Search results for: artificial writers
801 Regulatory and Economic Challenges of AI Integration in Cyber Insurance
Authors: Shreyas Kumar, Mili Shangari
Abstract:
Integrating artificial intelligence (AI) in the cyber insurance sector represents a significant advancement, offering the potential to revolutionize risk assessment, fraud detection, and claims processing. However, this integration introduces a range of regulatory and economic challenges that must be addressed to ensure responsible and effective deployment of AI technologies. This paper examines the multifaceted regulatory landscape governing AI in cyber insurance and explores the economic implications of compliance, innovation, and market dynamics. AI's capabilities in processing vast amounts of data and identifying patterns make it an invaluable tool for insurers in managing cyber risks. Yet, the application of AI in this domain is subject to stringent regulatory scrutiny aimed at safeguarding data privacy, ensuring algorithmic transparency, and preventing biases. Regulatory bodies, such as the European Union with its General Data Protection Regulation (GDPR), mandate strict compliance requirements that can significantly impact the deployment of AI systems. These regulations necessitate robust data protection measures, ethical AI practices, and clear accountability frameworks, all of which entail substantial compliance costs for insurers. The economic implications of these regulatory requirements are profound. Insurers must invest heavily in upgrading their IT infrastructure, implementing robust data governance frameworks, and training personnel to handle AI systems ethically and effectively. These investments, while essential for regulatory compliance, can strain financial resources, particularly for smaller insurers, potentially leading to market consolidation. Furthermore, the cost of regulatory compliance can translate into higher premiums for policyholders, affecting the overall affordability and accessibility of cyber insurance. Despite these challenges, the potential economic benefits of AI integration in cyber insurance are significant. AI-enhanced risk assessment models can provide more accurate pricing, reduce the incidence of fraudulent claims, and expedite claims processing, leading to overall cost savings and increased efficiency. These efficiencies can improve the competitiveness of insurers and drive innovation in product offerings. However, balancing these benefits with regulatory compliance is crucial to avoid legal penalties and reputational damage. The paper also explores the potential risks associated with AI integration, such as algorithmic biases that could lead to unfair discrimination in policy underwriting and claims adjudication. Regulatory frameworks need to evolve to address these issues, promoting fairness and transparency in AI applications. Policymakers play a critical role in creating a balanced regulatory environment that fosters innovation while protecting consumer rights and ensuring market stability. In conclusion, the integration of AI in cyber insurance presents both regulatory and economic challenges that require a coordinated approach involving regulators, insurers, and other stakeholders. By navigating these challenges effectively, the industry can harness the transformative potential of AI, driving advancements in risk management and enhancing the resilience of the cyber insurance market. This paper provides insights and recommendations for policymakers and industry leaders to achieve a balanced and sustainable integration of AI technologies in cyber insurance.Keywords: artificial intelligence (AI), cyber insurance, regulatory compliance, economic impact, risk assessment, fraud detection, cyber liability insurance, risk management, ransomware
Procedia PDF Downloads 34800 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.Keywords: classification algorithms, data mining, knowledge discovery, tourism
Procedia PDF Downloads 295799 A Literature Review of the Trend towards Indoor Dynamic Thermal Comfort
Authors: James Katungyi
Abstract:
The Steady State thermal comfort model which dominates thermal comfort practice and which posits the ideal thermal conditions in a narrow range of thermal conditions does not deliver the expected comfort levels among occupants. Furthermore, the buildings where this model is applied consume a lot of energy in conditioning. This paper reviews significant literature about thermal comfort in dynamic indoor conditions including the adaptive thermal comfort model and alliesthesia. A major finding of the paper is that the adaptive thermal comfort model is part of a trend from static to dynamic indoor environments in aspects such as lighting, views, sounds and ventilation. Alliesthesia or thermal delight is consistent with this trend towards dynamic thermal conditions. It is within this trend that the two fold goal of increased thermal comfort and reduced energy consumption lies. At the heart of this trend is a rediscovery of the link between the natural environment and human well-being, a link that was partially severed by over-reliance on mechanically dominated artificial indoor environments. The paper concludes by advocating thermal conditioning solutions that integrate mechanical with natural thermal conditioning in a balanced manner in order to meet occupant thermal needs without endangering the environment.Keywords: adaptive thermal comfort, alliesthesia, energy, natural environment
