Search results for: essential oil yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6589

Search results for: essential oil yield

5029 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level

Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni

Abstract:

In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.

Keywords: tropocollagen, multiscale model, fibrils, knee ligaments

Procedia PDF Downloads 128
5028 Ownership and Shareholder Schemes Effects on Airport Corporate Strategy in Europe

Authors: Dimitrios Dimitriou, Maria Sartzetaki

Abstract:

In the early days of the of civil aviation, airports are totally state-owned companies under the control of national authorities or regional governmental bodies. From that time the picture has totally changed and airports privatisation and airport business commercialisation are key success factors to stimulate air transport demand, generate revenues and attract investors, linked to reliable and resilience of air transport system. Nowadays, airport's corporate strategy deals with policies and actions, affecting essential the business plans, the financial targets and the economic footprint in a regional economy they serving. Therefore, exploring airport corporate strategy is essential to support the decision in business planning, management efficiency, sustainable development and investment attractiveness on one hand; and define policies towards traffic development, revenues generation, capacity expansion, cost efficiency and corporate social responsibility. This paper explores key outputs in airport corporate strategy for different ownership schemes. The airport corporations are grouped in three major schemes: (a) Public, in which the public airport operator acts as part of the government administration or as a corporised public operator; (b) Mixed scheme, in which the majority of the shares and the corporate strategy is driven by the private or the public sector; and (c) Private, in which the airport strategy is driven by the key aspects of globalisation and liberalisation of the aviation sector. By a systemic approach, the key drivers in corporate strategy for modern airport business structures are defined. Key objectives are to define the key strategic opportunities and challenges and assess the corporate goals and risks towards sustainable business development for each scheme. The analysis based on an extensive cross-sectional dataset for a sample of busy European airports providing results on corporate strategy key priorities, risks and business models. The conventional wisdom is to highlight key messages to authorities, institutes and professionals on airport corporate strategy trends and directions.

Keywords: airport corporate strategy, airport ownership, airports business models, corporate risks

Procedia PDF Downloads 304
5027 Conceptual Model for Logistics Information System

Authors: Ana María Rojas Chaparro, Cristian Camilo Sarmiento Chaves

Abstract:

Given the growing importance of logistics as a discipline for efficient management of materials flow and information, the adoption of tools that permit to create facilities in making decisions based on a global perspective of the system studied has been essential. The article shows how from a concepts-based model is possible to organize and represent in appropriate way the reality, showing accurate and timely information, features that make this kind of models an ideal component to support an information system, recognizing that information as relevant to establish particularities that allow get a better performance about the evaluated sector.

Keywords: system, information, conceptual model, logistics

Procedia PDF Downloads 496
5026 Technology Enriched Classroom for Intercultural Competence Building through Films

Authors: Tamara Matevosyan

Abstract:

In this globalized world, intercultural communication is becoming essential for understanding communication among people, for developing understanding of cultures, to appreciate the opportunities and challenges that each culture presents to people. Moreover, it plays an important role in developing an ideal personification to understand different behaviors in different cultures. Native speakers assimilate sociolinguistic knowledge in natural conditions, while it is a great problem for language learners, and in this context feature films reveal cultural peculiarities and involve students in real communication. As we know nowadays the key role of language learning is the development of intercultural competence as communicating with someone from a different cultural background can be exciting and scary, frustrating and enlightening. Intercultural competence is important in FL learning classroom and here feature films can perform as essential tools to develop this competence and overcome the intercultural gap that foreign students face. Current proposal attempts to reveal the correlation of the given culture and language through feature films. To ensure qualified, well-organized and practical classes on Intercultural Communication for language learners a number of methods connected with movie watching have been implemented. All the pre-watching, while watching and post-watching methods and techniques are aimed at developing students’ communicative competence. The application of such activities as Climax, Role-play, Interactive Language, Daily Life helps to reveal and overcome mistakes of cultural and pragmatic character. All the above-mentioned activities are directed at the assimilation of the language vocabulary with special reference to the given culture. The study dwells into the essence of culture as one of the core concepts of intercultural communication. Sometimes culture is not a priority in the process of language learning which leads to further misunderstandings in real life communication. The application of various methods and techniques with feature films aims at developing students’ cultural competence, their understanding of norms and values of individual cultures. Thus, feature film activities will enable learners to enlarge their knowledge of the particular culture and develop a fundamental insight into intercultural communication.

