Search results for: learning assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12265

Search results for: learning assessment

10735 An Application of Self-Health Risk Assessment among Populations Living in The Vicinity of a Fiber-Cement Roofing Factory

Authors: Phayong Thepaksorn

Abstract:

The objective of this study was to assess whether living in proximity to a roofing fiber cement factory in southern Thailand was associated with physical, mental, social, and spiritual health domains measured in a self-reported health risk assessment (HRA) questionnaire. A cross-sectional study was conducted among community members divided into two groups: near population (living within 0-2 km of factory) and far population (living within 2-5 km of factory)(N=198). A greater proportion of those living far from the factory (65.34%) reported physical health problems than the near group (51.04 %)(p=0.032). This study has demonstrated that the near population group had higher proportion of participants with positive ratings on mental assessment (30.34%) and social health impacts (28.42%) than far population group (10.59% and 16.67 %, respectively) (p<0.001). The near population group (29.79%) had similar proportion of participants with positive ratings in spiritual health impacts compared with far population group (27.08%). Among females, but not males, this study demonstrated that a higher proportion of the near population had a positive summative score for the self-HRA, which included all four health domain, compared to the far population (p <0.001 for females; p=0.154 for males). In conclusion, this self-HRA of physical, mental, social, and spiritual health domains reflected the risk perceptions of populations living in the vicinity of the roofing fiber cement factory. This type of tool can bring attention to population concerns and complaints in the factory’s surrounding community. Our findings may contribute to future development of self-HRA for HIA development procedure in Thailand.

Keywords: cement dust, health impact assessment, risk assessment, walk-though survey

Procedia PDF Downloads 379
10734 Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment

Authors: Vera Karla S. Caingles, Glen A. Lorenzo

Abstract:

Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment.

Keywords: collapsibility, correlation, expansiveness, landslide, plasticity

Procedia PDF Downloads 160
10733 Using Chatbots to Create Situational Content for Coursework

Authors: B. Bricklin Zeff

Abstract:

This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.

Keywords: chatbot, nursing, pragmatics, role-play, AI

Procedia PDF Downloads 66
10732 Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data

Authors: Caglayan Hizal, Hasan Emre Demirci, Engin Aktas, Alper Sezer

Abstract:

Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology.

Keywords: Offshore wind turbines, SHM, reliability assessment, soil-structure interaction

Procedia PDF Downloads 533
10731 Knowledge Management Best Practice Model in Higher Learning Institution: A Systematic Literature Review

Authors: Ismail Halijah, Abdullah Rusli

Abstract:

Introduction: This systematic literature review aims to identify the Knowledge Management Best Practice components in the Knowledge Management Model for Higher Learning Institutions environment. Study design: Systematic literature review. Methods: A systematic literature re-view of Knowledge Management Best Practice to identify and define the components of Best Practice from the Knowledge Management models was conducted recently. Results: This review of published papers of conference and journals’ articles shows the components of Best Practice in Knowledge Management are basically divided into two aspect which is the soft aspect and the hard aspect. The lacks of combination of these two aspects into an integrated model decelerate Knowledge Management Best Practice to fully throttle. Evidence from the literature shows the lack of integration of this two aspects leads to the immaturity of the Higher Learning Institution (HLI) towards the implementation of Knowledge Management System. Conclusion: The first steps of identifying the attributes to measure the Knowledge Management Best Practice components from the models in the literature will led to the definition of the Knowledge Management Best Practice component for the higher learning environment.

Keywords: knowledge management, knowledge management system, knowledge management best practice, knowledge management higher learning institution

Procedia PDF Downloads 593
10730 The Environmental Influence on Slow Learners' Learning Achievement

Authors: Niphattha Hannapha

Abstract:

This paper examines how the classroom environment influences slow learners’ learning achievement; it focuses on how seating patterns affect students’ behaviours and which patterns best contribute to students’ learning performance. The researcher studied how slow learners’ characteristics and seating patterns influenced their behaviours and performance at Ban Hin Lad School. As a nonparticipant observation, the target groups included 15 slow learners from Prathomsueksa (Grades) 4 and 5. Students’ behaviours were recorded during their learning activities in order to minimize their reading and written expression disorder in Thai language tutorials. The result showed four seating patterns and two behaviors which obstructed students’ learning. The average of both behaviours mostly occurred when students were seated with patterns 1 (the seat facing the door, with the corridor alongside) and 3 (the seat alongside the door, facing the aisle) respectively. Seating patterns 1 and 3 demonstrated visibility (the front and side) of a walking path with two-way movement. However, seating patterns 2 (seating with the door alongside and the aisle at the back) and 4 (sitting with the door at the back and the aisle alongside) demonstrated visibility (the side) of a walking path with one-way movement. In Summary, environmental design is important to enhance concentration in slow learners who have reading and writing disabilities. This study suggests that students should be seated where they can have the least visibility of movement to help them increase continuous learning. That means they can have a better chance of developing reading and writing abilities in comparison with other patterns of seating.

