Search results for: transport parameters
8908 Evaluation of Oxidative Changes in Soybean Oil During Shelf-Life by Physico-Chemical Methods and Headspace-Liquid Phase Microextraction (HS-LPME) Technique
Authors: Maryam Enteshari, Kooshan Nayebzadeh, Abdorreza Mohammadi
Abstract:
In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV), and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4˚C between p-AV and TBA (r2=0.99).Keywords: headspace-liquid phase microextraction, oxidation, shelf-life, soybean oil
Procedia PDF Downloads 4058907 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground
Authors: Bhim Kumar Dahal
Abstract:
Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies. Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication. And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.Keywords: cement, improvement, physical properties, strength
Procedia PDF Downloads 1768906 Sub-Acute Toxicity Studies on Aqueous Leaf Extract of Acalypha wilkesiana in Albino Rats
Authors: G. E. Forcados, M. L. Shu, C. N. Chinyere
Abstract:
Acalypha wilkesiana is a medicinal plant commonly used in most parts of West Africa as a decoction in treating several human diseases. Existing literature on its toxicity is predominantly on the organic extracts in contrast to the routine use of hot aqueous extracts as decoction. The aim of this study was to examine the phytochemical profile and sub-acute toxicity of A. wilkesiana leaf extracts in albino rats. Three groups of 8 experimental rats each were administered 300 mg/kg, 600 mg/kg and 1200 mg/kg body weight per day for 14 days while a fourth (control) group took tap-water. On day 15, the rats were sacrificed, and blood collected. Biochemical and hematological parameters were analysed and histopathological examination of liver and kidney were performed. There was significant increase (p<0.05) in the levels of some biochemical parameters (AST, ALT, creatinine, urea) in all the test groups compared to control. Histopathological examination of the liver revealed centrilobular degeneration and necrosis with sinusoidal dilatation as well as polymorphonuclear and mononuclear infiltration, likewise severe glomerular and tubular degeneration and necrosis with hemorrhage in the kidney at all dose levels. The results from this study suggest that aqueous leaf extract of A. wilkesiana is hepatotoxic and nephrotoxic at dose levels of 300 mg/kg and above. Therefore, precautionary measures are necessary for home use of the leaf extract of A. wilkesiana.Keywords: acute toxicity, A. wilkesiana, aqeous extract, albino rats, biochemical and haematological parameters, histopathological examination
Procedia PDF Downloads 4398905 3D Modeling of Flow and Sediment Transport in Tanks with the Influence of Cavity
Authors: A. Terfous, Y. Liu, A. Ghenaim, P. A. Garambois
Abstract:
With increasing urbanization worldwide, it is crucial to sustainably manage sediment flows in urban networks and especially in stormwater detention basins. One key aspect is to propose optimized designs for detention tanks in order to best reduce flood peak flows and in the meantime settle particles. It is, therefore, necessary to understand complex flows patterns and sediment deposition conditions in stormwater detention basins. The aim of this paper is to study flow structure and particle deposition pattern for a given tank geometry in view to control and maximize sediment deposition. Both numerical simulation and experimental works were done to investigate the flow and sediment distribution in a storm tank with a cavity. As it can be indicated, the settle distribution of the particle in a rectangular tank is mainly determined by the flow patterns and the bed shear stress. The flow patterns in a rectangular tank differ with different geometry, entrance flow rate and the water depth. With the changing of flow patterns, the bed shear stress will change respectively, which also play an influence on the particle settling. The accumulation of the particle in the bed changes the conditions at the bottom, which is ignored in the investigations, however it worth much more attention, the influence of the accumulation of the particle on the sedimentation should be important. The approach presented here is based on the resolution of the Reynolds averaged Navier-Stokes equations to account for turbulent effects and also a passive particle transport model. An analysis of particle deposition conditions is presented in this paper in terms of flow velocities and turbulence patterns. Then sediment deposition zones are presented thanks to the modeling with particle tracking method. It is shown that two recirculation zones seem to significantly influence sediment deposition. Due to the possible overestimation of particle trap efficiency with standard wall functions and stick conditions, further investigations seem required for basal boundary conditions based on turbulent kinetic energy and shear stress. These observations are confirmed by experimental investigations processed in the laboratory.Keywords: storm sewers, sediment deposition, numerical simulation, experimental investigation