Keywords: climax, intercultural competence, interactive language, role-play

Procedia PDF Downloads 346
5025 Understanding Responses of the Bee Community to an Urbanizing Landscape in Bengaluru, South India

Authors: Chethana V. Casiker, Jagadishakumara B., Sunil G. M., Chaithra K., M. Soubadra Devy

Abstract:

A majority of the world’s food crops depends on insects for pollination, among which bees are the most dominant taxon. Bees pollinate vegetables, fruits and oilseeds which are rich in essential micronutrients. Besides being a prerequisite for a nutritionally secure diet, agrarian economies such as India depend heavily on pollination for good yield and quality of the product. As cities all over the world expand rapidly, large tracts of green spaces are being built up. This, along with high usage of agricultural chemicals has reduced floral diversity and shrunk bee habitats. Indeed, pollinator decline is being reported from various parts of the world. Further, the FAO has reported a huge increase in the area of land under cultivation of pollinator-dependent crops. In the light of increasing demand for pollination and disappearing natural habitats, it is critical to understand whether and how urban spaces can support pollinators. To this end, this study investigates the influence of landscape and local habitat quality on bee community dynamics. To capture the dynamics of expanding cityscapes, the study employs a space for time substitution, wherein a transect along the gradient of urbanization substitutes a timeframe of increasing urbanization. This will help understand how pollinators would respond to changes induced by increasing intensity of urbanization in the future. Bengaluru, one of the fastest growing cities of Southern India, is an excellent site to study impacts associated with urbanization. With sites moving away from the Bengaluru’s centre and towards its peripheries, this study captures the changes in bee species diversity and richness along a gradient of urbanization. Bees were sampled under different land use types as well as in different types of vegetation, including plantations, croplands, fallow land, parks, lake embankments, and private gardens. The relationship between bee community metrics and key drivers such as a percentage of built-up area, land use practices, and floral resources was examined. Additionally, data collected using questionnaire interviews were used to understand people’s perceptions towards and level of dependence on pollinators. Our results showed that urban areas are capable of supporting bees. In fact, a greater diversity of bees was recorded in urban sites compared to adjoining rural areas. This suggests that bees are able to seek out patchy resources and survive in small fragments of habitat. Bee abundance and species richness correlated positively with floral abundance and richness, indicating the role of vegetation in providing forage and nesting sites which are crucial to their survival. Bee numbers were seen to decrease with increase in built-up area demonstrating that impervious surfaces could act as deterrents. Findings from this study challenge the popular notion of cities being biodiversity-bare spaces. There is indeed scope for conserving bees in urban landscapes, provided that there are city-scale planning and local initiative. Bee conservation can go hand in hand with efforts such as urban gardening and terrace farming that could help cities urbanize sustainably.

Keywords: bee, landscape ecology, urbanization, urban pollination

Procedia PDF Downloads 167
5024 Green Extraction Technologies of Flavonoids Containing Pharmaceuticals

Authors: Lamzira Ebralidze, Aleksandre Tsertsvadze, Dali Berashvili, Aliosha Bakuridze

Abstract:

Nowadays, there is an increasing demand for biologically active substances from vegetable, animal, and mineral resources. In terms of the use of natural compounds, pharmaceutical, cosmetic, and nutrition industry has big interest. The biggest drawback of conventional extraction methods is the need to use a large volume of organic extragents. The removal of the organic solvent is a multi-stage process. And their absolute removal cannot be achieved, and they still appear in the final product as impurities. A large amount of waste containing organic solvent damages not only human health but also has the harmful effects of the environment. Accordingly, researchers are focused on improving the extraction methods, which aims to minimize the use of organic solvents and energy sources, using alternate solvents and renewable raw materials. In this context, green extraction principles were formed. Green Extraction is a need of today’s environment. Green Extraction is the concept, and it totally corresponds to the challenges of the 21st century. The extraction of biologically active compounds based on green extraction principles is vital from the view of preservation and maintaining biodiversity. Novel technologies of green extraction are known, such as "cold methods" because during the extraction process, the temperature is relatively lower, and it doesn’t have a negative impact on the stability of plant compounds. Novel technologies provide great opportunities to reduce or replace the use of organic toxic solvents, the efficiency of the process, enhance excretion yield, and improve the quality of the final product. The objective of the research is the development of green technologies of flavonoids containing preparations. Methodology: At the first stage of the research, flavonoids containing preparations (Tincture Herba Leonuri, flamine, rutine) were prepared based on conventional extraction methods: maceration, bismaceration, percolation, repercolation. At the same time, the same preparations were prepared based on green technologies, microwave-assisted, UV extraction methods. Product quality characteristics were evaluated by pharmacopeia methods. At the next stage of the research technological - economic characteristics and cost efficiency of products prepared based on conventional and novel technologies were determined. For the extraction of flavonoids, water is used as extragent. Surface-active substances are used as co-solvent in order to reduce surface tension, which significantly increases the solubility of polyphenols in water. Different concentrations of water-glycerol mixture, cyclodextrin, ionic solvent were used for the extraction process. In vitro antioxidant activity will be studied by the spectrophotometric method, using DPPH (2,2-diphenyl-1- picrylhydrazyl) as an antioxidant assay. The advantage of green extraction methods is also the possibility of obtaining higher yield in case of low temperature, limitation extraction process of undesirable compounds. That is especially important for the extraction of thermosensitive compounds and maintaining their stability.

Keywords: extraction, green technologies, natural resources, flavonoids

Procedia PDF Downloads 130
5023 Bake Hardening Behavior of Ultrafine Grained and Nano-Grained AA6061 Aluminum Alloy

Authors: Hamid Alihosseini, Kamran Dehghani

Abstract:

In this study, the effects of grain size of AA6061 aluminum on the bake hardening have been investigated. The grains of sample sheets refined by applying 4, 8, and 12 passes of ECAP and their microstructures and mechanical properties were investigated. EBSD and TEM studies of the sheets showed grain refinement, and the EBSD micrograph of the alloy ECAPed for 12 passes showed nano-grained (NG) ∼95nm in size. Then, the bake hardenability of processed sheet was compared by pre-straining to 6% followed by baking at 200°C for 20 min. The results show that in case of baking at 200°C, there was an increase about 108%, 93%, and 72% in the bake hardening for 12, 8, and 4 passes, respectively. The maximum in bake hardenability (120 MPa) and final yield stress (583 MPa) were pertaining to the ultra-fine grain specimen pre-strained 6% followed by baking at 200◦C.

Keywords: bake hardening, ultrafine grain, nano grain, AA6061 aluminum,

Procedia PDF Downloads 342
5022 The Evaluation of Apricot (Prunus armeniaca L.) Materials Collected from Southeast Anatolia Region of Turkey

Authors: M. Kubilay Önal

Abstract:

The objective of this study was to determine the adaptabilities of native apricot materials collected from Southeast Anatolia region of Turkey to Aegean Region conditions. Different phenological and pomological characteristics of the cultivars were observed during study. Determination of promising types for adaptation trials were performed employing the 'weighed-ranking' method. To determine them the relative points were given to the characteristics such as yield, average fruit weight, attractiveness, soluble solid, seed ratio by weight and aroma. As a result of two-year evaluation studies on the phenological and pomological characteristics of 22 types, 9 out of them, viz., nos. 2235, 2236, 2237, 2239, 2242, 2244, 2246, 2249, 2257 were selected as promising ones.

Keywords: apricot, phenological characters, pomological characters, weight-ranking method

Procedia PDF Downloads 281
5021 A Study of Management Principles Incorporating Corporate Governance and Advocating Ethics to Reduce Fraud at a South African Bank

Authors: Roshan Jelal, Charles Mbohwa

Abstract:

In today’s world, internal fraud remains one of the most challenging problems within companies worldwide and despite investment in controls and attention given to the problem, the instances of internal fraud has not abated. To the contrary it appears that internal fraud is on the rise especially in the wake of the economic downturn. Leadership within companies believes that the more sophisticated the controls employed the less likely it would be for employees to pilfer. This is a very antiquated view as investment in controls may not be enough to curtail internal fraud; however, ensuring that a company drives the correct culture and behaviour within the organisation is likely to yield desired results. This research aims to understand how creating a strong ethical culture and embedding the principle of good corporate governance impacts on levels of internal fraud with an organization (a South African Bank).