Keywords: slow learning, interior design, interior environment, classroom

Procedia PDF Downloads 214
10729 Evaluating Distance and Blended Learning during COVID-19: Experiences and Innovations from High School and Secondary Educators

Authors: Azzeddine Atibi, Khadija El Kababi, Salim Ahmed, Mohamed Radid

Abstract:

The primary aim of the present study is to undertake an extensive comparative examination of distance learning and blended learning modalities, with a particular focus on assessing their efficacy during the period of confinement imposed by the COVID-19 pandemic. This investigation is grounded in the firsthand experiences of educators at the high school and secondary levels across both private and public educational institutions. To gather the necessary data, we designed and distributed a meticulously crafted survey to these educators, soliciting detailed accounts of their professional experiences throughout this challenging period. The survey's objectives include elucidating the specific difficulties faced by teachers, as well as highlighting the innovative pedagogical strategies they developed in response to these challenges. By synthesizing the insights gained from this survey, we aim to foster an exchange of experiences among educators and to generate informed recommendations that will guide future educational reforms. Ultimately, this study aspires to contribute to the ongoing discourse on optimizing educational practices in the face of unprecedented disruptions.

Keywords: distance learning, blended learning, covid 19, secondary/ high school, teachingperformance, evaluation

Procedia PDF Downloads 39
10728 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 460
10727 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach

Authors: Alvaro Figueira, Bruno Cabral

Abstract:

Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.

Keywords: data mining, e-learning, grade prediction, machine learning, student learning path

Procedia PDF Downloads 123
10726 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics

Authors: Dorottya Horváth, Tímea Harmath-Tánczos

Abstract:

Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.

Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory

Procedia PDF Downloads 97
10725 Canada Deuterium Uranium Updated Fire Probabilistic Risk Assessment Model for Canadian Nuclear Plants

Authors: Hossam Shalabi, George Hadjisophocleous

Abstract:

The Canadian Nuclear Power Plants (NPPs) use some portions of NUREG/CR-6850 in carrying out Fire Probabilistic Risk Assessment (PRA). An assessment for the applicability of NUREG/CR-6850 to CANDU reactors was performed and a CANDU Fire PRA was introduced. There are 19 operating CANDU reactors in Canada at five sites (Bruce A, Bruce B, Darlington, Pickering and Point Lepreau). A fire load density survey was done for all Fire Safe Shutdown Analysis (FSSA) fire zones in all CANDU sites in Canada. National Fire Protection Association (NFPA) Standard 557 proposes that a fire load survey must be conducted by either the weighing method or the inventory method or a combination of both. The combination method results in the most accurate values for fire loads. An updated CANDU Fire PRA model is demonstrated in this paper that includes the fuel survey in all Canadian CANDU stations. A qualitative screening step for the CANDU fire PRA is illustrated in this paper to include any fire events that can damage any part of the emergency power supply in addition to FSSA cables.

Keywords: fire safety, CANDU, nuclear, fuel densities, FDS, qualitative analysis, fire probabilistic risk assessment

Procedia PDF Downloads 138
10724 Pre-Service Teachers’ Experiences and Attitude towards Children’s Problem Solving Strategies in Early Mathematics Learning

Authors: Temitayo Ogunsanwo

Abstract:

Problem-solving is an important way of learning way of learning because it propels children to use previous experiences to deal with new situations. The purpose of this study is to find out the attitude of pre-service teachers to problem-solving as a strategy for promoting early mathematics learning in children. This qualitative study employed a descriptive design to investigate the experiences of twenty second-year undergraduate early childhood education Pre-service teachers in a teaching practice and their attitude towards five-year-old children’s problem-solving strategies in mathematics. Pre-service teachers were exposed to different strategies for teaching children how to solve problems in mathematics. They were taken through a micro teaching in class using different strategies to teach problem-solving in different topics in the five-year-old mathematics curriculum. The students were then made to teach five-year-olds in neighbouring schools for three weeks, working in pairs, observing and recording children’s problem-solving activities and strategies. After the three weeks exercise, their experiences and attitude towards children’s problem-solving strategies were collected using open-ended questions and analysed in themes. Findings were discussed.