Procedia PDF Downloads 3288904 Parameter Estimation of Additive Genetic and Unique Environment (AE) Model on Diabetes Mellitus Type 2 Using Bayesian Method
Authors: Andi Darmawan, Dewi Retno Sari Saputro, Purnami Widyaningsih
Abstract:
Diabetes mellitus (DM) is a chronic disease in human that occurred if pancreas cannot produce enough of insulin hormone or the body uses ineffectively insulin hormone which causes increasing level of glucose in the blood, or it was called hyperglycemia. In Indonesia, DM is a serious disease on health because it can cause blindness, kidney disease, diabetic feet (gangrene), and stroke. The type of DM criteria can also be divided based on the main causes; they are DM type 1, type 2, and gestational. Diabetes type 1 or previously known as insulin-independent diabetes is due to a lack of production of insulin hormone. Diabetes type 2 or previously known as non-insulin dependent diabetes is due to ineffective use of insulin while gestational diabetes is a hyperglycemia that found during pregnancy. The most one type commonly found in patient is DM type 2. The main factors of this disease are genetic (A) and life style (E). Those disease with 2 factors can be constructed with additive genetic and unique environment (AE) model. In this article was discussed parameter estimation of AE model using Bayesian method and the inheritance character simulation on parent-offspring. On the AE model, there are response variable, predictor variables, and parameters were capable of representing the number of population on research. The population can be measured through a taken random sample. The response and predictor variables can be determined by sample while the parameters are unknown, so it was required to estimate the parameters based on the sample. Estimation of AE model parameters was obtained based on a joint posterior distribution. The simulation was conducted to get the value of genetic variance and life style variance. The results of simulation are 0.3600 for genetic variance and 0.0899 for life style variance. Therefore, the variance of genetic factor in DM type 2 is greater than life style.Keywords: AE model, Bayesian method, diabetes mellitus type 2, genetic, life style
Procedia PDF Downloads 2858903 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3728902 Determination of the Friction Coefficient of AL5754 Alloy by Ring Compression Test: Experimental and Numerical Survey
Authors: P. M. Keshtiban, M. Zadshakoyan
Abstract:
One of the important factors that alter different process and geometrical parameters on metal forming processes is friction between contacting surfaces. Some important factors that effected directly by friction are: stress, strain, required load, wear of surfaces and then geometrical parameters. In order to control friction effects permanent lubrication is necessary. In this article, the friction coefficient is elicited by the most effective method, ring compression tests. The tests were done by both finite element method and practical tests. Different friction curves that extracted by finite element simulations and has good conformity with published results, used for obtaining final friction coefficient. In this study Mos2 is used as the lubricant and Al5754 alloy used as the specimens material.Keywords: experiment, FEM, friction coefficient, ring compression
Procedia PDF Downloads 4638901 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Viktor M. Denisov
Abstract:
A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.Keywords: guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture
Procedia PDF Downloads 4318900 The Influence of Gender on Itraconazole Pharmacokinetic Parameters in Healthy Adults
Authors: Milijana N. Miljkovic, Viktorija M. Dragojevic-Simic, Nemanja K. Rancic, Vesna M. Jacevic, Snezana B. Djordjevic, Momir M. Mikov, Aleksandra M. Kovacevic
Abstract:
Itraconazole (ITZ) is a weak base and extremely lipophilic compound, with water solubility as a rate-limiting step in its absorption from the gastrointestinal tract. Its absolute bioavailability, about 55%, is maximal when its oral formulation, capsules, are taken immediately after a full meal. Peak plasma concentrations (Cmax) are reached within 2 to 5 hrs after their administration. ITZ undergoes extensive hepatic metabolism by human CYP3A4 isoenzyme and more than 30 different metabolites have been identified. One of the main ones is hydroxyitraconazole (HITZ), in which plasma concentrations are almost twice higher than those of ITZ. Gender differences in drug PK (Pharmacokinetics) have already been recognized, but variations in metabolism are believed to be their major cause. The aim of the study was to investigate the influence of gender on ITZ PK parameters after administration of oral capsule formulation, following 100 mg single dosing in healthy adult volunteers under fed conditions. The single-center, open-label PK study was performed. PK analyses included PK parameters obtained after a single 100 mg dose administration of itraconazole capsules to 48 females and 66 males. Blood samples were collected at pre-dose and up to 72.0 h after administration (1.0, 2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 9.0, 12.0, 24.0, 36.0 and 72.0 hrs). The calculated pharmacokinetic parameters, based on the plasma concentrations of itraconazole and hydroxyitraconazole, were Cmax, AUClast, and AUCtot. Plasma concentrations of ITZ and HITZ were determined using a validated liquid chromatographic method with mass spectrometric detection, while pharmacokinetic parameters were estimated using non-compartmental methods. The pharmacokinetic analyses were performed using Kinetica software version 5.0. The mean value of ITZ Cmaxmen was 74.79 ng/ml, and Cmaxwomen was 51.291 ng/ml (independent samples test; p = 0.005). Hydroxyitraconazole had a mean value of Cmaxmen 106.37 ng/ml, and the mean value Cmaxwomen was 70.05 ng/ml. Women had, on average, lower AUClast and Cmax than men. AUClastmen for ITZ was 736.02 ng/mL*h and AUClastwomen was 566.62 ng/mL*h, while AUClastmen for HITZ was 1154.80 was ng/mL*h and AUClastwomen for HITZ was 708.12 ng/mL*h (independent samples test; p = 0.033). The mean values of ITZ AUCtotmen were 884.73 ng/mL*h and AUCtotwomen was 685.10 ng/mL*h. AUCtotmen for HITZ was 1290.41 ng/mL*h, while AUCtotwomen for HIZT was 788.60 ng/mL*h (p < 0.001). The results could point out to lower oral bioavailability of ITZ in women, since values of Cmax, AUClast, and AUCtot of both ITZ and HITZ were significantly lower in women than in men, respectively. The reason may be higher expression and activity of CYP3A4 in women than in men, but there also may be differences in other PK parameters. High variability of both ITZ and HITZ concentrations in both genders confirmed that ITZ is a highly variable drug. Further examinations of its PK are needed to justify strategies for therapeutic drug monitoring in patients treated by this antifungal agent.Keywords: itraconazole, gender, hydroxyitraconazole, pharmacokinetics
Procedia PDF Downloads 1378899 Environmental Impact Assessment of Ceramic Tile Materials Used in Jordan on Indoor Radon Level
Authors: Mefleh Hamideen
Abstract:
In this investigation, the activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K, of some ceramic tile materials used in the local market of Jordan for interior decoration were determined by making use of High Purity Germanium (HPGe) detector. Twenty samples of the different countries of origin and sizes used in Jordan were analyzed. The concentration values of the last-mentioned radionuclides ranged from 30 Bq.kg⁻¹ (Sample from Jordan) to 98 Bq.kg⁻¹ (Sample from China) for ²²⁶Ra, 31 Bq.kg⁻¹ (Sample from Italy) to 98 Bq.kg⁻¹ (Sample from China) for ²³²Th, and 129 Bq.kg⁻¹ (Sample from Spain) to 679 Bq.kg⁻¹ (Sample from Italy) for ⁴⁰K. Based on the calculated activity concentrations, some radiological parameters have been calculated to test the radiation hazards in the ceramic tiles. In this work, the following parameters: Total absorbed dose rate (DR), Annual effective dose rate (HR), Radium equivalent activity (Raeq), Radon emanation coefficient F (%) and Radon mass exhalation rate (Em) were calculated for all ceramic tiles and listed in the body of the work. Fortunately, the average calculated values of all parameters are less than the recommended values for each parameter. Consequently, almost all the examined ceramic materials appear to have low radon emanation coefficients. As a result of that investigation, no problems on people can appear by using those ceramic tiles in Jordan.Keywords: radon emanation coefficient, radon mass exhalation rate, total annual effective dose, radon level
Procedia PDF Downloads 2028898 The Influence of Bacteriocins Producing Lactic Acid Bacteria Multiplied in an Alternative Substrate on Calves Blood Parameters
Authors: E. Bartkiene, V. Krungleviciute, J. Kucinskiene, R. Antanaitis, A. Kucinskas
Abstract:
In calves less than 10-day-old, infection commonly cause severe diarrhoea and high mortality. To prevention of calves diseases a common practice is to treat calves with prophylactic antibiotics, in this case the use of lactic acid bacteria (LAB) is promising. Often LAB strains are incubated in comercial de Man-Rogosa-Sharpe (MRS) medium, the culture are centrifuged, the cells are washing with sterile water, and this suspension is used as a starter culture for animal health care. Juice of potatoe tubers is industrial wastes, wich may constitute a source of digestible nutrients for microorganisms. In our study the ability of LAB to utilize potatoe tubers juice in cell synthesis without external nutrient supplement was investigated, and the influence of multiplied LAB on calves blood parameters was evaluated. Calves were selected based on the analogy principle (treatment group (n=6), control group (n=8)). For the treatment group 14 days was given a 50 ml of fermented potatoe tubers juice containing 9.6 log10 cfu/ml of LAB. Blood parameters (gas and biochemical) were assessed by use of an auto-analyzers (Hitachi 705 and EPOC). Before the experiment, blood pH of treatment group calves was 7.33, control – 7.36, whereas, after 14 days, 7.28 and 7.36, respectively. Calves blood pH in the treatment group remained stable over the all experiment period. Concentration of PCO2 in control calves group blood increased from 63.95 to 70.93, whereas, in the treatment group decreased from 63.08 to 60.71. Concentration of lactate in the treatment group decreased from 3.20 mmol/l to 2.64 mmol/l, whereas, in control - increased from 3.95 mmol/l to 4.29 mmol/l. Concentration of AST in the control calves group increased from 50.18 IU/L to 58.9 IU/L, whereas, in treatment group decreased from 49.82 IU/L to 33.1 IU/L. We conclude that the 50 ml of fermented potatoe tubers juice containing 9.6 log10 cfu/ml of LAB per day, by using 14 days, reduced risk of developing acidosis (stabilizes blood pH (p < 0.05)), reduces lactates and PCO2 concentration (p < 0.05) and risk of liver lesions (reduces AST concentration (p < 0.005)) in blood of calves.Keywords: alternative substrate, blood parameters, calves, lactic acid bacteria
Procedia PDF Downloads 3158897 Cycleloop Personal Rapid Transit: An Exploratory Study for Last Mile Connectivity in Urban Transport
Authors: Suresh Salla
Abstract:
In this paper, author explores for most sustainable last mile transport mode addressing present problems of traffic congestion, jams, pollution and travel stress. Development of energy-efficient sustainable integrated transport system(s) is/are must to make our cities more livable. Emphasis on autonomous, connected, electric, sharing system for effective utilization of systems (vehicles and public infrastructure) is on the rise. Many surface mobility innovations like PBS, Ride hailing, ride sharing, etc. are, although workable but if we analyze holistically, add to the already congested roads, difficult to ride in hostile weather, causes pollution and poses commuter stress. Sustainability of transportation is evaluated with respect to public adoption, average speed, energy consumption, and pollution. Why public prefer certain mode over others? How commute time plays a role in mode selection or shift? What are the factors play-ing role in energy consumption and pollution? Based on the study, it is clear that public prefer a transport mode which is exhaustive (i.e., less need for interchange – network is widespread) and intensive (i.e., less waiting time - vehicles are available at frequent intervals) and convenient with latest technologies. Average speed is dependent on stops, number of intersections, signals, clear route availability, etc. It is clear from Physics that higher the kerb weight of a vehicle; higher is the operational energy consumption. Higher kerb weight also demands heavier infrastructure. Pollution is dependent on source of energy, efficiency of vehicle, average speed. Mode can be made exhaustive when the unit infrastructure cost is less and can be offered intensively when the vehicle cost is less. Reliable and seamless integrated mobility till last ¼ mile (Five Minute Walk-FMW) is a must to encourage sustainable public transportation. Study shows that average speed and reliability of dedicated modes (like Metro, PRT, BRT, etc.) is high compared to road vehicles. Electric vehicles and more so battery-less or 3rd rail vehicles reduce pollution. One potential mode can be Cycleloop PRT, where commuter rides e-cycle in a dedicated path – elevated, at grade or underground. e-Bike with kerb weight per rider at 15 kg being 1/50th of car or 1/10th of other PRT systems makes it sustainable mode. Cycleloop tube will be light, sleek and scalable and can be modular erected, either on modified street lamp-posts or can be hanged/suspended between the two stations. Embarking and dis-embarking points or offline stations can be at an interval which suits FMW to mass public transit. In terms of convenience, guided