Search results for: flight dynamics
1769 Structure of Grain Boundaries in α-Zirconium and Niobium
Authors: Divya Singh, Avinash Parashar
Abstract:
Due to superior mechanical, creep and nuclear cross section, zirconium and niobium (Zr-Nb) based alloys are commonly used as nuclear materials for the manufacturing of fuel cladding and pressure tubes in nuclear power plants. In this work, symmetrical tilt grain boundary (STGB) structures in α-Zr are studied for their structure and energies along two tilt axes- [0001] and [0-110] using MD based simulations. Tilt grain boundaries are obtained along [0001] tilt axis, and special twin structures are obtained along [0-110] tilt axis in α-Zr. For Nb, STGBs are constructed along [100] and [110] axis using atomistic simulations. The correlation between GB structures and their energies is subsequently examined. A close relationship is found to exist between individual GB structure and its energy in both α-Zr and Nb. It is also concluded that the energies of the more coherent twin grain boundaries are lower than the symmetrical tilt grain boundaries.Keywords: grain boundaries, molecular dynamics, grain boundary energy, hcp crystal
Procedia PDF Downloads 2661768 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia
Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla
Abstract:
Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus
Procedia PDF Downloads 1161767 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT
Authors: Imane Khalil, Quinn Pratt
Abstract:
In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.Keywords: spent nuclear fuel, conduction, heat transfer, uncertainty quantification
Procedia PDF Downloads 2241766 Study of Gait Stability Evaluation Technique Based on Linear Inverted Pendulum Model
Authors: Kang Sungjae
Abstract:
This research proposes a gait stability evaluation technique based on the linear inverted pendulum model and moving support foot Zero Moment Point. With this, an improvement towards the gait analysis of the orthosis walk is validated. The application of Lagrangian mechanics approximation to the solutions of the dynamics equations for the linear inverted pendulum does not only simplify the solution, but it provides a smooth Zero Moment Point for the double feet support phase. The Zero Moment Point gait analysis techniques mentioned above validates reference trajectories for the center of mass of the gait orthosis, the timing of the steps and landing position references for the swing feet. The stability evaluation technique are tested with a 6 DOF powered gait orthosis. The results obtained are promising for implementations.Keywords: locomotion, center of mass, gait stability, linear inverted pendulum model
Procedia PDF Downloads 5191765 University-Industry Technology Transfer and Technology Transfer Offices in Emerging Economies
Authors: José Carlos Rodríguez, Mario Gómez
Abstract:
The aim of this paper is to get insight on the nature of university-industry technology transfer (UITT) and technology transfer offices (TTOs) activity at universities in the case of emerging economies. In relation to the process of transferring knowledge/technology in the case of emerging economies, knowledge/technology transfer in these economies are more reactive than in developed economies due to differences in maturity of technologies. It is assumed in this paper that knowledge/technology transfer is a complex phenomenon, and thus the paper contributes to get insight on the nature of UITT and TTOs creation in the case of emerging economies by using a system dynamics model of knowledge/technology transfer in these countries. The paper recognizes the differences between industrialized countries and emerging economies on these phenomena.Keywords: university-industry technology transfer, technology transfer offices, technology transfer models, emerging economies
Procedia PDF Downloads 2521764 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 5331763 Modeling of the Energy Storage Device: LTC3588
Authors: Mojtaba Ghodsi, Morteza Mohammadzaheri, Payam Soltani
Abstract:
This study provides a detailed analysis of the LTC3588 as a low-power energy storage model, focusing on its internal circuitry and energy harvesting capabilities. The study highlights the relationship between the input and output capacitors and the behavior of the output voltage, particularly its rise time. It was found that increasing the input capacitance (Cᵢₙ) from 1 µF to 220 µF reduces oscillations in the output voltage (Vₒᵤₜ) and slows the rate of increase in the input voltage, demonstrating the impact of input capacitance on voltage dynamics. Furthermore, the study revealed that smaller output capacitors (Cₒᵤₜ) result in fewer voltage jumps required to reach the target output voltage of 3.2 V, suggesting that a smaller Cₒᵤₜ improves voltage regulation speed and stability. The study concludes that both input and output capacitors play a critical role in the LTC3588's performance. Optimizing these capacitors is crucial for efficient energy storage and harvesting in applications requiring minimal power consumption.Keywords: LTC3588, modeling, Zener diode, LED
