Search results for: classifier algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2315

Search results for: classifier algorithms

785 Parallelizing the Hybrid Pseudo-Spectral Time Domain/Finite Difference Time Domain Algorithms for the Large-Scale Electromagnetic Simulations Using Massage Passing Interface Library

Authors: Donggun Lee, Q-Han Park

Abstract:

Due to its coarse grid, the Pseudo-Spectral Time Domain (PSTD) method has advantages against the Finite Difference Time Domain (FDTD) method in terms of memory requirement and operation time. However, since the efficiency of parallelization is much lower than that of FDTD, PSTD is not a useful method for a large-scale electromagnetic simulation in a parallel platform. In this paper, we propose the parallelization technique of the hybrid PSTD-FDTD (HPF) method which simultaneously possesses the efficient parallelizability of FDTD and the quick speed and low memory requirement of PSTD. Parallelization cost of the HPF method is exactly the same as the parallel FDTD, but still, it occupies much less memory space and has faster operation speed than the parallel FDTD. Experiments in distributed memory systems have shown that the parallel HPF method saves up to 96% of the operation time and reduces 84% of the memory requirement. Also, by combining the OpenMP library to the MPI library, we further reduced the operation time of the parallel HPF method by 50%.

Keywords: FDTD, hybrid, MPI, OpenMP, PSTD, parallelization

Procedia PDF Downloads 148
784 Ethical Considerations of Disagreements Between Clinicians and Artificial Intelligence Recommendations: A Scoping Review

Authors: Adiba Matin, Daniel Cabrera, Javiera Bellolio, Jasmine Stewart, Dana Gerberi (librarian), Nathan Cummins, Fernanda Bellolio

Abstract:

OBJECTIVES: Artificial intelligence (AI) tools are becoming more prevalent in healthcare settings, particularly for diagnostic and therapeutic recommendations, with an expected surge in the incoming years. The bedside use of this technology for clinicians opens the possibility of disagreements between the recommendations from AI algorithms and clinicians’ judgment. There is a paucity in the literature analyzing nature and possible outcomes of these potential conflicts, particularly related to ethical considerations. The goal of this scoping review is to identify, analyze and classify current themes and potential strategies addressing ethical conflicts originating from the conflict between AI and human recommendations. METHODS: A protocol was written prior to the initiation of the study. Relevant literature was searched by a medical librarian for the terms of artificial intelligence, healthcare and liability, ethics, or conflict. Search was run in 2021 in Ovid Cochrane Central Register of Controlled Trials, Embase, Medline, IEEE Xplore, Scopus, and Web of Science Core Collection. Articles describing the role of AI in healthcare that mentioned conflict between humans and AI were included in the primary search. Two investigators working independently and in duplicate screened titles and abstracts and reviewed full-text of potentially eligible studies. Data was abstracted into tables and reported by themes. We followed methodological guidelines for Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). RESULTS: Of 6846 titles and abstracts, 225 full texts were selected, and 48 articles included in this review. 23 articles were included as original research and review papers. 25 were included as editorials and commentaries with similar themes. There was a lack of consensus in the included articles on who would be held liable for mistakes incurred by following AI recommendations. It appears that there is a dichotomy of the perceived ethical consequences depending on if the negative outcome is a result of a human versus AI conflict or secondary to a deviation from standard of care. Themes identified included transparency versus opacity of recommendations, data bias, liability of outcomes, regulatory framework, and the overall scope of artificial intelligence in healthcare. A relevant issue identified was the concern by clinicians of the “black box” nature of these recommendations and the ability to judge appropriateness of AI guidance. CONCLUSION AI clinical tools are being rapidly developed and adopted, and the use of this technology will create conflicts between AI algorithms and healthcare workers with various outcomes. In turn, these conflicts may have legal, and ethical considerations. There is limited consensus about the focus of ethical and liability for outcomes originated from disagreements. This scoping review identified the importance of framing the problem in terms of conflict between standard of care or not, and informed by the themes of transparency/opacity, data bias, legal liability, absent regulatory frameworks and understanding of the technology. Finally, limited recommendations to mitigate ethical conflicts between AI and humans have been identified. Further work is necessary in this field.