e-Bike can be made self-balancing thus encouraging driverless on-demand vehicles. e-Bike equipped with smart electronics and drive controls can intelligently respond to field sensors and autonomously move reacting to Central Controller. Smart switching allows travel from origin to destination without interchange of cycles. DC Powered Batteryless e-cycle with voluntary manual pedaling makes it sustainable and provides health benefits. Tandem e-bike, smart switching and Platoon operations algorithm options provide superior through-put of the Cycleloop. Thus Cycleloop PRT will be exhaustive, intensive, convenient, reliable, speedy, sustainable, safe, pollution-free and healthy alternative mode for last mile connectivity in cities.Keywords: cycleloop PRT, five-minute walk, lean modular infrastructure, self-balanced intelligent e-cycle
Procedia PDF Downloads 1358896 Creation of Computerized Benchmarks to Facilitate Preparedness for Biological Events
Abstract:
Introduction: Communicable diseases and pandemics pose a growing threat to the well-being of the global population. A vital component of protecting the public health is the creation and sustenance of a continuous preparedness for such hazards. A joint Israeli-German task force was deployed in order to develop an advanced tool for self-evaluation of emergency preparedness for variable types of biological threats. Methods: Based on a comprehensive literature review and interviews with leading content experts, an evaluation tool was developed based on quantitative and qualitative parameters and indicators. A modified Delphi process was used to achieve consensus among over 225 experts from both Germany and Israel concerning items to be included in the evaluation tool. Validity and applicability of the tool for medical institutions was examined in a series of simulation and field exercises. Results: Over 115 German and Israeli experts reviewed and examined the proposed parameters as part of the modified Delphi cycles. A consensus of over 75% of experts was attained for 183 out of 188 items. The relative importance of each parameter was rated as part of the Delphi process, in order to define its impact on the overall emergency preparedness. The parameters were integrated in computerized web-based software that enables to calculate scores of emergency preparedness for biological events. Conclusions: The parameters developed in the joint German-Israeli project serve as benchmarks that delineate actions to be implemented in order to create and maintain an ongoing preparedness for biological events. The computerized evaluation tool enables to continuously monitor the level of readiness and thus strengths and gaps can be identified and corrected appropriately. Adoption of such a tool is recommended as an integral component of quality assurance of public health and safety.Keywords: biological events, emergency preparedness, bioterrorism, natural biological events
Procedia PDF Downloads 4258895 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials
Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu
Abstract:
The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.Keywords: analytic solution, braided composites, elasticity properties, technology factor
Procedia PDF Downloads 2398894 Analysis of Cracked Beams with Spalling Having Different Arrangements of the Reinforcement Bars Using Finite Element Analysis (FEA)
Authors: Rishabh Shukla, Achin Agrawal, Anupam Saxena, S. Mandal
Abstract:
The existence of a crack, affects the mechanical behaviour and various properties of a structure to a great degree. This paper focuses on recognizing the parameters that gets changed due to the formation of cracks and have a great impact on the performance of the structure. Spalling is a major concern as it leaves the reinforcement bars more susceptible to environmental attacks. Beams of cross section 300 mm × 500 mm are designed and for a calculated area of steel, two different arrangements of reinforced bars are analysed. Results are prepared for different stages of cracking for each arrangement of rebars. The parameters for both arrangements are then compared. The Finite Element Analysis (FEA) is carried out and changes in the properties like flexural strength, Elasticity and modal frequency are reported. The conclusions have been drawn by comparing the results.Keywords: cracks, elasticity, spalling, FEA
Procedia PDF Downloads 2818893 Study of the Quality of Surface Water in the Upper Cheliff Basin
Authors: Touhari Fadhila, Mehaiguene Madjid, Meddi Mohamed
Abstract:
This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH4+, NO2-) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds.Keywords: surface water quality, pollution, physical-chemical parameters, upper Cheliff basin.