Keywords: internal fraud, corporate governance, ethics, reserve bank, the King Code

Procedia PDF Downloads 416
5020 Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism

Authors: Arish Iqbal, Santosh Kumar Singh

Abstract:

Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed.

Keywords: CBM (coal bed methane), CCS (carbon capture and storage), CCT (clean coal technology), CMM (coal mining methane)

Procedia PDF Downloads 240
5019 Green Corrosion Inhibitor from Essential Oil of Linseed for Aluminum in Na2CO3 Solution

Authors: L. Bazzi, E. Azzouyahar, A. Lamiri, M. Essahli

Abstract:

Effect of addition of linseed oil (LSO) on the corrosion of aluminium in 0.1 M Na2CO3 has been studied by weight loss measurements, potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements. The inhibition efficiency was found to increase with inhibitor content to attain 70% for LSO at 4g/L. Inhibition efficiency E (%) obtained from the various methods is in good agreement. The temperature effect on the corrosion behavior of aluminium was studied by potentiodynamic technique in the range from 298 to 308 K.

Keywords: aluminum, corrosion, green inhibitors, carbonate, linseed oil

Procedia PDF Downloads 360
5018 Operational Measures for Greenhouse Gas Reduction from Ships

Authors: Gorana Jelic Mrcelic

Abstract:

In order to reduce greenhouse gas emissions from ships, technical and operational measures can be used. Operational measures are easier and cheaper compared to technical measures, so are well recommended. One of the most cost-effective operational measure is fuel consumption. Fuel consumption can be reduced by various options but it sometimes needs investments in new equipment, new procedures and crew education. In order to implement operational measures in everyday procedures and routines on board, good understanding of the mechanisms by which these measures work is essential for the seamen.

Keywords: green shipping, gas emission reduction, operational measures, seamen

Procedia PDF Downloads 516
5017 Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model

Authors: Muhammad Ali Siddiquee, Md. Alauddin, Md. Omar Faruque, Zakir Hossain Howlader, Mohammad Asaduzzaman

Abstract:

Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health.

Keywords: fermented rice bran, crude rice bran oil, amino acids, proximate composition, gamma-oryzanol, fatty acids, heavy metals, physiochemical parameters

Procedia PDF Downloads 66
5016 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum

Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu

Abstract:

Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.

Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101

Procedia PDF Downloads 46
5015 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis

Authors: Pragyan Paramita Das, Vishwas N. Khatri

Abstract:

By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.

Keywords: bearing capacity, conic programming, finite elements, seismic forces

Procedia PDF Downloads 170
5014 When Pain Becomes Love For God: The Non-Object Self

Authors: Roni Naor-Hofri

Abstract:

This paper shows how self-inflicted pain enabled the expression of love for God among Christian monastic ascetics in medieval central Europe. As scholars have shown, being in a state of pain leads to a change in or destruction of language, an essential feature of the self. The author argues that this transformation allows the self to transcend its boundaries as an object, even if only temporarily and in part. The epistemic achievement of love for God, a non-object, would not otherwise have been possible. To substantiate her argument, the author shows that the self’s transformation into a non-object enables the imitation of God: not solely in the sense of imitatio Christi, of physical and visual representations of God incarnate in the flesh of His son Christ, but also in the sense of the self’s experience of being a non-object, just like God, the target of the self’s love.

Keywords: love for God , pain, philosophy, religion

Procedia PDF Downloads 244
5013 Preservation and Packaging Techniques for Extending the Shelf Life of Cucumbers: A Review of Methods and Factors Affecting Quality

Authors: Abdul Umaro Tholley

Abstract:

The preservation and packaging of cucumbers are essential to maintain their shelf life and quality. Cucumbers are a perishable food item that is highly susceptible to spoilage due to their high-water content and delicate nature. Therefore, proper preservation and packaging techniques are crucial to extend their shelf life and prevent economic loss. There are several methods of preserving cucumbers, including refrigeration, canning, pickling, and dehydration. Refrigeration is the most used preservation method, as it slows down the rate of deterioration and maintains the freshness and quality of the cucumbers. Canning and pickling are also popular preservation methods that use heat treatment and acidic solutions, respectively, to prevent microbial growth and increase shelf life. Dehydration involves removing the water content from cucumbers to increase their shelf life, but it may affect their texture and taste. Packaging also plays a vital role in preserving cucumbers. The packaging materials should be selected based on their ability to maintain the quality and freshness of the cucumbers. The most used packaging materials for cucumbers are polyethylene bags, which prevent moisture loss and protect the cucumbers from physical damage. Other packaging materials, such as corrugated boxes and wooden crates, may also be used, but they offer less protection against moisture loss and damage. The quality of cucumbers is affected by several factors, including storage temperature, humidity, and exposure to light. Cucumbers should be stored at temperatures between 7 and 10 °C, with a relative humidity of 90-95%, to maintain their freshness and quality. Exposure to light should also be minimized to prevent the formation of yellowing and decay. In conclusion, the preservation and packaging of cucumbers are essential to maintain their quality and extend their shelf life. Refrigeration, canning, pickling, and dehydration are common preservation methods that can be used to preserve cucumbers. The packaging materials used should be carefully selected to prevent moisture loss and physical damage. Proper storage conditions, such as temperature, humidity, and light exposure, should also be maintained to ensure the quality and freshness of cucumbers. Overall, proper preservation and packaging techniques can help reduce economic loss and provide consumers with high-quality cucumbers.

Keywords: cucumbers, preservation, packaging, shelf life

Procedia PDF Downloads 96
5012 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 276
5011 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore

Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie

Abstract:

Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.

Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model

Procedia PDF Downloads 153
5010 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads

Authors: Aaron Aboshio

Abstract:

Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.

Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction

Procedia PDF Downloads 302
5009 Primes as Sums and Differences of Two Binomial Coefficients and Two Powersums

Authors: Benjamin Lee Warren

Abstract:

Many problems exist in additive number theory which is essential to determine the primes that are the sum of two elements from a given single-variable polynomial sequence, and most of them are unattackable in the present day. Here, we determine solutions for this problem to a few certain sequences (certain binomial coefficients and power sums) using only elementary algebra and some algebraic factoring methods (as well as Euclid’s Lemma and Faulhaber’s Formula). In particular, we show that there are finitely many primes as sums of two of these types of elements. Several cases are fully illustrated, and bounds are presented for the cases not fully illustrated.

Keywords: binomial coefficients, power sums, primes, algebra

Procedia PDF Downloads 104
5008 Crude Palm Oil Antioxidant Extraction and the Antioxidation Activity

Authors: Supriyono Supriyono, Sumardiyono Sumardiyono, Peni Pujiastuti, Dian Indriana Hapsari

Abstract:

Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. The productivity of the oil is 12 ton/hectare/year. Thus palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish-red color on CPO was come from carotenoid. Carotenoid is one of the antioxidants that could be extracted. Carotenoid could be used as functional food and other purposes. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. In this research work, antioxidant was extracted by a mixture of acetone and n.hexane, while the activity of the antioxidant extract was determined by DPPH method. Antioxidant activity of the extracted compound about 46% compared to pure tocopherol. While the solvent mixture compose by 90% acetone and 10% n. hexane meet the best on the antioxidant activity.

Keywords: antioxidant, beta carotene, crude palm oil, DPPH, tocopherol

Procedia PDF Downloads 214
5007 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil

Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda

Abstract:

Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.

Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification

Procedia PDF Downloads 279
5006 An Evaluation on the Methodology of Manufacturing High Performance Organophilic Clay at the Most Efficient and Cost Effective Process

Authors: Siti Nur Izati Azmi, Zatil Afifah Omar, Kathi Swaran, Navin Kumar

Abstract:

Organophilic Clays, also known as Organoclays, is used as a viscosifier in Oil based Drilling fluids. Most often, Organophilic clay are produced from modified Sodium and Calcium based Bentonite. Many studies and data show that Organophilic Clay using Hectorite based clays provide the best yield and good fluid loss properties in an oil-based drilling fluid at a higher cost. In terms of the manufacturing process, the two common methods of manufacturing organophilic clays are a Wet Process and a Dry Process. Wet process is known to produce better performance product at a higher cost while Dry Process shorten the production time. Hence, the purpose of this study is to evaluate the various formulation of an organophilic clay and its performance vs. the cost, as well as to determine the most efficient and cost-effective method of manufacturing organophilic clays.

