage

Procedia PDF Downloads 312
3151 Optimization of Bio-Based Lightweight Mortars Containing Wood Waste

Authors: Valeria Corinaldesi, Nicola Generosi, Daniele Berdini

Abstract:

In this study, wood waste from processing by-products was used by replacing natural sand for producing bio-based lightweight mortars. Manufacturers of wood products and furniture usually generate sawdust and pieces of side-cuts. These are produced by cutting, drilling, and milling operations as well. Three different percentages of substitution of quartz sand were tried: 2.5%, 5%, and 10% by volume. Wood by-products were pre-soaked in calcium hydroxide aqueous solution in order to obtain wood mineralization to avoid undesirable effects on the bio-based building materials. Bio-based mortars were characterized by means of compression and bending tests, free drying shrinkage tests, resistance to water vapour permeability, water capillary absorption, and, finally, thermal conductivity measurements. Results obtained showed that a maximum dosage of 5% wood by-products should be used in order to avoid an excessive loss of bio-based mortar mechanical strength. On the other hand, by adding the proper dosage of water-reducing admixture, adequate mechanical performance can be achieved even with 10% wood waste addition.

Keywords: bio-based mortar, energy efficiency, lightweight mortar, thermal insulation, wood waste

Procedia PDF Downloads 5
3150 Indoor Air Quality Analysis for Renovating Building: A Case Study of Student Studio, Department of Landscape, Chiangmai, Thailand

Authors: Warangkana Juangjandee

Abstract:

The rapidly increasing number of population in the limited area creates an effect on the idea of the improvement of the area to suit the environment and the needs of people. Faculty of architecture Chiang Mai University is also expanding in both variety fields of study and quality of education. In 2020, the new department will be introduced in the faculty which is Department of Landscape Architecture. With the limitation of the area in the existing building, the faculty plan to renovate some parts of its school for anticipates the number of students who will join the program in the next two years. As a result, the old wooden workshop area is selected to be renovated as student studio space. With such condition, it is necessary to study the restriction and the distinctive environment of the site prior to the improvement in order to find ways to manage the existing space due to the fact that the primary functions that have been practiced in the site, an old wooden workshop space and the new function, studio space, are too different. 72.9% of the annual times in the room are considered to be out of the thermal comfort condition with high relative humidity. This causes non-comfort condition for occupants which could promote mould growth. This study aims to analyze thermal comfort condition in the Landscape Learning Studio Area for finding the solution to improve indoor air quality and respond to local conditions. The research methodology will be in two parts: 1) field gathering data on the case study 2) analysis and finding the solution of improving indoor air quality. The result of the survey indicated that the room needs to solve non-comfort condition problem. This can be divided into two ways which are raising ventilation and indoor temperature, e.g. improving building design and stack driven ventilation, using fan for enhancing more internal ventilation.

Keywords: relative humidity, renovation, temperature, thermal comfort

Procedia PDF Downloads 216
3149 Electrospun Conducting Polymer/Graphene Composite Nanofibers for Gas Sensing Applications

Authors: Aliaa M. S. Salem, Soliman I. El-Hout, Amira Gaber, Hassan Nageh

Abstract:

Nowadays, the development of poisonous gas detectors is considered to be an urgent matter to secure human health and the environment from poisonous gases, in view of the fact that even a minimal amount of poisonous gas can be fatal. Of these concerns, various inorganic or organic sensing materials have been used. Among these are conducting polymers, have been used as the active material in the gassensorsdue to their low-cost,easy-controllable molding, good electrochemical properties including facile fabrication process, inherent physical properties, biocompatibility, and optical properties. Moreover, conducting polymer-based chemical sensors have an amazing advantage compared to the conventional one as structural diversity, facile functionalization, room temperature operation, and easy fabrication. However, the low selectivity and conductivity of conducting polymers motivated the doping of it with varied materials, especially graphene, to enhance the gas-sensing performance under ambient conditions. There were a number of approaches proposed for producing polymer/ graphene nanocomposites, including template-free self-assembly, hard physical template-guided synthesis, chemical, electrochemical, and electrospinning...etc. In this work, we aim to prepare a novel gas sensordepending on Electrospun nanofibers of conducting polymer/RGO composite that is the effective and efficient expectation of poisonous gases like ammonia, in different application areas such as environmental gas analysis, chemical-,automotive- and medical industries. Moreover, our ultimate objective is to maximize the sensing performance of the prepared sensor and to check its recovery properties.