Keywords: ethics, artificial intelligence, emergency medicine, review

Procedia PDF Downloads 93
783 2D Hexagonal Cellular Automata: The Complexity of Forms

Authors: Vural Erdogan

Abstract:

We created two-dimensional hexagonal cellular automata to obtain complexity by using simple rules same as Conway’s game of life. Considering the game of life rules, Wolfram's works about life-like structures and John von Neumann's self-replication, self-maintenance, self-reproduction problems, we developed 2-states and 3-states hexagonal growing algorithms that reach large populations through random initial states. Unlike the game of life, we used six neighbourhoods cellular automata instead of eight or four neighbourhoods. First simulations explained that whether we are able to obtain sort of oscillators, blinkers, and gliders. Inspired by Wolfram's 1D cellular automata complexity and life-like structures, we simulated 2D synchronous, discrete, deterministic cellular automata to reach life-like forms with 2-states cells. The life-like formations and the oscillators have been explained how they contribute to initiating self-maintenance together with self-reproduction and self-replication. After comparing simulation results, we decided to develop the algorithm for another step. Appending a new state to the same algorithm, which we used for reaching life-like structures, led us to experiment new branching and fractal forms. All these studies tried to demonstrate that complex life forms might come from uncomplicated rules.

Keywords: hexagonal cellular automata, self-replication, self-reproduction, self- maintenance

Procedia PDF Downloads 152
782 A Polynomial Time Clustering Algorithm for Solving the Assignment Problem in the Vehicle Routing Problem

Authors: Lydia Wahid, Mona F. Ahmed, Nevin Darwish

Abstract:

The vehicle routing problem (VRP) consists of a group of customers that needs to be served. Each customer has a certain demand of goods. A central depot having a fleet of vehicles is responsible for supplying the customers with their demands. The problem is composed of two subproblems: The first subproblem is an assignment problem where the number of vehicles that will be used as well as the customers assigned to each vehicle are determined. The second subproblem is the routing problem in which for each vehicle having a number of customers assigned to it, the order of visits of the customers is determined. Optimal number of vehicles, as well as optimal total distance, should be achieved. In this paper, an approach for solving the first subproblem (the assignment problem) is presented. In the approach, a clustering algorithm is proposed for finding the optimal number of vehicles by grouping the customers into clusters where each cluster is visited by one vehicle. Finding the optimal number of clusters is NP-hard. This work presents a polynomial time clustering algorithm for finding the optimal number of clusters and solving the assignment problem.

Keywords: vehicle routing problems, clustering algorithms, Clarke and Wright Saving Method, agglomerative hierarchical clustering

Procedia PDF Downloads 393
781 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 357
780 A Construction Scheduling Model by Applying Pedestrian and Vehicle Simulation

Authors: Akhmad F. K. Khitam, Yi Tai, Hsin-Yun Lee

Abstract:

In the modern research of construction management, the goals of scheduling are not only to finish the project within the limited duration, but also to improve the impact of people and environment. Especially for the impact to the pedestrian and vehicles, the considerable social cost should be estimated in the total performance of a construction project. However, the site environment has many differences between projects. These interactions affect the requirement and goal of scheduling. It is difficult for schedule planners to quantify these interactions. Therefore, this study use 3D dynamic simulation technology to plan the schedule of the construction engineering projects that affect the current space users (i.e., the pedestrians and vehicles). The proposed model can help the project manager find out the optimal schedule to minimize the inconvenience brought to the space users. Besides, a roadwork project and a building renovation project were analyzed for the practical situation of engineering and operations. Then this study integrates the proper optimization algorithms and computer technology to establish a decision support model. The proposed model can generate a near-optimal schedule solution for project planners.

Keywords: scheduling, simulation, optimization, pedestrian and vehicle behavior

Procedia PDF Downloads 141
779 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform

Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez

Abstract:

Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.

Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments

Procedia PDF Downloads 265
778 Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes

Authors: Ibrahim Gomaa, Hoda M. O. Mokhtar

Abstract:

Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches.