Keywords: organophilic clay, viscosifier, wet process, dry process

Procedia PDF Downloads 226
5005 Application of Mathematical Sciences to Farm Management

Authors: Fahad Suleiman

Abstract:

Agriculture has been the mainstay of the nation’s economy in Nigeria. It provides food for the ever rapidly increasing population and raw materials for the industries. People especially the rural dwellers are gainfully employed on their crop farms and small-scale livestock farms for income earning. In farming, availability of funds and time management are one of the major factors that influence the system of farming in Nigeria in which mathematical science knowledge was highly required in order for farms to be managed effectively. Farmers often applied mathematics, almost every day for a variety of tasks, ranging from measuring and weighing, to land marking. This paper, therefore, explores some of the ways math is used in farming. For instance, farmers use arithmetic variety of farm activities such as seed planting, harvesting crop, cultivation and mulching. It is also important in helping farmers to know how much their livestock weighs, how much milk their cows produce and crop yield per acres, among others.

Keywords: agriculture, application, economic, farming, mathematics

Procedia PDF Downloads 249
5004 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach

Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino

Abstract:

The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3  0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.

Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.

Procedia PDF Downloads 42
5003 Improvement of Protein Extraction From Shrimp by Product Used for Electrospinning by Applying Emerging Technologies

Authors: Mario Pérez-Won, Vilbett Briones L., Guido Trautmann, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzalez-Cavieres

Abstract:

The fishing industry generates a significant amount of shrimp byproducts, which often result in environmental contamination. Protein extraction from these by-products is a potential solution to minimize waste and revalue the by-products. To improve the extraction of proteins (by chemical method) from shrimp (Pleuroncodes monodon) by-products, the emerging technologies of ohmic heating (OH), microwaves (MW) and pulsed electric fields (PEF) were used. The results show that microwaves, electrical pulses, and ohmic heating improved performance by 28.19%, 19.25%, and 3.65%, respectively. Furthermore, conformational changes were studied by DSC and FTIR. Subsequently, the use of these proteins in electrospinning technology was evaluated. In conclusion, this study demonstrates that the application of emerging technologies, can significantly improve the extraction yield of proteins from shrimp by-products.

Keywords: electrospinning, emerging technologies, improving extraction, shrimp by-products

Procedia PDF Downloads 77
5002 Fish Species Composition and Distribution of a Semi-Oxbow Lake in North Central Nigeria

Authors: Adeyemi, Samuel Olusegun

Abstract:

The paper reports on the result of experimental gill net assessment of the fishery of Gbedikere Lake in Kogi State between October 2006 and September 2008. Three stations A-C were sampled. Twelve species from ten families were represented in the experimental gill-net catches. These composed of families Protopteridae, Mormyridae, Clariidae, Mochokidae, Cichlidae, Cyprinidae, Malapteruridae, Osteoglossidae, Gymnarchidae, and Citharinidae. The Cichlids dominated the catches. This is made up of Oreochromis niloticus (17.90%), and Tilapia zilli (13.01%). These combined to make up 30.91% of the total number of fish caught. Also, the Cichlids formed 30.91% of the total catch by weight followed Heterotis niloticus (15.56%), Clarias gariepinus (13.16%), Gmynarchus niloticus (8.78%), Heterobranchus bidorsalis (7.14%), Synodontis nigrita (6.69%), Mormyrus rume (5.68%), Citharinus citharus (3.91%), Labeo senegalensis (2.93%), and Protopterus annectens (2.74%), respectively.

Keywords: experimental gill net, species diversity, abundance, distribution, Oxbow Lake and yield

Procedia PDF Downloads 502
5001 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence

Authors: Oluwagbemi Victor Aladeokin

Abstract:

In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.

Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area

Procedia PDF Downloads 145
5000 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength

Authors: Klara Krizova, Rudolf Hela

Abstract:

The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development independence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions. With growing interest in this theme the elastic modulus questions have been developing further.

Keywords: concrete, compressive strength, modulus of elasticity, EuroCode 2

Procedia PDF Downloads 455