Search results for: accuracy assessment.
7622 Study of Natural Patterns on Digital Image Correlation Using Simulation Method
Authors: Gang Li, Ghulam Mubashar Hassan, Arcady Dyskin, Cara MacNish
Abstract:
Digital image correlation (DIC) is a contactless full-field displacement and strain reconstruction technique commonly used in the field of experimental mechanics. Comparing with physical measuring devices, such as strain gauges, which only provide very restricted coverage and are expensive to deploy widely, the DIC technique provides the result with full-field coverage and relative high accuracy using an inexpensive and simple experimental setup. It is very important to study the natural patterns effect on the DIC technique because the preparation of the artificial patterns is time consuming and hectic process. The objective of this research is to study the effect of using images having natural pattern on the performance of DIC. A systematical simulation method is used to build simulated deformed images used in DIC. A parameter (subset size) used in DIC can have an effect on the processing and accuracy of DIC and even cause DIC to failure. Regarding to the picture parameters (correlation coefficient), the higher similarity of two subset can lead the DIC process to fail and make the result more inaccurate. The pictures with good and bad quality for DIC methods have been presented and more importantly, it is a systematic way to evaluate the quality of the picture with natural patterns before they install the measurement devices.Keywords: Digital Image Correlation (DIC), deformation simulation, natural pattern, subset size
Procedia PDF Downloads 4177621 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.Keywords: Constant Correlation, Medical Image, Spread Spectrum, Tamper Detection, Watermarking
Procedia PDF Downloads 1927620 Comparing the SALT and START Triage System in Disaster and Mass Casualty Incidents: A Systematic Review
Authors: Hendri Purwadi, Christine McCloud
Abstract:
Triage is a complex decision-making process that aims to categorize a victim’s level of acuity and the need for medical assistance. Two common triage systems have been widely used in Mass Casualty Incidents (MCIs) and disaster situation are START (Simple triage algorithm and rapid treatment) and SALT (sort, asses, lifesaving, intervention, and treatment/transport). There is currently controversy regarding the effectiveness of SALT over START triage system. This systematic review aims to investigate and compare the effectiveness between SALT and START triage system in disaster and MCIs setting. Literatures were searched via systematic search strategy from 2009 until 2019 in PubMed, Cochrane Library, CINAHL, Scopus, Science direct, Medlib, ProQuest. This review included simulated-based and medical record -based studies investigating the accuracy and applicability of SALT and START triage systems of adult and children population during MCIs and disaster. All type of studies were included. Joana Briggs institute critical appraisal tools were used to assess the quality of reviewed studies. As a result, 1450 articles identified in the search, 10 articles were included. Four themes were identified by review, they were accuracy, under-triage, over-triage and time to triage per individual victim. The START triage system has a wide range and inconsistent level of accuracy compared to SALT triage system (44% to 94. 2% of START compared to 70% to 83% of SALT). The under-triage error of START triage system ranged from 2.73% to 20%, slightly lower than SALT triage system (7.6 to 23.3%). The over-triage error of START triage system was slightly greater than SALT triage system (START ranged from 2% to 53% compared to 2% to 22% of SALT). The time for applying START triage system was faster than SALT triage system (START was 70-72.18 seconds compared to 78 second of SALT). Consequently; The START triage system has lower level of under-triage error and faster than SALT triage system in classifying victims of MCIs and disaster whereas SALT triage system is known slightly more accurate and lower level of over-triage. However, the magnitude of these differences is relatively small, and therefore the effect on the patient outcomes is not significance. Hence, regardless of the triage error, either START or SALT triage system is equally effective to triage victims of disaster and MCIs.Keywords: disaster, effectiveness, mass casualty incidents, START triage system, SALT triage system
Procedia PDF Downloads 1317619 The Accuracy of an In-House Developed Computer-Assisted Surgery Protocol for Mandibular Micro-Vascular Reconstruction
Authors: Christophe Spaas, Lies Pottel, Joke De Ceulaer, Johan Abeloos, Philippe Lamoral, Tom De Backer, Calix De Clercq
Abstract:
We aimed to evaluate the accuracy of an in-house developed low-cost computer-assisted surgery (CAS) protocol for osseous free flap mandibular reconstruction. All patients who underwent primary or secondary mandibular reconstruction with a free (solely or composite) osseous flap, either a fibula free flap or iliac crest free flap, between January 2014 and December 2017 were evaluated. The low-cost protocol consisted out of a virtual surgical planning, a prebend custom reconstruction plate and an individualized free flap positioning guide. The accuracy of the protocol was evaluated through comparison of the postoperative outcome with the 3D virtual planning, based on measurement of the following parameters: intercondylar distance, mandibular angle (axial and sagittal), inner angular distance, anterior-posterior distance, length of the fibular/iliac crest segments and osteotomy angles. A statistical analysis of the obtained values was done. Virtual 3D surgical planning and cutting guide design were performed with Proplan CMF® software (Materialise, Leuven, Belgium) and IPS Gate (KLS Martin, Tuttlingen, Germany). Segmentation of the DICOM data as well as outcome analysis were done with BrainLab iPlan® Software (Brainlab AG, Feldkirchen, Germany). A cost analysis of the protocol was done. Twenty-two patients (11 fibula /11 iliac crest) were included and analyzed. Based on voxel-based registration on the cranial base, 3D virtual planning landmark parameters did not significantly differ from those measured on the actual treatment outcome (p-values >0.05). A cost evaluation of the in-house developed CAS protocol revealed a 1750 euro cost reduction in comparison with a standard CAS protocol with a patient-specific reconstruction plate. Our results indicate that an accurate transfer of the planning with our in-house developed low-cost CAS protocol is feasible at a significant lower cost.Keywords: CAD/CAM, computer-assisted surgery, low-cost, mandibular reconstruction
Procedia PDF Downloads 1397618 Evidence-Based Health System Strengthening in Urban India: Drawing Insights from Rapid Assessment Study
Authors: Anisur Rahman, Sabyasachi Behera, Pawan Pathak, Benazir Patil, Rajesh Khanna
Abstract:
Background: Nearly half of India’s population is expected to reside in urban areas by 2030. The extent to which India's health system can provide for this large and growing city-based population will determine the country's success in achieving universal health coverage and improved national health indices. National Urban Health Mission (NUHM) strive for improving access to primary health care in urban areas. Implementation of NUHM solicits sensitive, effective and sustainable strategies to strengthen the service delivery mechanisms. The Challenge Initiative for Healthy Cities (TCIHC) is working with the Government of India and three provincial states to develop effective service delivery mechanisms for reproductive, maternal, newborn and child health (RMNCH) through a health systems approach for the urban poor. Method: A rapid assessment study was conceptualized and executed to generate evidence in order to address the challenges impeding in functioning of urban health facilities to deliver effective, efficient and equitable health care services in 7 cities spread across two project States viz. Madhya Pradesh and Odisha. Results: The findings of the assessment reflect: 1. The overall ecosystem pertaining to planning and management of public health interventions is not conducive. 2. The challenges regarding population dynamics like migration keeps on influencing the demand-supply-enabling environment triangle for both public and private service providers. 3. Lack of norms for planning and benchmark for service delivery further impedes urban health system as a whole. 4. Operationalization of primary level services have enough potential to meet the demand of slum dwellers at large. 5. Lack of policy driven strategies on how to integrate the NUHM with other thematic areas of Maternal, Newborn & Child Health (MNCH) and Family Planning (FP). 5. The inappropriate capacity building and acute shortage of Human Resources has huge implication on service provisioning and adherence to the service delivery protocols. Conclusion: The findings from rapid assessment are aimed to inform pertinent stakeholders to develop a multiyear city health action plan to strengthen the health systems in order to improve the efficacy of service delivery mechanism in urban settings.Keywords: city health plan, health system, rapid assessment, urban mission
Procedia PDF Downloads 1677617 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm
Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi
Abstract:
To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm
Procedia PDF Downloads 2347616 Green Supply Chain Management and Corporate Performance: The Mediation Mechanism of Information Sharing among Firms
Authors: Seigo Matsuno, Yasuo Uchida, Shozo Tokinaga
Abstract:
This paper proposes and empirically tests a model of the relationships between green supply chain management (GSCM) activities and corporate performance. From the literature review, we identified five constructs, namely, environmental commitment, supplier collaboration, supplier assessment, information sharing among suppliers, and business process improvement. These explanatory variables are used to form a structural model explaining the environmental and economic performance. The model was analyzed using the data from a survey of a sample of manufacturing firms in Japan. The results suggest that the degree of supplier collaboration has an influence on the environmental performance directly. While, the impact of supplier assessment on the environmental performance is mediated by the information sharing and/or business process improvement. And the environmental performance has a positive relationship on the economic performance. Academic and managerial implications of our findings are discussed.Keywords: corporate performance, empirical study, green supply chain management, path modeling