Keywords: attitude, early mathematics learning, experience, pre-service teachers, problem-solving, strategies

Procedia PDF Downloads 348
10723 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 56
10722 Language and Culture Exchange: Tandem Language Learning for University Students

Authors: Hebe Wong, Luz Fernandez Calventos

Abstract:

Tandem language learning, a language exchange process based on the principles of autonomy and reciprocity, provides opportunities for interlocutors to learn each other’s language by communicating online or face-to-face. While much attention has been paid to the process and outcomes of tandem learning via email, little has been discussed about the effectiveness of face-to-face tandem learning on language and culture exchange for university students. The LACTS (Language and Culture Tandem Scheme), an 8-week project, was set up to study students’ perceptions of conducting tandem learning to assist their language and culture exchange. Students of both post-graduate and undergraduate programmes (N=103) from a Hong Kong SAR university were put in groups of 4 to 6 according to their availability and language preferences and met for an hour a week. While sample task sheets on a range of topics were provided to assist the language exchange, all groups were encouraged to take charge of their meeting format and choose their own topics. At the end of the project, a 19-item questionnaire, which included both open-and closed-ended questions investigating students’ perceptions of reciprocal teaching and cultural exchange, was administered. Thirty-minute individual interviews were conducted to elicit students’ views and experiences in the LACTS activities. Quantitative and qualitative data analysis showed that most students agreed that the project had enhanced their cultural awareness and helped create an inclusive and participatory learning environment. Significant differences were found in students’ confidence in speaking their targeted language after joining the scheme. The interviews also provided rich data on the variety of formats and leadership patterns in student-led meetings, which could shed light on student autonomy and future tandem language learning projects.

Keywords: autonomy, reciprocity, tandem language learning, university students

Procedia PDF Downloads 59
10721 PatchMix: Learning Transferable Semi-Supervised Representation by Predicting Patches

Authors: Arpit Rai

Abstract:

In this work, we propose PatchMix, a semi-supervised method for pre-training visual representations. PatchMix mixes patches of two images and then solves an auxiliary task of predicting the label of each patch in the mixed image. Our experiments on the CIFAR-10, 100 and the SVHN dataset show that the representations learned by this method encodes useful information for transfer to new tasks and outperform the baseline Residual Network encoders by on CIFAR 10 by 12% on ResNet 101 and 2% on ResNet-56, by 4% on CIFAR-100 on ResNet101 and by 6% on SVHN dataset on the ResNet-101 baseline model.

Keywords: self-supervised learning, representation learning, computer vision, generalization

Procedia PDF Downloads 90
10720 The Impact of Cooperative Learning on Numerical Methods Course

Authors: Sara Bilal, Abdi Omar Shuriye, Raihan Othman

Abstract:

Numerical Methods is a course that can be conducted using workshops and group discussion. This study has been implemented on undergraduate students of level two at the Faculty of Engineering, International Islamic University Malaysia. The Numerical Method course has been delivered to two Sections 1 and 2 with 44 and 22 students in each section, respectively. Systematic steps have been followed to apply the student centered learning approach in teaching Numerical Method course. Initially, the instructor has chosen the topic which was Euler’s Method to solve Ordinary Differential Equations (ODE) to be learned. The students were then divided into groups with five members in each group. Initial instructions have been given to the group members to prepare their subtopics before meeting members from other groups to discuss the subtopics in an expert group inside the classroom. For the time assigned for the classroom discussion, the setting of the classroom was rearranged to accommodate the student centered learning approach. Teacher strength was by monitoring the process of learning inside and outside the class. The students have been assessed during the migrating to the expert groups, recording of a video explanation outside the classroom and during the final examination. Euler’s Method to solve the ODE was set as part of Question 3(b) in the final exam. It is observed that none of the students from both sections obtained a zero grade in Q3(b), compared to Q3(a) and Q3(c). Also, for Section 1(44 students), 29 students obtained the full mark of 7/7, while only 10 obtained 7/7 for Q3(a) and no students obtained 6/6 for Q3(c). Finally, we can recommend that the Numerical Method course be moved toward more student-centered Learning classrooms where the students will be engaged in group discussion rather than having a teacher one man show.

Keywords: teacher centered learning, student centered learning, mathematic, numerical methods

Procedia PDF Downloads 367
10719 Effect of Leadership Style on Organizational Performance

Authors: Khadija Mushtaq, Mian Saqib Mehmood

Abstract:

This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.

Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan

Procedia PDF Downloads 406
10718 Inclusive Educational Technology for Students in Rural Areas in Nigeria: Experimenting Micro-Learning and Gamification in Basic Technology Classes

Authors: Efuwape Bamidele Michael, Efuwape Oluwabunmi Asake

Abstract:

Nigeria has some deep rural environments that seem secluded from most of the technological amenities for convenient living and learning. Most schools in such environments are yet to be captured in the educational applications of technological facilities. The study explores the facilitation of basic technology instructions with micro-learning and gamification among students in rural Junior Secondary Schools in the Ipokia Local Government Area (LGA) of Ogun state. The study employed a quasi-experimental design, specifically the pre-test and post-test control group design. The study population comprised all Junior Secondary School students in the LGA. Four Junior Secondary Schools in the LGA were randomly selected for the study and classified into two experimental and two control groups. A total sample of 156 students participated in the study. Basic Technology Achievement Test and Junior School Students’ Attitudinal Scale were instruments used for data collection in the study with reliability coefficients of 0.87 and 0.83, respectively. Five hypotheses guided the study and were tested using Analysis of covariance (ANCOVA) at a 0.05 level of significance. Findings from the study established significant marginal differences in students’ academic performance (F = 644.301; p = .000), learning retention (F = 583.335; p = .000), and attitude towards learning basic technology (F = 491.226; p = .000) between the two groups in favour of the experimental group exposed to micro-learning and gamification. As a recommendation, adequate provisions for inclusive educational practices with technological applications should be ensured for all children irrespective of location within the country, especially to encourage effective learning in rural schools.

Keywords: inclusive education, educational technology, basic technology students, rural areas in Nigeria, micro-learning, gamification

Procedia PDF Downloads 90
10717 Logical-Probabilistic Modeling of the Reliability of Complex Systems

Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia

Abstract:

The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out.

Keywords: Complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability, weight of element

Procedia PDF Downloads 74
10716 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning

Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang

Abstract:

Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.

Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning

Procedia PDF Downloads 119
10715 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 204
10714 Interactive and Innovative Environments for Modeling Digital Educational Games and Animations

Authors: Ida Srdić, Luka Mandić, LidijaMandić

Abstract:

Digitization and intensive use of tablets, smartphones, the internet, mobile, and web applications have massively disrupted our habits, and the way audiences (especially youth) consume content. To introduce educational content in games and animations, and at the same time to keep it interesting and compelling for kids, is a challenge. In our work, we are comparing the different possibilities and potentials that digital games could provide to successfully mitigate direct connection with education. We analyze the main directions and educational methods in game-based learning and the possibilities of interactive modeling through questionnaires for user experience and requirements. A pre and post-quantitative survey will be conducted in order to measure levels of objective knowledge as well as the games perception. This approach enables quantitative and objective evaluation of the impact the game has on participants. Also, we will discuss the main barriers to the use of games in education and how games can be best used for learning.

Keywords: Bloom’s taxonomy, epistemic games, learning objectives, virtual learning environments

Procedia PDF Downloads 100
10713 Simo-syl: A Computer-Based Tool to Identify Language Fragilities in Italian Pre-Schoolers

Authors: Marinella Majorano, Rachele Ferrari, Tamara Bastianello

Abstract:

The recent technological advance allows for applying innovative and multimedia screen-based assessment tools to test children's language and early literacy skills, monitor their growth over the preschool years, and test their readiness for primary school. Several are the advantages that a computer-based assessment tool offers with respect to paper-based tools. Firstly, computer-based tools which provide the use of games, videos, and audio may be more motivating and engaging for children, especially for those with language difficulties. Secondly, computer-based assessments are generally less time-consuming than traditional paper-based assessments: this makes them less demanding for children and provides clinicians and researchers, but also teachers, with the opportunity to test children multiple times over the same school year and, thus, to monitor their language growth more systematically. Finally, while paper-based tools require offline coding, computer-based tools sometimes allow obtaining automatically calculated scores, thus producing less subjective evaluations of the assessed skills and provide immediate feedback. Nonetheless, using computer-based assessment tools to test meta-phonological and language skills in children is not yet common practice in Italy. The present contribution aims to estimate the internal consistency of a computer-based assessment (i.e., the Simo-syl assessment). Sixty-three Italian pre-schoolers aged between 4;10 and 5;9 years were tested at the beginning of the last year of the preschool through paper-based standardised tools in their lexical (Peabody Picture Vocabulary Test), morpho-syntactical (Grammar Repetition Test for Children), meta-phonological (Meta-Phonological skills Evaluation test), and phono-articulatory skills (non-word repetition). The same children were tested through Simo-syl assessment on their phonological and meta-phonological skills (e.g., recognise syllables and vowels and read syllables and words). The internal consistency of the computer-based tool was acceptable (Cronbach's alpha = .799). Children's scores obtained in the paper-based assessment and scores obtained in each task of the computer-based assessment were correlated. Significant and positive correlations emerged between all the tasks of the computer-based assessment and the scores obtained in the CMF (r = .287 - .311, p < .05) and in the correct sentences in the RCGB (r = .360 - .481, p < .01); non-word repetition standardised test significantly correlates with the reading tasks only (r = .329 - .350, p < .05). Further tasks should be included in the current version of Simo-syl to have a comprehensive and multi-dimensional approach when assessing children. However, such a tool represents a good chance for the teachers to early identifying language-related problems even in the school environment.

