Search results for: real time stress detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25932

Search results for: real time stress detection

24402 Anatomical Survey for Text Pattern Detection

Authors: S. Tehsin, S. Kausar

Abstract:

The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.

Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction

Procedia PDF Downloads 444
24401 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 71
24400 Economic and Financial Crime, Forensic Accounting and Sustainable Developments Goals (SDGs). Bibliometric Analysis

Authors: Monica Violeta Achim, Sorin Nicolae Borlea

Abstract:

This aim of this work is to stress the needs for enhancing the role of forensic accounting in fighting economic and financial crime, in the context of the new international regulation movements in this area enhanced by the International Federation of Accountants (IFAC). Corruption, money laundering, tax evasion and other frauds significant hamper the economic growth and human development and, ultimately, the UN Sustainable Development Goals. The present paper also stresses the role of good governance in fighting the frauds, in order to achieve the most suitable sustainable development of the society. In this view, we made a bibliometric systematic review on forensic accounting and its contribution towards fraud detection and prevention and theirs relationship with good governance and Sustainable Developments Goals (SDGs). In this view, two powerful bibliometric visual software tools, VosViewer and CiteSpace are used in order to analyze published papers identifies in Scopus and Web of Science databases over the time. Our findings reveal the main red flags identified in literature as used tools by forensic accounting, the evolution in time of the interest of the topic, the distribution in space among world countries and connectivity with patterns of a good governance. Visual designs and scientific maps are useful to show these findings, in a visual way. Our findings are useful for managers and policy makers to provide important avenues that may help in reaching the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, in the area of using forensic accounting in preventing frauds.

Keywords: forensic accounting, frauds, red flags, SDGs

Procedia PDF Downloads 140
24399 Trend Detection Using Community Rank and Hawkes Process

Authors: Shashank Bhatnagar, W. Wilfred Godfrey

Abstract:

We develop in this paper, an approach to find the trendy topic, which not only considers the user-topic interaction but also considers the community, in which user belongs. This method modifies the previous approach of user-topic interaction to user-community-topic interaction with better speed-up in the range of [1.1-3]. We assume that trend detection in a social network is dependent on two things. The one is, broadcast of messages in social network governed by self-exciting point process, namely called Hawkes process and the second is, Community Rank. The influencer node links to others in the community and decides the community rank based on its PageRank and the number of users links to that community. The community rank decides the influence of one community over the other. Hence, the Hawkes process with the kernel of user-community-topic decides the trendy topic disseminated into the social network.

Keywords: community detection, community rank, Hawkes process, influencer node, pagerank, trend detection

Procedia PDF Downloads 384
24398 The Confiscation of Ill-Gotten Gains in Pollution: The Taiwan Experience and the Interaction between Economic Analysis of Law and Environmental Economics Perspectives

Authors: Chiang-Lead Woo

Abstract:

In reply to serious environmental problems, the Taiwan government quickly adjusted some articles to suit the needs of environmental protection recently, such as the amendment to article 190-1 of the Taiwan Criminal Code. The transfer of legislation comes as an improvement which canceled the limitation of ‘endangering public safety’. At the same time, the article 190-1 goes from accumulative concrete offense to abstract crime of danger. Thus, the public looks forward to whether environmental crime following the imposition of fines or penalties works efficiently in anti-pollution by the deterrent effects. However, according to the addition to article 38-2 of the Taiwan Criminal Code, the confiscation system seems controversial legislation to restrain ill-gotten gains. Most prior studies focused on comparisons with the Administrative Penalty Law and the Criminal Code in environmental issue in Taiwan; recently, more and more studies emphasize calculations on ill-gotten gains. Hence, this paper try to examine the deterrent effect in environmental crime by economic analysis of law and environmental economics perspective. This analysis shows that only if there is an extremely high probability (equal to 100 percent) of an environmental crime case being prosecuted criminally by Taiwan Environmental Protection Agency, the deterrent effects will work. Therefore, this paper suggests deliberating the confiscation system from supplementing the System of Environmental and Economic Accounting, reasonable deterrent fines, input management, real-time system for detection of pollution, and whistleblower system, environmental education, and modernization of law.

Keywords: confiscation, ecosystem services, environmental crime, ill-gotten gains, the deterrent effect, the system of environmental and economic accounting

Procedia PDF Downloads 169
24397 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 466
24396 Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load

Authors: Elisaveta Kirilova, Wilfried Becker, Jordanka Ivanova, Tatyana Petrova

Abstract:

The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed.

Keywords: genetic algorithm, minimal delamination, optimal gap position, shear lag solution

Procedia PDF Downloads 300
24395 Prediction of Concrete Hydration Behavior and Cracking Tendency Based on Electrical Resistivity Measurement, Cracking Test and ANSYS Simulation

Authors: Samaila Muazu Bawa

Abstract:

Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.

Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, ANSYS simulation

Procedia PDF Downloads 240
24394 Multimedia Firearms Training System

Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel

Abstract:

The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.

Keywords: firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics

Procedia PDF Downloads 223
24393 Clarifying the Possible Symptomatic Pathway of Comorbid Depression, Anxiety, and Stress Among Adolescents Exposed to Childhood Trauma: Insight from the Network Approach

Authors: Xinyuan Zou, Qihui Tang, Shujian Wang, Yulin Huang, Jie Gui, Xiangping Liu, Gang Liu, Yanqiang Tao

Abstract:

Childhood trauma can have a long-lasting influence on individuals and contribute to mental disorders, including depression and anxiety. The current study aimed to explore the symptomatic and developmental patterns of depression, anxiety, and stress among adolescents who have suffered from childhood trauma. A total of 3,598 college students (female = 1,617 (44.94%), Mean Age = 19.68, SD Age = 1.35) in China completed the Childhood Trauma Questionnaire (CTQ) and the Depression, Anxiety, and Stress Scales (DASS-21), and 2,337 participants met the selection standard based on the cut-off scores of the CTQ. The symptomatic network and directed acyclic graph (DAG) network approaches were used. The results revealed that males reported experiencing significantly more physical abuse, physical neglect, emotional neglect, and sexual abuse compared to females. However, females scored significantly higher than males on all items of DASS-21, except for “Worthless”. No significant difference between the two genders was observed in the network structure and global strength. Meanwhile, among all participants, “Down-hearted” and “Agitated” appeared to be the most interconnected symptoms, the bridge symptoms in the symptom network, as well as the most vital symptoms in the DAG network. Apart from that, “No-relax” also served as the most prominent symptom in the DAG network. The results suggested that intervention targeted at assisting adolescents in developing more adaptive coping strategies with stress and regulating emotion could benefit the alleviation of comorbid depression, anxiety, and stress.

Keywords: symptom network, childhood trauma, depression, anxiety, stress

Procedia PDF Downloads 59
24392 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings

Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian

Abstract:

Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.

Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM

Procedia PDF Downloads 110
24391 Analyzing Time Lag in Seismic Waves and Its Effects on Isolated Structures

Authors: Faizan Ahmad, Jenna Wong

Abstract:

Time lag between peak values of horizontal and vertical seismic waves is a well-known phenomenon. Horizontal and vertical seismic waves, secondary and primary waves in nature respectively, travel through different layers of soil and the travel time is dependent upon the medium of wave transmission. In seismic analysis, many standardized codes do not require the actual vertical acceleration to be part of the analysis procedure. Instead, a factor load addition for a particular site is used to capture strength demands in case of vertical excitation. This study reviews the effects of vertical accelerations to analyze the behavior of a linearly rubber isolated structure in different time lag situations and frequency content by application of historical and simulated ground motions using SAP2000. The response of the structure is reviewed under multiple sets of ground motions and trends based on time lag and frequency variations are drawn. The accuracy of these results is discussed and evaluated to provide reasoning for use of real vertical excitations in seismic analysis procedures, especially for isolated structures.

Keywords: seismic analysis, vertical accelerations, time lag, isolated structures

Procedia PDF Downloads 336
24390 Imaging of Underground Targets with an Improved Back-Projection Algorithm

Authors: Alireza Akbari, Gelareh Babaee Khou

Abstract:

Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.

Keywords: algorithm, back-projection, GPR, remote sensing

Procedia PDF Downloads 452
24389 An Implementation of a Configurable UART-to-Ethernet Converter

Authors: Jungho Moon, Myunggon Yoon

Abstract:

This paper presents an implementation of a configurable UART-to-Ethernet converter using an ARM-based 32-bit microcontroller as well as a dedicated configuration program running on a PC for configuring the operating parameters of the converter. The program was written in Python. Various parameters pertaining to the operation of the converter can be modified by the configuration program through the Ethernet interface of the converter. The converter supports 3 representative asynchronous serial communication protocols, RS-232, RS-422, and RS-485 and supports 3 network modes, TCP/IP server, TCP/IP client, and UDP client. The TCP/IP and UDP protocols were implemented on the microcontroller using an open source TCP/IP protocol stack called lwIP (A lightweight TCP/IP) and FreeRTOS, a free real-time operating system for embedded systems. Due to the use of a real-time operating system, the firmware of the converter was implemented as a multi-thread application and as a result becomes more modular and easier to develop. The converter can provide a seamless bridge between a serial port and an Ethernet port, thereby allowing existing legacy apparatuses with no Ethernet connectivity to communicate using the Ethernet protocol.