Procedia PDF Downloads 2338892 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models
Authors: A. B. M. Rezaul Islam, Ernur Karadogan
Abstract:
Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis
Procedia PDF Downloads 1478891 Classification of Opaque Exterior Walls of Buildings from a Sustainable Point of View
Authors: Michelle Sánchez de León Brajkovich, Nuria Martí Audi
Abstract:
The envelope is one of the most important elements when one analyzes the operation of the building in terms of sustainability. Taking this into consideration, this research focuses on setting a classification system of the envelopes opaque systems, crossing the knowledge and parameters of construction systems with requirements in terms of sustainability that they may have, to have a better understanding of how these systems work with respect to their sustainable contribution to the building. Therefore, this paper evaluates the importance of the envelope design on the building sustainability. It analyses the parameters that make the construction systems behave differently in terms of sustainability. At the same time it explains the classification process generated from this analysis that results in a classification where all opaque vertical envelope construction systems enter.Keywords: sustainable, exterior walls, envelope, facades, construction systems, energy efficiency
Procedia PDF Downloads 5718890 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System
Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour
Abstract:
This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.Keywords: adaptive control, active steering, pole placement, vehicle dynamics
Procedia PDF Downloads 4698889 Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, M. K. G. Choudhury, Santanu Mallick, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent.Keywords: benchmark, blast furnace, CO₂ emission, fuel rate
Procedia PDF Downloads 2818888 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion
Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri
Abstract:
In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price, and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of the sandwich panel on the maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.Keywords: finite element, honeycomb FRP sandwich panel, torsion, civil engineering
Procedia PDF Downloads 4188887 Using the Ecological Analysis Method to Justify the Environmental Feasibility of Biohydrogen Production from Cassava Wastewater Biogas
Authors: Jonni Guiller Madeira, Angel Sanchez Delgado, Ronney Mancebo Boloy
Abstract:
The use bioenergy, in recent years, has become a good alternative to reduce the emission of polluting gases. Several Brazilian and foreign companies are doing studies related to waste management as an essential tool in the search for energy efficiency, taking into consideration, also, the ecological aspect. Brazil is one of the largest cassava producers in the world; the cassava sub-products are the food base of millions of Brazilians. The repertoire of results about the ecological impact of the production, by steam reforming, of biohydrogen from cassava wastewater biogas is very limited because, in general, this commodity is more common in underdeveloped countries. This hydrogen, produced from cassava wastewater, appears as an alternative fuel to fossil fuels since this is a low-cost carbon source. This paper evaluates the environmental impact of biohydrogen production, by steam reforming, from cassava wastewater biogas. The ecological efficiency methodology developed by Cardu and Baica was used as a benchmark in this study. The methodology mainly assesses the emissions of equivalent carbon dioxide (CO₂, SOₓ, CH₄ and particulate matter). As a result, some environmental parameters, such as equivalent carbon dioxide emissions, pollutant indicator, and ecological efficiency are evaluated due to the fact that they are important to energy production. The average values of the environmental parameters among different biogas compositions (different concentrations of methane) were calculated, the average pollution indicator was 10.11 kgCO₂e/kgH₂ with an average ecological efficiency of 93.37%. As a conclusion, bioenergy production using biohydrogen from cassava wastewater treatment plant is a good option from the environmental feasibility point of view. This fact can be justified by the determination of environmental parameters and comparison of the environmental parameters of hydrogen production via steam reforming from different types of fuels.Keywords: biohydrogen, ecological efficiency, cassava, pollution indicator