Keywords: continuous query processing, dynamic database, moving object, skyline queries

Procedia PDF Downloads 210
777 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
776 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison

Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo

Abstract:

A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.

Keywords: affective computing, interface, brain, intelligent interaction

Procedia PDF Downloads 388
775 A Monocular Measurement for 3D Objects Based on Distance Area Number and New Minimize Projection Error Optimization Algorithms

Authors: Feixiang Zhao, Shuangcheng Jia, Qian Li

Abstract:

High-precision measurement of the target’s position and size is one of the hotspots in the field of vision inspection. This paper proposes a three-dimensional object positioning and measurement method using a monocular camera and GPS, namely the Distance Area Number-New Minimize Projection Error (DAN-NMPE). Our algorithm contains two parts: DAN and NMPE; specifically, DAN is a picture sequence algorithm, NMPE is a relatively positive optimization algorithm, which greatly improves the measurement accuracy of the target’s position and size. Comprehensive experiments validate the effectiveness of our proposed method on a self-made traffic sign dataset. The results show that with the laser point cloud as the ground truth, the size and position errors of the traffic sign measured by this method are ± 5% and 0.48 ± 0.3m, respectively. In addition, we also compared it with the current mainstream method, which uses a monocular camera to locate and measure traffic signs. DAN-NMPE attains significant improvements compared to existing state-of-the-art methods, which improves the measurement accuracy of size and position by 50% and 15.8%, respectively.

Keywords: monocular camera, GPS, positioning, measurement

Procedia PDF Downloads 144
774 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
773 A Plan of Smart Management for Groundwater Resources

Authors: Jennifer Chen, Pei Y. Hsu, Yu W. Chen

Abstract:

Groundwater resources play a vital role in regional water supply because over 1/3 of total demand is satisfied by groundwater resources. Because over-pumpage might cause environmental impact such as land subsidence, a sustainable management of groundwater resource is required. In this study, a blueprint of smart management for groundwater resource is proposed and planned. The framework of the smart management can be divided into two major parts, hardware and software parts. First, an internet of groundwater (IoG) which is inspired by the internet of thing (IoT) is proposed to observe the migration of groundwater usage and the associated response, groundwater levels. Second, algorithms based on data mining and signal analysis are proposed to achieve the goal of providing highly efficient management of groundwater. The entire blueprint is a 4-year plan and this year is the first year. We have finished the installation of 50 flow meters and 17 observation wells. An underground hydrological model is proposed to determine the associated drawdown caused by the measured pumpages. Besides, an alternative to the flow meter is also proposed to decrease the installation cost of IoG. An accelerometer and 3G remote transmission are proposed to detect the on and off of groundwater pumpage.

Keywords: groundwater management, internet of groundwater, underground hydrological model, alternative of flow meter

Procedia PDF Downloads 379
772 An Analysis of Non-Elliptic Curve Based Primality Tests

Authors: William Wong, Zakaria Alomari, Hon Ching Lai, Zhida Li

Abstract:

Modern-day information security depends on implementing Diffie-Hellman, which requires the generation of prime numbers. Because the number of primes is infinite, it is impractical to store prime numbers for use, and therefore, primality tests are indispensable in modern-day information security. A primality test is a test to determine whether a number is prime or composite. There are two types of primality tests, which are deterministic tests and probabilistic tests. Deterministic tests are adopting algorithms that provide a definite answer whether a given number is prime or composite. While in probabilistic tests, a probabilistic result would be provided, there is a degree of uncertainty. In this paper, we review three probabilistic tests: the Fermat Primality Test, the Miller-Rabin Test, and the Baillie-PSW Test, as well as one deterministic test, the Agrawal-Kayal-Saxena (AKS) Test. Furthermore, we do an analysis of these tests. All of the reviews discussed are not based on the Elliptic Curve. The analysis demonstrates that, in the majority of real-world scenarios, the Baillie- PSW test’s favorability stems from its typical operational complexity of O(log 3n) and its capacity to deliver accurate results for numbers below 2^64.