Procedia PDF Downloads 220798 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport
Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos
Abstract:
Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform
Procedia PDF Downloads 178797 Intelligent Tutor Using Adaptive Learning to Partial Discharges with Virtual Reality Systems
Authors: Hernández Yasmín, Ochoa Alberto, Hurtado Diego
Abstract:
The aim of this study is developing an intelligent tutoring system for electrical operators training with virtual reality systems at the laboratory center of partials discharges LAPEM. The electrical domain requires efficient and well trained personnel, due to the danger involved in the partials discharges field, qualified electricians are required. This paper presents an overview of the intelligent tutor adaptive learning design and user interface with VR. We propose the develop of constructing a model domain of a subset of partial discharges enables adaptive training through a trainee model which represents the affective and knowledge states of trainees. According to the success of the intelligent tutor system with VR, it is also hypothesized that the trainees will able to learn the electrical domain installations of partial discharges and gain knowledge more efficient and well trained than trainees using traditional methods of teaching without running any risk of being in danger, traditional methods makes training lengthily, costly and dangerously.Keywords: intelligent tutoring system, artificial intelligence, virtual reality, partials discharges, adaptive learning
Procedia PDF Downloads 318796 Flo: Period-Tracking App with AI Powered Tools
Authors: Dania Baaboud, Renad Al-zahrani, Mahnoor Khan, Riya Afroz
Abstract:
Flo is a smart period-tracking tool that uses artificial intelligence (AI) to offer individualized reproductive health predictions and insights. Flo makes very accurate predictions about menstrual cycles, ovulation, and fertility windows by evaluating user inputs, including cycle duration, symptoms, and patterns. Its machine learning algorithms are constantly evolving, providing personalized health recommendations, instructional materials, and early identification of possible health abnormalities such as reproductive problems and hormone imbalances. Flo, which was introduced in 2015 and upgraded with AI in 2017, is a revolutionary use of technology in healthcare that empowers people to make knowledgeable decisions regarding their well-being. Despite its advantages, our study included drawbacks, such as limited access to premium services and a small sample size. While highlighting unique characteristics, a comparative comparison with similar applications such as Clue and Glow confirmed Flo's outstanding AI integration for individualized healthcare. All things considered, Flo is a prime example of how AI can be used to tackle intricate biological processes, giving consumers the ability to efficiently control their reproductive health and opening the door for improvements in individualized medical technology.Keywords: Flo, period-tracking app, period symptoms, women’s health, machinery
Procedia PDF Downloads 7795 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier
Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho
Abstract:
Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.Keywords: classifier algorithm, diabetes, diagnostic model, machine learning
Procedia PDF Downloads 336794 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk
Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi
Abstract:
The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.Keywords: daylight, window, orientation, energy consumption, design builder
Procedia PDF Downloads 234793 Shaping Lexical Concept of 'Mage' through Image Schemas in Dragon Age 'Origins'
Authors: Dean Raiyasmi, Elvi Citraresmana, Sutiono Mahdi
Abstract:
Language shapes the human mind and its concept toward things. Using image schemas, in nowadays technology, even AI (artificial intelligence) can concept things in response to their creator negativity or positivity. This is reflected inside one of the most selling game around the world in 2012 called Dragon Age Origins. The AI in form of NPC (Non-Playable Character) inside the game reflects on the creator of the game on negativity or positivity toward the lexical concept of mage. Through image schemas, shaping the lexical concept of mage deemed possible and proved the negativity or positivity creator of the game toward mage. This research analyses the cognitive-semantic process of image schema and shaping the concept of ‘mage’ by describing kinds of image schemas exist in the Dragon Age Origin Game. This research is also aimed to analyse kinds of image schemas and describing the image schemas which shaping the concept of ‘mage’ itself. The methodology used in this research is qualitative where participative observation is employed with five stages and documentation. The results shows that there are four image schemas exist in the game and those image schemas shaping the lexical concept of ‘mage’.Keywords: cognitive semantic, image-schema, conceptual metaphor, video game
Procedia PDF Downloads 438792 Optimal Design Solution in "The Small Module" Within the Possibilities of Ecology, Environmental Science/Engineering, and Economics
Authors: Hassan Wajid
Abstract:
We will commend accommodating an environmentally friendly architectural proposal that is extremely common/usual but whose features will make it a sustainable space. In this experiment, the natural and artificial built space is being proposed in such a way that deals with Environmental, Ecological, and Economic Criteria under different climatic conditions. Moreover, the criteria against ecology-environment-economics reflect in the different modules which are being experimented with and analyzed by multiple research groups. The ecological, environmental, and economic services are provided used as units of production side by side, resulting in local job creation and saving resources, for instance, conservation of rainwater, soil formation or protection, less energy consumption to achieve Net Zero, and a stable climate as a whole. The synthesized results from the collected data suggest several aspects to consider when designing buildings for beginning the design process under the supervision of instructors/directors who are responsible for developing curricula and sustainable goals. Hence, the results of the research and the suggestions will benefit the sustainable design through multiple results, heat analysis of different small modules, and comparisons. As a result, it is depleted as the resources are either consumed or the pollution contaminates the resources.Keywords: optimization, ecology, environment, sustainable solution
Procedia PDF Downloads 74791 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach
Authors: Utkarsh A. Mishra, Ankit Bansal
Abstract:
At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks
Procedia PDF Downloads 225790 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level
Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar
Abstract:
Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.Keywords: machine learning, hydro-gravimetry, ground water level, predictive model
Procedia PDF Downloads 127789 Raising Test of English for International Communication (TOEIC) Scores through Purpose-Driven Vocabulary Acquisition
Authors: Edward Sarich, Jack Ryan
Abstract:
In contrast to learning new vocabulary incidentally in one’s first language, foreign language vocabulary is often acquired purposefully, because a lack of natural exposure requires it to be studied in an artificial environment. It follows then that foreign language vocabulary may be more efficiently acquired if it is purpose-driven, or linked to a clear and desirable outcome. The research described in this paper relates to the early stages of what is seen as a long-term effort to measure the effectiveness of a methodology for purpose-driven foreign language vocabulary instruction, specifically by analyzing whether directed studying from high-frequency vocabulary lists leads to an improvement in Test of English for International Communication (TOEIC) scores. The research was carried out in two sections of a first-year university English composition class at a small university in Japan. The results seem to indicate that purposeful study from relevant high-frequency vocabulary lists can contribute to raising TOEIC scores and that the test preparation methodology used in this study was thought by students to be beneficial in helping them to prepare to take this high-stakes test.Keywords: corpus vocabulary, language asssessment, second language vocabulary acquisition, TOEIC test preparation
Procedia PDF Downloads 150788 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion
Authors: Albert Alexander Stonier
Abstract:
Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.Keywords: solar photovoltaic, power electronics, power quality, PWM
Procedia PDF Downloads 282787 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 518786 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases
Authors: Suglo Tohari Luri
Abstract:
Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.Keywords: data, engine, intelligence, customer, neo4j, database
Procedia PDF Downloads 194785 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France
Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet
Abstract:
Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.Keywords: air temperature, neural network model, urban heat island, urban weather generator
Procedia PDF Downloads 92784 Active Space Debris Removal by Extreme Ultraviolet Radiation
Authors: A. Anandha Selvan, B. Malarvizhi
Abstract:
In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region.Keywords: active space debris removal, space debris, LEO, extreme ultraviolet, re-orbiter, thermosphere
Procedia PDF Downloads 464783 Hydroxyapatite from Biowaste for the Reinforcement of Polymer
Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam
Abstract:
Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.Keywords: biomaterial, biopolymer, bone, hydroxyapatite
Procedia PDF Downloads 322782 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology
Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando
Abstract:
Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry
Procedia PDF Downloads 152781 Investigating Best Strategies Towards Creating Alternative Assessment in Literature
Authors: Sandhya Rao Mehta
Abstract:
As ChatGpt and other Artificial Intelligence (AI) forms are becoming part of our regular academic world, the consequences are being gradually discussed. The extent to which an essay written by a student is itself of any value if it has been downloaded by some form of AI is perhaps central to this discourse. A larger question is whether writing should be taught as an academic skill at all. In literature classrooms, this has major consequences as writing a traditional paper is still the single most preferred form of assessment. This study suggests that it is imperative to investigate alternative forms of assessment in literature, not only because the existing forms can be written by AI, but in a larger sense, students are increasingly skeptical of the purpose of such work. The extent to which an essay actually helps the students professionally is a question that academia has not yet answered. This paper suggests that using real-world tasks like creating podcasts, video tutorials, and websites is a far better way to evaluate students' critical thinking and application of ideas, as well as to develop digital skills which are important to their future careers. Using the example of a course in literature, this study will examine the possibilities and challenges of creating digital projects as a way of confronting the complexities of student evaluation in the future. The study is based on a specific university English as a Foreign Language (EFL) context.Keywords: assessment, literature, digital humanities, chatgpt
Procedia PDF Downloads 87780 Integration of Artificial Neural Network with Geoinformatics Technology to Predict Land Surface Temperature within Sun City Jodhpur, Rajasthan, India
Authors: Avinash Kumar Ranjan, Akash Anand
Abstract:
The Land Surface Temperature (LST) is an essential factor accompanying to rise urban heat and climate warming within a city in micro level. It is also playing crucial role in global change study as well as radiation budgets measuring in heat balance studies. The information of LST is very substantial to recognize the urban climatology, ecological changes, anthropological and environmental interactions etc. The Chief motivation of present study focus on time series of ANN model that taken a sequence of LST values of 2000, 2008 and 2016, realize the pattern of variation within the data set and predict the LST values for 2024 and 2032. The novelty of this study centers on evaluation of LST using series of multi-temporal MODIS (MOD 11A2) satellite data by Maximum Value Composite (MVC) techniques. The results derived from this study endorse the proficiency of Geoinformatics Technology with integration of ANN to gain knowledge, understanding and building of precise forecast from the complex physical world database. This study will also focus on influence of Land Use/ Land Cover (LU/LC) variation on Land Surface Temperature.Keywords: LST, geoinformatics technology, ANN, MODIS satellite imagery, MVC
Procedia PDF Downloads 240779 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine
Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li
Abstract:
Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.Keywords: false alarm, fault diagnosis, SVM, k-means, BIT
Procedia PDF Downloads 157778 Effect of Be, Zr, and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)
Authors: Mahmoud M. Tash
Abstract:
The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens. The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters.Keywords: casting aging treatment, mechanical properties, Al-Mg-Zn alloys, Be- and/or Zr-treatment, experimental correlation
Procedia PDF Downloads 365777 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table
Procedia PDF Downloads 241776 Gas Lift Optimization Using Smart Gas Lift Valve
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie
Abstract:
Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.Keywords: Effect of gas lift valve port size, effect water cut, vertical flow performance
Procedia PDF Downloads 293775 Challenges Facing Farmers in the Governorate of Al-Baha, Saudi Arabia
Authors: Mohammed Alghamdi, Ghanem Al-Ghamdi
Abstract:
The Governorate of Al-Baha is known for a history of farming that focused on plant products such as Date Palm, olives, figs, pomegranate and cereals as well as raising cattle, sheep, goats and to some extent camels for many decades. However, farmers have been facing with very significant natural and artificial challenges lately. The goal of this study was to determine the most significant challenges facing farmers in the Governorate of Al-Baha. Sixty farms were surveyed during the year of 2013. Farm survey focused on the farm management, farm financial status and governmental support. Our results showed that most farms were dedicated to farming with limited number of farms used parts of its premises for recreation. About 90% of farms were engaged in exclusively farming business. The financial status was good in most of the farms (80%), stable in 16% and hardly standing in less than 5%. Nearly 60% of the farms marketed 1-3 products and 23% marketed up to 6 products, 14% of the farms marketed up to 9 products and 4% marketed more than 9 products. Less than 14% had a chance to market their products over seven times per year while about 11% market their products and 32% of farms market 3-4 per year and 43% of farms market 1-2 per year. Our data showed that most farmers are in good financial status producing healthy food.Keywords: farming system, Al-Baha, healthy food, Saudi Arabia
Procedia PDF Downloads 281774 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 185773 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 304772 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 168