Procedia PDF Downloads 1998886 Comparative Evaluation of Pentazocine and Tramadol as Pre-Emptive Analgesics for Ovariohysterectomy in Female Dogs
Authors: Venkatgiri, Ranganath, L. Nagaraja, B. N. Sagar Pandav, S. M. Usturge, D. Dilipkumar, B. V. Shivprakash, B. Bhagwanthappa, D. Jahangir
Abstract:
A comparative evaluation of Tramadol and Pentazocine as a pre-emptive analgesic in clinical cases of female dogs undergoing ovariohysterectomy was undertaken during this study. During the study, the following parameters were assessed viz., Rectal temperature (ᵒF), Respiratory rate (breaths/min) and Heart rate (beats/min). Hematological and biochemical parameters viz., total erythrocyte count (TEC) (millions/cmm), hemoglobin (g %), otal leucocytes count (TLC) (thousands/cmm), differential leucocytes count (DLC) (%), serum creatinine (mg/dl), plasma protein (mg/dl), blood glucose (mg/dl) was estimated before the surgery and after administration of general anaesthesia and immediate postoperative periods of 0, 12 and 24 hr respectively. Mean Total Pain Score (MTPS) includes measurement of parameters like posture, vocalization, activity level, response to palpation and agitation at different intervals was calculated before surgery and after administration of general anesthesia and post-operative periods of 1, 2, 4, 6, 12hrs and 24 hrs respectively. Mean Total Pain Score (MTPS) was given for each parameter (Posture, Vocalization, Activity Level, Response to Palpation and Agitation) like 0,1,2,3. (maximum score will be given was 4.). Results were revealed in all three groups including control group. There were significant minor alterations in physiological, hematological and biochemical parameters. MTPS (mean total pain score) were revealed and found a significant alteration when compared with control group. In conclusion, Tramadol found to be a better analgesic and had up to 8hrs of analgesic effect and Pentazocine is superior in post-operative pain management when compared to Tramadol because this group of dogs experienced less surgical stress, consumed less anesthetic dose, they recovered early, and they had less MTPS score.Keywords: dog, pentazocine, tramadol, ovariohysterectomy
Procedia PDF Downloads 1678885 Graphene Transistors Based Microwave Amplifiers
Authors: Pejman Hosseinioun, Ali Safari, Hamed Sarbazi
Abstract:
Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers.Keywords: graphene, microwave FETs, microwave amplifiers, transistors
Procedia PDF Downloads 4938884 To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate
Authors: Kshitij Sawke, Pradnyavant Kamble, Shrikant Patil
Abstract:
The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples.Keywords: laser clad, processing parameters, wear rate, wear resistance
Procedia PDF Downloads 2598883 Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry
Authors: Chukwuemeka Daniel Ezeliora, Chukwuebuka Lawrence Ezeliora
Abstract:
The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study.Keywords: mild steel, impact strength, response surface, bead geometry, welding
Procedia PDF Downloads 1208882 Seismic Inversion for Geothermal Exploration
Authors: E. N. Masri, E. Takács
Abstract:
Amplitude Versus Offset (AVO) and simultaneous model-based impedance inversion techniques have not been utilized for geothermal exploration commonly; however, some recent publications called the attention that they can be very useful in the geothermal investigations. In this study, we present rock physical attributes obtained from 3D pre-stack seismic data and well logs collected in a study area of the NW part of Pannonian Basin where the geothermal reservoir is located in the fractured zones of Triassic basement and it was hit by three productive-injection well pairs. The holes were planned very successfully based on the conventional 3D migrated stack volume prior to this study. Subsequently, the available geophysical-geological datasets provided a great opportunity to test modern inversion procedures in the same area. In this presentation, we provide a summary of the theory and application of the most promising seismic inversion techniques from the viewpoint of geothermal exploration. We demonstrate P- and S-wave impedance, as well as the velocity (Vp and Vs), the density, and the Vp/Vs ratio attribute volumes calculated from the seismic and well-logging data sets. After a detailed discussion, we conclude that P-wave impedance and