Keywords: primality tests, Fermat’s primality test, Miller-Rabin primality test, Baillie-PSW primality test, AKS primality test

Procedia PDF Downloads 88
771 Workflow Based Inspection of Geometrical Adaptability from 3D CAD Models Considering Production Requirements

Authors: Tobias Huwer, Thomas Bobek, Gunter Spöcker

Abstract:

Driving forces for enhancements in production are trends like digitalization and individualized production. Currently, such developments are restricted to assembly parts. Thus, complex freeform surfaces are not addressed in this context. The need for efficient use of resources and near-net-shape production will require individualized production of complex shaped workpieces. Due to variations between nominal model and actual geometry, this can lead to changes in operations in Computer-aided process planning (CAPP) to make CAPP manageable for an adaptive serial production. In this context, 3D CAD data can be a key to realizing that objective. Along with developments in the geometrical adaptation, a preceding inspection method based on CAD data is required to support the process planner by finding objective criteria to make decisions about the adaptive manufacturability of workpieces. Nowadays, this kind of decisions is depending on the experience-based knowledge of humans (e.g. process planners) and results in subjective decisions – leading to a variability of workpiece quality and potential failure in production. In this paper, we present an automatic part inspection method, based on design and measurement data, which evaluates actual geometries of single workpiece preforms. The aim is to automatically determine the suitability of the current shape for further machining, and to provide a basis for an objective decision about subsequent adaptive manufacturability. The proposed method is realized by a workflow-based approach, keeping in mind the requirements of industrial applications. Workflows are a well-known design method of standardized processes. Especially in applications like aerospace industry standardization and certification of processes are an important aspect. Function blocks, providing a standardized, event-driven abstraction to algorithms and data exchange, will be used for modeling and execution of inspection workflows. Each analysis step of the inspection, such as positioning of measurement data or checking of geometrical criteria, will be carried out by function blocks. One advantage of this approach is its flexibility to design workflows and to adapt algorithms specific to the application domain. In general, within the specified tolerance range it will be checked if a geometrical adaption is possible. The development of particular function blocks is predicated on workpiece specific information e.g. design data. Furthermore, for different product lifecycle phases, appropriate logics and decision criteria have to be considered. For example, tolerances for geometric deviations are different in type and size for new-part production compared to repair processes. In addition to function blocks, appropriate referencing systems are important. They need to support exact determination of position and orientation of the actual geometries to provide a basis for precise analysis. The presented approach provides an inspection methodology for adaptive and part-individual process chains. The analysis of each workpiece results in an inspection protocol and an objective decision about further manufacturability. A representative application domain is the product lifecycle of turbine blades containing a new-part production and a maintenance process. In both cases, a geometrical adaptation is required to calculate individual production data. In contrast to existing approaches, the proposed initial inspection method provides information to decide between different potential adaptive machining processes.

Keywords: adaptive, CAx, function blocks, turbomachinery

Procedia PDF Downloads 297
770 Quality Assurance in Cardiac Disorder Detection Images

Authors: Anam Naveed, Asma Andleeb, Mehreen Sirshar

Abstract:

In the article, Image processing techniques have been applied on cardiac images for enhancing the image quality. Two types of methodologies considers for survey, invasive techniques and non-invasive techniques. Different image processes for improvement of cardiac image quality and reduce the amount of radiation exposure for invasive techniques are explored. Different image processing algorithms for enhancing the noninvasive cardiac image qualities are described. Beside these two methodologies, third methodology has applied on live streaming of heart rate on ECG window for extracting necessary information, removing noise and enhancing quality. Sensitivity analyses have been carried out to investigate the impacts of cardiac images for diagnosis of cardiac arteries disease and how the enhancement on images will help the cardiologist to diagnoses disease. The paper evaluates strengths and weaknesses of different techniques applied for improved the image quality and draw a conclusion. Some specific limitations must be considered for whole survey, like the patient heart beat must be 70-75 beats/minute while doing the angiography, similarly patient weight and exposure radiation amount has some limitation.