Procedia PDF Downloads 161762 Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based on Passivity Approach
Authors: Jenn-Yih Chen, Bean-Yin Lee, Yuan-Chuan Hsu, Jui-Cheng Lin, Kuang-Chyi Lee
Abstract:
In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances.Keywords: adaptive law, passivity theorem, permanent magnet synchronous motor, sliding mode control
Procedia PDF Downloads 4711761 Nonparametric Specification Testing for the Drift of the Short Rate Diffusion Process Using a Panel of Yields
Authors: John Knight, Fuchun Li, Yan Xu
Abstract:
Based on a new method of the nonparametric estimator of the drift function, we propose a consistent test for the parametric specification of the drift function in the short rate diffusion process using observations from a panel of yields. The test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that the parametric drift function is correctly specified, and converges to infinity under the alternative. Taking the daily 7-day European rates as a proxy of the short rate, we use our test to examine whether the drift of the short rate diffusion process is linear or nonlinear, which is an unresolved important issue in the short rate modeling literature. The testing results indicate that none of the drift functions in this literature adequately captures the dynamics of the drift, but nonlinear specification performs better than the linear specification.Keywords: diffusion process, nonparametric estimation, derivative security price, drift function and volatility function
Procedia PDF Downloads 3711760 “Thou Shalt Surely Die”: A Game Theory Analysis of the Book of Genesis
Authors: Bo Kampmann Walther
Abstract:
This essay examines the narratives of the Book of Genesis through the lens of game theory, a mathematical framework for analyzing strategic interactions among rational actors. By treating key figures in Genesis as players in a game, this analysis sheds light on their decisions and the resulting consequences. Focusing primarily on the story of Adam and Eve, the essay utilizes concepts such as game state, saddle point, optimal strategy, and Nash equilibrium to explore the dynamics at play and scrutinize the existence of two kinds of game rules in Genesis: one being global and post-Fall oriented, the other being local and relegated to life in the Garden. The serpent's intervention and the subsequent actions of Adam and Eve are modeled as strategic moves, revealing the complexities and shifts in the game state from harmony in Eden to a world marked by toil and mortality post-Fall.Keywords: game theory, Genesis, strategy, saddle point, nash equilibrium, New Game State
Procedia PDF Downloads 481759 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 281758 Understanding the Dynamics of Linker Histone Using Mathematical Modeling and FRAP Experiments
Authors: G. Carrero, C. Contreras, M. J. Hendzel
Abstract:
Linker histones or histones H1 are highly mobile nuclear proteins that regulate the organization of chromatin and limit DNA accessibility by binding to the chromatin structure (DNA and associated proteins). It is known that this binding process is driven by both slow (strong binding) and rapid (weak binding) interactions. However, the exact binding mechanism has not been fully described. Moreover, the existing models only account for one type of bound population that does not distinguish explicitly between the weakly and strongly bound proteins. Thus, we propose different systems of reaction-diffusion equations to describe explicitly the rapid and slow interactions during a FRAP (Fluorescence Recovery After Photobleaching) experiment. We perform a model comparison analysis to characterize the binding mechanism of histone H1 and provide new meaningful biophysical information on the kinetics of histone H1.Keywords: FRAP (Fluorescence Recovery After Photobleaching), histone H1, histone H1 binding kinetics, linker histone, reaction-diffusion equation
Procedia PDF Downloads 4451757 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics
Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere
Abstract:
Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciencesKeywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet
Procedia PDF Downloads 1401756 CFD Analysis of Solar Floor Radiant Heating System with PCM
Authors: Mohammad Nazififard, Reihane Faghihi
Abstract:
This paper is aimed at understanding convective heat transfer of enclosed phase change material (PCM) in the solar and low-temperature hot water radiant floor heating geometry. In order to obtain the best performance of PCM, a radiant heating structure of the energy storage floor is designed which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The governing equations are numerically solved. The PCM thermal storage time is considered in relation to the floor surface temperature under different hot water temperatures. Moreover the PCM thermal storage time is numerically estimated under different supply water temperatures and flow rate. Results show the PCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.Keywords: solar floor, heating system, phase change material, computational fluid dynamics