Keywords: assessment, computer-based, early identification, language-related skills

Procedia PDF Downloads 185
10712 Comparative Life Cycle Assessment of Roofing System for Abu Dhabi

Authors: Iyasu Eibedingil

Abstract:

The construction industry is one of the major factors responsible for causing a negative impact on the environment. It has the largest share in the use of natural resources including land use, material extraction, and greenhouse gases emissions. For this reason, it is imperative to reduce its environmental impact through the construction of sustainable buildings with less impact. These days, it is possible to measure the environmental impact by using different tools such as the life cycle assessment (LCA) approach. Given this premise, this study explored the environmental impact of two types of roofing systems through comparative life cycle assessment approach. The tiles were analyzed to select the most environmentally friendly roofing system for the villa at Khalifa City A, Abu Dhabi, United Arab Emirates. These products are available in various forms; however, in this study concrete roof tiles and clay roof tiles were considered. The results showed that concrete roof tiles have lower environmental impact. In all scenarios considered, manufacturing the roof tiles locally, using recovered fuels for firing clay tiles, and using renewable energy (electricity from PV plant) showed that the concrete roof tiles were found to be excellent in terms of its embodied carbon, embodied the energy and various other environmental performance indicators.

Keywords: clay roof tile, concrete roof tile, life cycle assessment, sensitivity analysis

Procedia PDF Downloads 392
10711 Aspects of Diglossia in Arabic Language Learning

Authors: Adil Ishag

Abstract:

Diglossia emerges in a situation where two distinctive varieties of a language are used alongside within a certain community. In this case, one is considered as a high or standard variety and the second one as a low or colloquial variety. Arabic is an extreme example of a highly diglossic language. This diglossity is due to the fact that Arabic is one of the most spoken languages and spread over 22 Countries in two continents as a mother tongue, and it is also widely spoken in many other Islamic countries as a second language or simply the language of Quran. The geographical variation between the countries where the language is spoken and the duality of the classical Arabic and daily spoken dialects in the Arab world on the other hand; makes the Arabic language one of the most diglossic languages. This paper tries to investigate this phenomena and its relation to learning Arabic as a first and second language.

Keywords: Arabic language, diglossia, first and second language, language learning

Procedia PDF Downloads 564
10710 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 116
10709 Empowering Learners: From Augmented Reality to Shared Leadership

Authors: Vilma Zydziunaite, Monika Kelpsiene

Abstract:

In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.

Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education

Procedia PDF Downloads 43
10708 Sustainable Material Selection for Buildings: Analytic Network Process Method and Life Cycle Assessment Approach

Authors: Samira Mahmoudkelayeh, Katayoun Taghizade, Mitra Pourvaziri, Elnaz Asadian

Abstract:

Over the recent decades, depletion of resources and environmental concerns made researchers and practitioners present sustainable approaches. Since construction process consumes a great deal of both renewable and non-renewable resources, it is of great significance regarding environmental impacts. Choosing sustainable construction materials is a remarkable strategy presented in many researches and has a significant effect on building’s environmental footprint. This paper represents an assessment framework for selecting best sustainable materials for exterior enclosure in the city of Tehran based on sustainability principles (eco-friendly, cost effective and socio-cultural viable solutions). To perform a comprehensive analysis of environmental impacts, life cycle assessment, a cradle to grave approach is used. A questionnaire survey of construction experts has been conducted to determine the relative importance of criteria. Analytic Network Process (ANP) is applied as a multi-criteria decision-making method to choose sustainable material which consider interdependencies of criteria and sub-criteria. Finally, it prioritizes and aggregates relevant criteria into ultimate assessed score.

Keywords: sustainable materials, building, analytic network process, life cycle assessment

Procedia PDF Downloads 242
10707 Concept Mapping of Teachers Regarding Conflict Management

Authors: Tahir Mehmood, Mumtaz Akhter

Abstract:

The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.

Keywords: conflict management, open and distance learning, teachers, students

Procedia PDF Downloads 412
10706 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 33