Keywords: converter, embedded systems, ethernet, lwIP, UART

Procedia PDF Downloads 706
24388 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 67
24387 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines

Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz

Abstract:

Steel tubular towers serving as support structures for large wind turbines are subject to several hundred million stress cycles arising from the turbulent nature of the wind. This causes high-cycle fatigue which can govern tower design. The practice of maintaining the support structure after wind turbines reach its typical 20-year design life have become common, but without quantifying the changes in the reliability on the tower. There are several studies on this topic, but most of them are based on the S-N curve approach using the Miner’s rule damage summation method, the de-facto standard in the wind industry. However, the qualitative nature of Miner’s method makes desirable the use of fracture mechanics to measure the effects of fatigue in the capacity curve of the structure, which is important in order to evaluate the integrity and reliability of these towers. Temporal and spatially varying wind speed time histories are simulated based on power spectral density and coherence functions. Simulations are then applied to a SAP2000 finite element model and step-by-step analysis is used to obtain the stress time histories for a range of representative wind speeds expected during service conditions of the wind turbine. Rainflow method is then used to obtain cycle and stress range information of each of these time histories and a statistical analysis is performed to obtain the distribution parameters of each variable. Monte Carlo simulation is used here to evaluate crack growth over time in the tower base using the Paris-Erdogan equation. A nonlinear static pushover analysis to assess the capacity curve of the structure after a number of years is performed. The capacity curves are then used to evaluate the changes in reliability of a steel tower located in Oaxaca, Mexico, where wind energy facilities are expected to grow in the near future. Results show that fatigue on the tower base can have significant effects on the structural capacity of the wind turbine, especially after the 20-year design life when the crack growth curve starts behaving exponentially.

Keywords: crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines

Procedia PDF Downloads 517
24386 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 301
24385 The Real Business Power of Virtual Reality: From Concept to Application

Authors: Svetlana Bialkova, Marnix van Gisbergen

Abstract:

Advanced Virtual Reality (VR) technologies offer compelling multisensory and interactive experiences applicable in various fields from education to entertainment. However, serious VR applications within the financial sector are scarce, and managing ‘real’ business services with(in) VR is a challenge inviting further investigation. The current research addresses this challenge, by exploring the key parameters influencing the VR business power and the development of appropriate VR applications in real financial business. We conducted profound investigation of both B2B and B2C needs, and how these could be met. In three studies, we have approached experts from leading international banks (finance to computer specialists), and their (potential) customers. Study 1 included focus group discussions with experts. First, participants could experience different VR devices such as Samsung Gear VR, then a structured discussion was held. The outcomes are analyzed and summarized in a portfolio. Study 2 further used the portfolio analyzer to profile the management of real business services with(in) VR. Again experts participated, where first being introduced with Samsung Gear, then experiencing it and being interviewed. Based on the outcomes, a survey was developed to interview (potential) customers and test ideas created (Study 3). The results suggest that developing proper system architectures to connect people and to connect devices is crucial for building up powerful business with(in) VR. From one side, connecting devices, e.g., pairing mobile Head Mounted Displays for VR with smart-phones and/or wearable technologies would be appropriate way “to have” customers anywhere, anytime with a brand and/or business. Developing VR Apps, providing detailed real time visualization of performance and infrastructure types could enable 3D VR navigation, 3D contents viewing, but also being opportunity for connecting people in collaborative platforms. The outcomes of the current research are summarized in a model which could be applied to unlock the real business power of VR.

Keywords: business power, B2B, B2C, VR applications

Procedia PDF Downloads 289
24384 The Effect of Stress on Job Performance of Frontline Employees of Hotels: Reference to Star Class Hotels in North Central Province, Sri Lanka

Authors: W. M. M. Weerasooriya, K. T. N. P. Abeywickrama

Abstract:

There has been some research on stress in the hotel industry in Sri Lanka and elsewhere. Still, the amount is not proportionate to the severity of the issue. This paper examined the effect of stress on job performance of frontline employees of Sri Lankan hotel context. Duly completed 70 self-administered questionnaires filled by frontline employees of star class hotels in North Central Province in Sri Lanka were used for the purpose with a response rate of 70%. The researcher employed empirical analysis using statistical tools such as regression analysis of Pearson’s correlation of coefficient. It was found that there is a high level of workload and role ambiguity existing among the frontline employees of hotels located in North Central Province and existing role ambiguity significantly reduce the job performance of the frontline employees of star class hotels while the existing low level of physical work environment also leads to a low level of job performance.