Procedia PDF Downloads 3927615 Key Principles and Importance of Applied Geomorphological Maps for Engineering Structure Placement
Authors: Sahar Maleki, Reza Shahbazi, Nayere Sadat Bayat Ghiasi
Abstract:
Applied geomorphological maps are crucial tools in engineering, particularly for the placement of structures. These maps provide precise information about the terrain, including landforms, soil types, and geological features, which are essential for making informed decisions about construction sites. The importance of these maps is evident in risk assessment, as they help identify potential hazards such as landslides, erosion, and flooding, enabling better risk management. Additionally, these maps assist in selecting the most suitable locations for engineering projects. Cost efficiency is another significant benefit, as proper site selection and risk assessment can lead to substantial cost savings by avoiding unsuitable areas and minimizing the need for extensive ground modifications. Ensuring the maps are accurate and up-to-date is crucial for reliable decision-making. Detailed information about various geomorphological features is necessary to provide a comprehensive overview. Integrating geomorphological data with other environmental and engineering data to create a holistic view of the site is one of the most fundamental steps in engineering. In summary, the preparation of applied geomorphological maps is a vital step in the planning and execution of engineering projects, ensuring safety, efficiency, and sustainability. In the Geological Survey of Iran, the preparation of these applied maps has enabled the identification and recognition of areas prone to geological hazards such as landslides, subsidence, earthquakes, and more. Additionally, areas with problematic soils, potential groundwater zones, and safe construction sites are identified and made available to the public.Keywords: geomorphological maps, geohazards, risk assessment, decision-making
Procedia PDF Downloads 177614 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language
Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim
Abstract:
The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition
Procedia PDF Downloads 3217613 Assessment and Evaluation of Football Performance
Authors: Bulus Kpame, Mukhtar Mohammed Alhaji, Garba Jibril
Abstract:
In any team sport, the most important variables that should be used to measure performance are physical condition, and technical and tactical performance. In a complex game like football, it is extremely difficult to measure the relative importance of each of these variables. However, physical fitness itself has been shown to consist of several components, like endurance, strength, flexibility, agility, coordination and speed. Each of these components has been shown to consist of several subcomponents. This paper attempts to describe a test battery to assess and evaluate physical performance in football players. This battery comprises a functional, structured training session of about 2.5hrs. it consists of quality rating of the warm-up procedure, tests of flexibility, football skills, power, speed, and endurance. Acceptable values for performance in each of the tests are also presented under each test. It is hoped that this battery of tests will be helpful to the coach in determining the effect of a specific training program. It would also be helpful to train physician and trainer, to monitor progress during rehabilitation after sustaining any injury.Keywords: assessment, evaluation, performance, programs
Procedia PDF Downloads 4067612 Culvert Blockage Evaluation Using Australian Rainfall And Runoff 2019
Authors: Rob Leslie, Taher Karimian
Abstract:
The blockage of cross drainage structures is a risk that needs to be understood and managed or lessened through the design. A blockage is a random event, influenced by site-specific factors, which needs to be quantified for design. Under and overestimation of blockage can have major impacts on flood risk and cost associated with drainage structures. The importance of this matter is heightened for those projects located within sensitive lands. It is a particularly complex problem for large linear infrastructure projects (e.g., rail corridors) located within floodplains where blockage factors can influence flooding upstream and downstream of the infrastructure. The selection of the appropriate blockage factors for hydraulic modeling has been subject to extensive research by hydraulic engineers. This paper has been prepared to review the current Australian Rainfall and Runoff 2019 (ARR 2019) methodology for blockage assessment by applying this method to a transport corridor brownfield upgrade case study in New South Wales. The results of applying the method are also validated against asset data and maintenance records. ARR 2019 – Book 6, Chapter 6 includes advice and an approach for estimating the blockage of bridges and culverts. This paper concentrates specifically on the blockage of cross drainage structures. The method has been developed to estimate the blockage level for culverts affected by sediment or debris due to flooding. The objective of the approach is to evaluate a numerical blockage factor that can be utilized in a hydraulic assessment of cross drainage structures. The project included an assessment of over 200 cross drainage structures. In order to estimate a blockage factor for use in the hydraulic model, a process has been advanced that considers the