Keywords: cardiac images, CT angiography, critical analysis, exposure radiation, invasive techniques, invasive techniques, non-invasive techniques

Procedia PDF Downloads 352
769 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 146
768 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters

Authors: Renkai Wang, Tingcun Wei

Abstract:

In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.

Keywords: digitally-controlled DC-DC switching converter, digital voltage compensator, delta-operator, finite word length, stability

Procedia PDF Downloads 412
767 Non-Parametric Regression over Its Parametric Couterparts with Large Sample Size

Authors: Jude Opara, Esemokumo Perewarebo Akpos

Abstract:

This paper is on non-parametric linear regression over its parametric counterparts with large sample size. Data set on anthropometric measurement of primary school pupils was taken for the analysis. The study used 50 randomly selected pupils for the study. The set of data was subjected to normality test, and it was discovered that the residuals are not normally distributed (i.e. they do not follow a Gaussian distribution) for the commonly used least squares regression method for fitting an equation into a set of (x,y)-data points using the Anderson-Darling technique. The algorithms for the nonparametric Theil’s regression are stated in this paper as well as its parametric OLS counterpart. The use of a programming language software known as “R Development” was used in this paper. From the analysis, the result showed that there exists a significant relationship between the response and the explanatory variable for both the parametric and non-parametric regression. To know the efficiency of one method over the other, the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) are used, and it is discovered that the nonparametric regression performs better than its parametric regression counterparts due to their lower values in both the AIC and BIC. The study however recommends that future researchers should study a similar work by examining the presence of outliers in the data set, and probably expunge it if detected and re-analyze to compare results.

Keywords: Theil’s regression, Bayesian information criterion, Akaike information criterion, OLS

Procedia PDF Downloads 305
766 Comparative Analysis of Edge Detection Techniques for Extracting Characters

Authors: Rana Gill, Chandandeep Kaur

Abstract:

Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.

Keywords: segmentation, edge detection, text, extracting characters

Procedia PDF Downloads 426
765 Water Detection in Aerial Images Using Fuzzy Sets

Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho

Abstract:

This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.

Keywords: aerial images, fuzzy clustering, image processing, pattern recognition

Procedia PDF Downloads 482
764 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 220
763 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 200
762 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images

Authors: Suruchi

Abstract:

This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.

Keywords: pollution, GIS, FOG, satellie, atmospheric deposition

Procedia PDF Downloads 22
761 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice

Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari

Abstract:

Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.

Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice

Procedia PDF Downloads 68
760 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review

Authors: Meghana Shankara, Priyadarshini Natarajan

Abstract:

Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracy

Keywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes

Procedia PDF Downloads 271
759 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 85
758 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks

Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun

Abstract:

Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.

Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic

Procedia PDF Downloads 527
757 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems

Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash

Abstract:

The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.

Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture

Procedia PDF Downloads 114
756 A Brave New World of Privacy: Empirical Insights into the Metaverse’s Personalization Dynamics

Authors: Cheng Xu

Abstract:

As the metaverse emerges as a dynamic virtual simulacrum of reality, its implications on user privacy have become a focal point of interest. While previous discussions have ventured into metaverse privacy dynamics, a glaring empirical gap persists, especially concerning the effects of personalization in the context of news recommendation services. This study stands at the forefront of addressing this void, meticulously examining how users' privacy concerns shift within the metaverse's personalization context. Through a pre-registered randomized controlled experiment, participants engaged in a personalization task across both the metaverse and traditional online platforms. Upon completion of this task, a comprehensive news recommendation service provider offers personalized news recommendations to the users. Our empirical findings reveal that the metaverse inherently amplifies privacy concerns compared to traditional settings. However, these concerns are notably mitigated when users have a say in shaping the algorithms that drive these recommendations. This pioneering research not only fills a significant knowledge gap but also offers crucial insights for metaverse developers and policymakers, emphasizing the nuanced role of user input in shaping algorithm-driven privacy perceptions.

Keywords: metaverse, privacy concerns, personalization, digital interaction, algorithmic recommendations

Procedia PDF Downloads 117