Keywords: electro spinning process, conducting polymer, polyaniline, polypyrrole, polythiophene, graphene oxide, reduced graphene oxide, functionalized reduced graphene oxide, spin coating technique, gas sensors

Procedia PDF Downloads 187
3148 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector

Authors: Victor Birikorang Danquah

Abstract:

Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.

Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy

Procedia PDF Downloads 181
3147 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer

Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh

Abstract:

Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.

Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering

Procedia PDF Downloads 164
3146 Fabrication of Silver Nanowire Based Low Temperature Conductive Ink

Authors: Merve Nur Güven Biçer

Abstract:

Conductive inks are used extensively in electronic devices like sensors, batteries, photovoltaic devices, antennae, and organic light-emitting diodes. These inks are typically made from silver. Wearable technology is another industry that requires inks to be flexible. The aim of this study is the fabrication of low-temperature silver paste by synthesis long silver nanowires.

Keywords: silver ink, conductive ink, low temperature conductive ink, silver nanowire

Procedia PDF Downloads 188
3145 Effect of Plasma Radiation on Keratinocyte Cells Involved in the Wound Healing Process

Authors: B. Fazekas, I. Korolov, K. Kutasi

Abstract:

Plasma medicine, which involves the use of gas discharge plasmas for medical applications is a rapidly growing research field. The use of non-thermal atmospheric pressure plasmas in dermatology to assist tissue regeneration by improving the healing of infected and/or chronic wounds is a promising application. It is believed that plasma can activate cells, which are involved in the wound closure. Non-thermal atmospheric plasmas are rich in chemically active species (such as O and N-atoms, O2(a) molecules) and radiative species such as the NO, N2+ and N2 excited molecules, which dominantly radiate in the 200-500 nm spectral range. In order to understand the effect of plasma species, both of chemically active and radiative species on wound healing process, the interaction of physical plasma with the human skin cells is necessary. In order to clarify the effect of plasma radiation on the wound healing process we treated keratinocyte cells – that are one of the main cell types in human skin epidermis – covered with a layer of phosphate-buffered saline (PBS) with a low power atmospheric pressure plasma. For the generation of such plasma we have applied a plasma needle. Here, the plasma is ignited at the tip of the needle in flowing helium gas in contact with the ambient air. To study the effect of plasma radiation we used a plasma needle configuration, where the plasma species – chemically active radicals and charged species – could not reach the treated cells, but only the radiation. For the comparison purposes, we also irradiated the cells using a UV-B light source (FS20 lamp) with a 20 and 40 mJ cm-2 dose of 312 nm. After treatment the viability and the proliferation of the cells have been examined. The proliferation of cells has been studied with a real time monitoring system called Xcelligence. The results have indicated, that the 20 mJ cm-2 dose did not affect cell viability, whereas the 40 mJ cm-2 dose resulted a decrease in cell viability. The results have shown that the plasma radiation have no quantifiable effect on the cell proliferation as compared to the non-treated cells.

Keywords: UV radiation, non-equilibrium gas discharges (non-thermal plasmas), plasma emission, keratinocyte cells

Procedia PDF Downloads 602
3144 Synthesis, Characterization and Electrical Studies of Solid Polymer Electrolyte (1-x) PANI-KAg₄I₅.xAl₂O₃

Authors: Rafiuddin

Abstract:

Solid polymer electrolytes have emerged as an area of interest in the field of solid state chemistry owing to their facile and cost-effective synthesis and number of applications in different areas of chemistry, extending over a wide range of temperatures. In the present work, polymer composite solid electrolyte comprising of Polyaniline (PANI) as polymer and potassium silver iodide (KAg4I5) using alumina (Al2O3) of different compositions having the formula (1-x) PANI- KAg4I5. x Al2O3 with x ranging from 0.0 to 0.5 was prepared by solid state reaction method. The structural elucidation and characterization was done by X- Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric- Differential Thermal Analysis (TG-DTA) and Impedance Spectroscopy. The thermal analysis shows a phase transition at 147°C attributed to β-α phase transition of AgI due to the disproportionation of KAg4I5 to AgI and KAg2I3 at temperatures higher than 36°C. The X Ray diffraction analysis also confirms the presence of both AgI and KAg2I3 in the samples. The conductivities recorded over a temperature range of 40-250° C lie in the range of 10-1 to 10-3 S cm-1. Maximum conductivity was seen in the compositon x = 0.4 i.e. 1.84 × 10-2 Scm-1 at 313 K and 1.38 × 10-1 Scm-1 at 513 K, with a minimum activation energy of 0.14 eV.

Keywords: polymer solid electrolytes, XRD, DTA, electrical conductivity, impedance spectroscopy

Procedia PDF Downloads 302
3143 Physicochemical-Mechanical, Thermal and Rheological Properties Analysis of Pili Tree (Canarium Ovatum) Resin as Aircraft Integral Fuel Tank Sealant

Authors: Mark Kennedy, E. Bantugon, Noruane A. Daileg

Abstract:

Leaks arising from aircraft fuel tanks is a protracted problem for the aircraft manufacturers, operators, and maintenance crews. It principally arises from stress, structural defects, or degraded sealants as the aircraft age. It can be ignited by different sources, which can result in catastrophic flight and consequences, exhibiting a major drain both on time and budget. In order to mitigate and eliminate this kind of problem, the researcher produced an experimental sealant having a base material of natural tree resin, the Pili Tree Resin. Aside from producing an experimental sealant, the main objective of this research is to analyze its physical, chemical, mechanical, thermal, and rheological properties, which is beneficial and effective for specific aircraft parts, particularly the integral fuel tank. The experimental method of research was utilized in this study since it is a product invention. This study comprises two parts, specifically the Optimization Process and the Characterization Process. In the Optimization Process, the experimental sealant was subjected to the Flammability Test, an important test and consideration according to 14 Code of Federal Regulation Appendix N, Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis, to get the most suitable formulation. Followed by the Characterization Process, where the formulated experimental sealant has undergone thirty-eight (38) different standard testing including Organoleptic, Instrumental Color Measurement Test, Smoothness of Appearance Test, Miscibility Test, Boiling Point Test, Flash Point Test, Curing Time, Adhesive Test, Toxicity Test, Shore A Hardness Test, Compressive Strength, Shear Strength, Static Bending Strength, Tensile Strength, Peel Strength Test, Knife Test, Adhesion by Tape Test, Leakage Test), Drip Test, Thermogravimetry-Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry, Calorific Value, Viscosity Test, Creep Test, and Anti-Sag Resistance Test to determine and analyze the five (5) material properties of the sealant. The numerical values of the mentioned tests are determined using product application, testing, and calculation. These values are then used to calculate the efficiency of the experimental sealant. Accordingly, this efficiency is the means of comparison between the experimental and commercial sealant. Based on the results of the different standard testing conducted, the experimental sealant exceeded all the data results of the commercial sealant. This result shows that the physicochemical-mechanical, thermal, and rheological properties of the experimental sealant are far more effective as an aircraft integral fuel tank sealant alternative in comparison to the commercial sealant. Therefore, Pili Tree possesses a new role and function: a source of ingredients in sealant production.

Keywords: Aircraft Integral Fuel Tank, Physicochemi-mechanical, Pili Tree Resin, Properties, Rheological, Sealant, Thermal

Procedia PDF Downloads 295
3142 Performance Evaluation of GPS/INS Main Integration Approach

Authors: Othman Maklouf, Ahmed Adwaib

Abstract:

This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.

Keywords: GPS, INS, Kalman filter, sensor calibration, navigation system

Procedia PDF Downloads 590