qualitative factors (e.g., Debris type, debris availability) and site-specific hydraulic factors that influence blockage. A site rating associated with the debris potential (i.e., availability, transportability, mobility) at each crossing was completed using the method outlined in ARR 2019 guidelines. The hydraulic results inputs (i.e., flow velocity, flow depth) and qualitative factors at each crossing were developed into an advanced spreadsheet where the design blockage level for cross drainage structures were determined based on the condition relating Inlet Clear Width and L10 (average length of the longest 10% of the debris reaching the site) and the Adjusted Debris Potential. Asset data, including site photos and maintenance records, were then reviewed and compared with the blockage assessment to check the validity of the results. The results of this assessment demonstrate that the estimated blockage factors at each crossing location using ARR 2019 guidelines are well-validated with the asset data. The primary finding of the study is that the ARR 2019 methodology is a suitable approach for culvert blockage assessment that has been validated against a case study spanning a large geographical area and multiple sub-catchments. The study also found that the methodology can be effectively coded within a spreadsheet or similar analytical tool to automate its application.Keywords: ARR 2019, blockage, culverts, methodology
Procedia PDF Downloads 3557611 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts
Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig
Abstract:
This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.Keywords: expert interview, hazard management, modeling, simulation, snow avalanche
Procedia PDF Downloads 3247610 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 1777609 Instant Fire Risk Assessment Using Artifical Neural Networks
Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan
Abstract:
Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index
Procedia PDF Downloads 1357608 Development of Simple-To-Apply Biogas Kinetic Models for the Co-Digestion of Food Waste and Maize Husk
Authors: Owamah Hilary, O. C. Izinyon
Abstract:
Many existing biogas kinetic models are difficult to apply to substrates they were not developed for, as they are substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for the anaerobic co-digestion of food waste and maize husk. Biodegradability constant (k) was estimated as 0.11d-1 using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model corresponded well with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as alternative model for anaerobic digestion feasibility studies and plant design.Keywords: biogas, inoculum, model development, stability assessment
Procedia PDF Downloads 4267607 Mastering the Innovation Paradox: The Five Unexpected Qualities of Innovation Leaders
Authors: Murtuza Ali Lakhani, Michelle Marquard
Abstract:
Given the paradoxical nature of innovation, we propose that leaders of innovation-centered organizations need certain specific qualities focused on developing higher-order structures, fostering self-organization, and nurturing constructive dissonance and conciliation. Keeping in view the prolific literature on leadership and innovation, we carry out a quantitative study with data collected over a five-year period involving 31 leaders and 209 observers (direct reports, peers, and managers) from across five companies based in the United States. Rather than accepting, as some scholars and practitioners do, that leadership is all-encompassing, we argue that it is specific to a given context, e.g., innovation. We find that leadership is the locus of innovation and that leaders able to effectively lead the innovation agenda demonstrate five specific behaviors and characteristics, namely stewardship, communication, empowerment, creativity, and vision. We demonstrate that the alignment (or misalignment) between a leader’s “self view” and “other view” is a tell-tale sign of whether (or not) the leader’s organization will succeed at innovation. We propose a scale, iLeadership, and test it psychometrically for assessment of leaders and organizational units charged with innovation.Keywords: leadership, innovation, knowledge creating organizations, leadership behavior, leadership assessment
Procedia PDF Downloads 3277606 Evaluation of Football Forecasting Models: 2021 Brazilian Championship Case Study
Authors: Flavio Cordeiro Fontanella, Asla Medeiros e Sá, Moacyr Alvim Horta Barbosa da Silva
Abstract:
In the present work, we analyse the performance of football results forecasting models. In order to do so, we have performed the data collection from eight different forecasting models during the 2021 Brazilian football season. First, we guide the analysis through visual representations of the data, designed to highlight the most prominent features and enhance the interpretation of differences and similarities between the models. We propose using a 2-simplex triangle to investigate visual patterns from the results forecasting models. Next, we compute the expected points for every team playing in the championship and compare them to the final league standings, revealing interesting contrasts between actual to expected performances. Then, we evaluate forecasts’ accuracy using the Ranked Probability Score (RPS); models comparison accounts for tiny scale differences that may become consistent in time. Finally, we observe that the Wisdom of Crowds principle can be appropriately applied in the context, driving into a discussion of results forecasts usage in practice. This paper’s primary goal is to encourage football forecasts’ performance discussion. We hope to accomplish it by presenting appropriate criteria and easy-to-understand visual representations that can point out the relevant factors of the subject.Keywords: accuracy evaluation, Brazilian championship, football results forecasts, forecasting models, visual analysis