Vp/Vp ratio are the most helpful parameters for lithology discrimination in the study area. They detect the hot water saturated fracture zone very well thus they can be very useful in mapping the investigated reservoir. Integrated interpretation of all the obtained rock-physical parameters is essential. We are extending the above discussed pre-stack seismic tools by studying the possibilities of Elastic Impedance Inversion (EII) for geothermal exploration. That procedure provides two other useful rock-physical properties, the compressibility and the rigidity (Lamé parameters). Results of those newly created elastic parameters will also be demonstrated in the presentation. Geothermal extraction is of great interest nowadays; and we can adopt several methods have been successfully applied in the hydrocarbon exploration for decades to discover new reservoirs and reduce drilling risk and cost.Keywords: fractured zone, seismic, well-logging, inversion
Procedia PDF Downloads 1288881 Assessment of Seismic Behavior of Masonry Minarets by Discrete Element Method
Authors: Ozden Saygili, Eser Cakti
Abstract:
Mosques and minarets can be severely damaged as a result of earthquakes. Non-linear behavior of minarets of Mihrimah Sultan and Süleymaniye Mosques and the minaret of St. Sophia are analyzed to investigate seismic response, damage and failure mechanisms of minarets during earthquake. Selected minarets have different height and diameter. Discrete elements method was used to create the numerical minaret models. Analyses were performed using sine waves. Two parameters were used for evaluating the results: the maximum relative dislocation of adjacent drums and the maximum displacement at the top of the minaret. Both parameters were normalized by the drum diameter. The effects of minaret geometry on seismic behavior were evaluated by comparing the results of analyses.Keywords: discrete element method, earthquake safety, nonlinear analysis, masonry structures
Procedia PDF Downloads 3178880 Effect of Diamagnetic Additives on Defects Level of Soft LiTiZn Ferrite Ceramics
Authors: Andrey V. Malyshev, Anna B. Petrova, Anatoly P. Surzhikov
Abstract:
The article presents the results of the influence of diamagnetic additives on the defects level of ferrite ceramics. For this purpose, we use a previously developed method based on the mathematical analysis of experimental temperature dependences of the initial permeability. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is the relation of two parameters correlating with elastic stress value in a material. Model samples containing a controlled number of intergranular phase inclusions served to prove the validity of the proposed method, as well as to assess its sensitivity in comparison with the traditional XRD (X-ray diffraction) analysis. The broadening data of diffraction reflexes of model samples have served for such comparison. The defects level data obtained by the proposed method are in good agreement with the X-ray data. The method showed high sensitivity. Therefore, the legitimacy of the selection relationship β/α parameters of phenomenological expression as a characteristic of the elastic state of the ferrite ceramics confirmed. In addition, the obtained data can be used in the detection of non-magnetic phases and testing the optimal sintering production technology of soft magnetic ferrites.Keywords: cure point, initial permeability, integral defects level, homogeneity
Procedia PDF Downloads 1358879 Periodically Forced Oscillator with Noisy Chaotic Dynamics
Authors: Adedayo Oke Adelakun
Abstract:
The chaotic dynamics of periodically forced oscillators with smooth potential has been extensively investigated via theoretical, numerical and experimental simulations. With the advent of the study of chaotic dynamics by means of method of multiple time scale analysis, Melnikov theory, bifurcation diagram, Poincare's map, bifurcation diagrams and Lyapunov exponents, it has become necessary to seek for a better understanding of nonlinear oscillator with noisy term. In this paper, we examine the influence of noise on complex dynamical behaviour of periodically forced F6 - Duffing oscillator for specific choice of noisy parameters. The inclusion of noisy term improves the dynamical behaviour of the oscillator which may have wider application in secure communication than smooth potential.Keywords: hierarchical structure, periodically forced oscillator, noisy parameters, dynamical behaviour, F6 - duffing oscillator
Procedia PDF Downloads 326