Procedia PDF Downloads 2471755 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model
Procedia PDF Downloads 1551754 A Comparative Study of the Evolution of Disparities in Salaries of Hospital Executives
Authors: Lesley Clack, Rachel Ellison, Elizabeth Chambers
Abstract:
A belief exists that there are huge gender and racial disparities among hospital CEO’s in the United States, and historically, male, Caucasian healthcare executives have made significantly larger salaries than females and other races. With a recent focus on reducing barriers and disparities in healthcare, it remains to be seen whether there have been changes in these disparities over time. The purpose of this study was to explore disparities among salaries of hospital executives in the United States. Analysis of salary data was conducted utilizing online hospital salary databases. Statistical analysis was conducted to examine the significance of the differences. Results indicated that there had been improvements in disparities among some ethnicities. Gender disparities remain the largest gap. The implications of this study are significant for the field of healthcare management as disparities can affect both social dynamics and organizational culture. Understanding where disparities lie is the first step towards bridging the gap and reducing barriers for cultural diversity within healthcare management.Keywords: health care, disparities, management, executives
Procedia PDF Downloads 1261753 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations
Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos
Abstract:
The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.Keywords: correlations, cosmic rays, sun, sunspots and variations.
Procedia PDF Downloads 801752 Possibility of Prediction of Death in SARS-Cov-2 Patients Using Coagulogram Analysis
Authors: Omonov Jahongir Mahmatkulovic
Abstract:
Purpose: To study the significance of D-dimer (DD), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen coagulation parameters (Fg) in predicting the course, severity and prognosis of COVID-19. Source and method of research: From September 15, 2021, to November 5, 2021, 93 patients aged 25 to 60 with suspected COVID-19, who are under inpatient treatment at the multidisciplinary clinic of the Tashkent Medical Academy, were retrospectively examined. DD, PT, APTT, and Fg were studied in dynamics and studied changes. Results: Coagulation disorders occurred in the early stages of COVID-19 infection with an increase in DD in 54 (58%) patients and an increase in Fg in 93 (100%) patients. DD and Fg levels are associated with the clinical classification. Of the 33 patients who died, 21 had an increase in DD in the first laboratory study, 27 had an increase in DD in the second and third laboratory studies, and 15 had an increase in PT in the third test. The results of the ROC analysis of mortality showed that the AUC DD was three times 0.721, 0.801, and 0.844, respectively; PT was 0.703, 0.845, and 0.972. (P<0:01). Conclusion”: Coagulation dysfunction is more common in patients with severe and critical conditions. DD and PT can be used as important predictors of mortality from COVID-19.Keywords: Covid19, DD, PT, Coagulogram analysis, APTT
Procedia PDF Downloads 1091751 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 2921750 Docking Studie of Biologically Active Molecules: Exploring Medical Applications
Authors: Sihame Amakrane, Zineb Ouahdi, Mohammed Salah, Said Belaaouad
Abstract:
\This research explores the efficacy of novel pyrimidine derivatives on bacterial strains such as Escherichia coli, Staphylococcus aureus, and Myccobacterium tuberculosis, utilizing bending energy calculations. Of the 25 compounds examined, 13 displayed potent activity against all the bacterial strains under study, exhibiting bending energy measurements between -7.4 and -10.7 kcal/mol. The -7.4 kcal/mol value corresponds to the bending energy of the SA12 and SA13 compounds with the 2xct protein (Staphylococcus aureus), whereas the -10.7 kcal/molis linked with the bending energy of SA6 and SA11 compounds with the 6GAV protein (Myccobacterium tuberculosis). Further research will involve a QSAR (Quantitative Structure-Activity Relationship) study aimed at constructing a reliable model to combat the aforementioned bacterial strains and a molecular dynamics study to evaluate the stability of ligand-protein complexes.Keywords: docking, QSAR, bending energy, e. coli
Procedia PDF Downloads 911749 Modeling Study of Short Fiber Orientation in Simple Injection Molding Processes