Procedia PDF Downloads 957605 Assessment of Air Pollution in Kindergartens due to Indoor Radon Concentrations
Authors: Jana Djounova
Abstract:
The World Health Organization proposes an average annual reference level of 100 Bq/m³ to minimize health risks due to radon exposure in buildings. However, if this cannot be achieved under the country's specific conditions, the chosen reference level should not exceed 300 Bq/m³. The World Health Organization recognized the relationship between indoor radon exposure and lung cancer, even at low doses. Radon in buildings is one of the most important indoor air pollutants, with harmful effects on the health of the population and especially children. This study presents the assessment of indoor radon concentration as air pollution and analyzes the exposure to radon of children and workers. Assessment of air pollution and exposure to indoor radon concentrations under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018 in kindergartens in two districts of Bulgaria (Razgrad and Silistra). Kindergartens were considered for the following reasons: 1these buildings are generally at the ground and/or the first floor, where radon concentration is generally higher than at upper floors; 2these buildings are attended by children, a population generally considered more sensitive to ionizing radiation, although little data is available for radon exposure. The measurements of indoor radon concentrations were performed with passive methods (CR-39 track detectors) for the period from February to May 2015. One hundred fifty-six state kindergartens on the territories of two districts in Bulgaria have been studied. The variations of radon in the children's premises vary from 9 to 1087 Bq/m³. The established arithmetic mean value of radon levels in the kindergartens in Silistra is 139 Bq/m³ and in Razgrad 152 Bq/m³, respectively. The percentage of kindergarteners, where the radon in premises exceeds the Bulgarian reference level of 300 Bq/m³, was 19%. The exposure of children and workers in those kindergartens is high, so remediation measures of air pollution had been recommended. The difference in radon concentration in kindergartens in two districts was statistically analyzed to assess the influence of geography and geology and the differenceKeywords: air pollution, radon, kindergartens, detectors
Procedia PDF Downloads 1997604 Exergy Analysis and Evaluation of the Different Flowsheeting Configurations for CO₂ Capture Plant Using 2-Amino-2-Methyl-1-Propanol
Authors: Ebuwa Osagie, Vasilije Manovic
Abstract:
Exergy analysis provides the identification of the location, sources of thermodynamic inefficiencies, and magnitude in a thermal system. Thus, both the qualitative and quantitative assessment can be evaluated with exergy, unlike energy which is based on quantitative assessment only. The main purpose of exergy analysis is to identify where exergy is destroyed. Thus, reduction of the exergy destruction and losses associated with the capture plant systems can improve work potential. Furthermore, thermodynamic analysis of different configurations of the process helps to identify opportunities for reducing the steam requirements for each of the configurations. This paper presents steady-state simulation and exergy analysis of the 2-amino-2-methyl-1-propanol (AMP)-based post-combustion capture (PCC) plant. Exergy analysis performed for the AMP-based plant and the different configurations revealed that the rich split with intercooling configuration gave the highest exergy efficiency of 73.6%, while that of the intercooling and the reference AMP-based plant were 57.3% and 55.8% respectively.Keywords: 2-amino-2-methyl-1-propanol, modelling, and simulation, post-combustion capture plant, exergy analysis, flowsheeting configurations
Procedia PDF Downloads 1627603 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 927602 Learning and Teaching Strategies in Association with EXE Program for Master Course Students of Yerevan Brusov State University of Languages and Social Sciences
Authors: Susanna Asatryan
Abstract:
The author will introduce a single module related to English teaching methodology for master course students getting specialization “A Foreign Language Teacher of High Schools And Professional Educational Institutions” of Yerevan Brusov State University of Languages and Social Sciences. The overall aim of the presentation is to introduce learning and teaching strategies within EXE Computer program for Mastery student-teachers of the University. The author will display the advantages of the use of this program. The learners interact with the teacher in the classroom as well as they are provided an opportunity for virtual domain to carry out their learning procedures in association with assessment and self-assessment. So they get integrated into blended learning. As this strategy is in its piloting stage, the author has elaborated a single