Keywords: hotel front line employees, job stress, job performance, Sri Lanka

Procedia PDF Downloads 127
24383 Ramification of Pemphigus Vulgaris Sera and the Monoclonal Antibody Against Desmoglein-3 on Nrf2 Expression in Keratinocyte Cultures

Authors: Faris Mohsin Alabeedi

Abstract:

Pemphigus Vulgaris (PV) is a life-threatening autoimmune blistering disease characterized by the presence of autoantibodies directed against the epidermis's surface proteins. There are two forms of PV, mucocutaneous and mucosal-dominant PV. Disruption of the cell junctions is a hallmark of PV due to the autoantibodies targeting the desmosomal cadherins, desmoglein-3 (Dsg3) and desmoglein-1, leading to acantholysis in the skin and mucous membrane. Although the pathogenesis of PV is known, the detailed molecular events remain not fully understood. Our recent study has shown that both the PV sera and pathogenic anti-Dsg3 antibody AK23 can induce ROS and cause oxidative stress in cultured keratinocytes. In line with our finding, other independent studies also demonstrate oxidative stress in PV. Since Nrf2 plays a crucial role in cellular anti-oxidative stress response, we hypothesize that the expression of Nrf2 may alter in PV. Thus, treatment of cells with PV sera or AK23 may cause changes in Nrf2 expression and distribution. The purpose of this study was to examine the effect of AK23 and PV sera on Nrf2 in a normal human keratinocyte cell line, such as NTERT cells. Both a time-course and dose-dependent experiments with AK23, alongside the matched isotype control IgG, were performed in keratinocyte cultures and analysed by immunofluorescence for Nrf2 and Dsg3. Additionally, the same approach was conducted with the sera from PV patients and healthy individuals that served as a control in this study. All the fluorescent images were analysed using ImageJ software. Each experiment was repeated twice. In general, variations were observed throughout this study. In the dose-response experiments, although enhanced Dsg3 expression was consistently detected in AK23 treated cells, the expression of Nrf2 showed no consistent findings between the experiments, although changes in its expression were noticeable in cells treated with AK23. In the time-course study, a trend with induction of Nrf2 over time was shown in control cells treated with mouse isotype IgG. Treatment with AK23 showed a reduction of Nrf2 in a time-dependent manner, especially at the 24-hour time point. However, the earlier time points, such as 2 hours and 6 hours with AK23 treatments, detected somewhat variations. Finally, PV sera caused a decrease of Dsg3, but on the other hand, variations were observed in Nrf2 expression in PV sera treated cells. In general, PV sera seemed to cause a reduction of Nrf2 in the majority of PV sera treated samples. In addition, more pronounced cytoplasmic expression of Nrf2 has been observed in PV sera treated cells than those treated with AK23, suggesting that polyclonal and monoclonal IgG might induce a different effect on Nrf2 expression and distribution. Further experimental studies are crucial to obtain a more coincide global view of Nrf2-mediated gene regulation. In particular, Pemphigus Voulgaris studies assessing how the Nrf2-dependent network changes from a physiological to a pathological condition can provide insight into disease mechanisms and perhaps initiate further treatment approaches.

Keywords: pemphigus vulgaris, monoclonal antibody against desmoglein-3, Nrf2 oxidative stress, keratinocyte cultures

Procedia PDF Downloads 75
24382 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms

Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.

Keywords: anomaly detection, clustering, pattern recognition, web sessions

Procedia PDF Downloads 288
24381 RAPDAC: Role Centric Attribute Based Policy Driven Access Control Model

Authors: Jamil Ahmed

Abstract:

Access control models aim to decide whether a user should be denied or granted access to the user‟s requested activity. Various access control models have been established and proposed. The most prominent of these models include role-based, attribute-based, policy based access control models as well as role-centric attribute based access control model. In this paper, a novel access control model is presented called “Role centric Attribute based Policy Driven Access Control (RAPDAC) model”. RAPDAC incorporates the concept of “policy” in the “role centric attribute based access control model”. It leverages the concept of "policy‟ by precisely combining the evaluation of conditions, attributes, permissions and roles in order to allow authorization access. This approach allows capturing the "access control policy‟ of a real time application in a well defined manner. RAPDAC model allows making access decision at much finer granularity as illustrated by the case study of a real time library information system.

Keywords: authorization, access control model, role based access control, attribute based access control

Procedia PDF Downloads 159
24380 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
24379 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification

Authors: Mohammad Sarchami, Mohsen Zeinalkhani

Abstract:

Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.

Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm

Procedia PDF Downloads 248
24378 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 322
24377 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network

Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz

Abstract:

Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.

Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle

Procedia PDF Downloads 238
24376 The Mechanical Response of a Composite Propellant under Harsh Conditions

Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng

Abstract:

The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.

Keywords: fatigue, HTPB propellant, tensile properties, time-temperature superposition principle

Procedia PDF Downloads 294
24375 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels

Authors: M. Münch, R. Brandt

Abstract:

Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.

Keywords: activation parameters, creep mechanisms, high strength steels, low temperature creep

Procedia PDF Downloads 171
24374 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin

Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng

Abstract:

The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.

Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin

Procedia PDF Downloads 76
24373 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 327