Authors: Ihsane Modhaffar, Kamal Gueraoui, Abouelkacem Qais, Abderrahmane Maaouni, Samir Men-La-Yakhaf, Hamid Eltourroug
Abstract:
The main objective of this paper is to develop a Computational Fluid Dynamics (CFD) model to simulate and characterize the fiber suspension in flow in rectangular cavities. The model is intended to describe the velocity profile and to predict the fiber orientation. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The numerical model for determination of velocity profile and fiber orientation during mold-filling stage of injection molding process was solved using finite volume method. The governing equations of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation
Procedia PDF Downloads 4701748 A Comparative Study of School Choice: China and the United States
Authors: Huizi Zeng
Abstract:
This paper delineates the historical retrospective and current status of school choice in China. Focusing on analyzing the similarities and differences in origin, evolution, public dispute, policy dynamics between China and the United States, the article depicts a panorama and explores possible causes. Both China and the United States continue to learn from historical legacy and invent new programs to perfect school choice policy but the outcomes are so different. On the one hand, the percentage of public schools in China remains high all along, while there is a considerably significant reduction in the United States. On the other hand, there is more governmental intervention in the United States with continuous and constant policy updates and adjustment. Finally, this article adopts public-private partnerships (PPP) to seek to provide insights into differences between the two countries and argue that school choice is not only the production of education marketization and corporation but also driven by political mechanism.Keywords: China, United States, school choice, comparative analysis, policy, public private partnerships
Procedia PDF Downloads 1961747 Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations
Authors: Mohamed M. Abo Elazm, Ali I. Shehata, Mohamed M. Khairat Dawood
Abstract:
A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect.Keywords: heat transfer, swirling effect, CFD, inclination angle, concentric tube heat exchange
Procedia PDF Downloads 3261746 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype
Authors: Tine Cencič, Marko Hočevar, Brane Širok
Abstract:
An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics
Procedia PDF Downloads 4201745 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions
Authors: Ishtiaq A. Chaudhry, Zia R. Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid
Abstract:
It has experimentally been proved that the performance of compression ignition (CI) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work, the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.Keywords: evaporating diesel sprays, penetration rates, hot bomb conditions
Procedia PDF Downloads 3641744 Investigating the Dynamics of Knowledge Acquisition in Undergraduate Mathematics Students Using Differential Equations
Authors: Gilbert Makanda
Abstract:
The problem of the teaching of mathematics is studied using differential equations. A mathematical model for knowledge acquisition in mathematics is developed. In this study we adopt the mathematical model that is normally used for disease modelling in the teaching of mathematics. It is assumed that teaching is 'infecting' students with knowledge thereby spreading this knowledge to the students. It is also assumed that students who gain this knowledge spread it to other students making disease model appropriate to adopt for this problem. The results of this study show that increasing recruitment rates, learning contact with teachers and learning materials improves the number of knowledgeable students. High dropout rates and forgetting taught concepts also negatively affect the number of knowledgeable students. The developed model is then solved using Matlab ODE45 and \verb"lsqnonlin" to estimate parameters for the actual data.Keywords: differential equations, knowledge acquisition, least squares, dynamical systems
Procedia PDF Downloads 4291743 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.Keywords: computer vision, drone control, keypoint detection, openpose
Procedia PDF Downloads 1891742 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)
Authors: Ali Pourkazemi
Abstract:
The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies
Procedia PDF Downloads 731741 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm
Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho
Abstract:
Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.
Procedia PDF Downloads 2571740 Dynamic Model of Automatic Loom on SimulationX
Authors: A. Jomartov, A. Tuleshov, B. Tultaev
Abstract:
One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance.Keywords: automatic loom, dynamics, model, multibody, SimulationX
Procedia PDF Downloads 352