module, embracing 3 main sections: -Teaching English vocabulary at high school, -Teaching English grammar at high school, and -Teaching English pronunciation at high school. The author will present the above mentioned topics with corresponding sections and subsections. The strong point is that preparing this module we have planned to display it on the blended learning landscape. So for this account working with EXE program is highly effective. As it allows the users to operate several tools for self-learning and self-testing/assessment. The author elaborated 3 single EXE files for each topic. Each file starts with the section’s subject-specific description: - Objectives and Pre-knowledge, followed by the theoretical part. The author associated and flavored her observations with appropriate samples of charts, drawings, diagrams, recordings, video-clips, photos, pictures, etc. to make learning process more effective and enjoyable. Before or after the article the author has downloaded a video clip, related to the current topic. EXE offers a wide range of tools to work out or prepare different activities and exercises for the learners: 'Interactive/non-interactive' and 'Textual/non-textual'. So with the use of these tools Multi-Select, Multi-Choice, Cloze, Drop-Down, Case Study, Gap-Filling, Matching and different other types of activities have been elaborated and submitted to the appropriate sections. The learners task is to prepare themselves for the coming module or seminar, related to teaching methodology of English vocabulary, grammar, and pronunciation. The point is that the teacher has an opportunity for face to face communication, as well as to connect with the learners through the Moodle, or as a single EXE file offer it to the learners for their self-study and self-assessment. As for the students’ feedback –EXE environment also makes it available.Keywords: blended learning, EXE program, learning/teaching strategies, self-study/assessment, virtual domain,
Procedia PDF Downloads 4677601 Identifying Lead Poisoning Risk Factors among Non-Pregnant Adults in New York City through Motivational Interviewing Techniques
Authors: Nevila Bardhi, Joanna Magda, Kolapo Alex-Oni, Slavenka Sedlar, Paromita Hore
Abstract:
The New York City Department of Health and Mental Hygiene (NYC DOHMH) receives blood lead test results for NYC residents and conducts lead poisoning case investigations for individuals with elevated blood lead levels exposed to lead occupationally and non-occupationally. To (1) improve participant engagement, (2) aid the identification of potential lead sources, and (3) better tailor recommendations to reduce lead exposure, Motivational Interviewing (MI) techniques were incorporated during risk assessment interviews of non-pregnant adults by DOHMH’s Adult Lead Poisoning Prevention (ALP) Program. MI is an evidence-based counselling method used in clinical settings that have been effective in promoting behavior change by resolving ambivalence and enhancing motivation in treating both physiological and psychological health conditions. The incorporation of MI techniques in the ALP risk assessment interview was effective in improving the identification of lead sources for non-pregnant adult cases, thus, allowing for the opportunity to better tailor lead poisoning prevention recommendations. The embedding of MI cues in the ALP risk assessment interview also significantly increased engagement in the interview process, resulting in approximately 50 more interviews conducted per year and a decrease in interview refusals during case investigations. Additionally, the pre-MI interview completion rate was 57%, while the post-MI Interview completion rate was 68%. We recommend MI techniques to be used by other lead poisoning prevention programs during lead poisoning investigations in similar diverse populations.Keywords: lead poisoning prevention, motivational interviewing, behavior change, lead poisoning risk factors, self-efficacy
Procedia PDF Downloads 887600 Money Laundering Risk Assessment in the Banking Institutions: An Experimental Approach
Authors: Yusarina Mat-Isa, Zuraidah Mohd-Sanusi, Mohd-Nizal Haniff, Paul A. Barnes
Abstract:
In view that money laundering has become eminent for banking institutions, it is an obligation for the banking institutions to adopt a risk-based approach as the integral component of the accepted policies on anti-money laundering. In doing so, those involved with the banking operations are the most critical group of personnel as these are the people who deal with the day-to-day operations of the banking institutions and are obligated to form a judgement on the level of impending risk. This requirement is extended to all relevant banking institutions staff, such as tellers and customer account representatives for them to identify suspicious customers and escalate it to the relevant authorities. Banking institutions staffs, however, face enormous challenges in identifying and distinguishing money launderers from other legitimate customers seeking genuine banking transactions. Banking institutions staffs are mostly educated and trained with the business objective in mind to serve the customers and are not trained to be “detectives with a detective’s power of observation”. Despite increasing awareness as well as trainings conducted for the banking institutions staff, their competency in assessing money laundering risk is still insufficient. Several gaps have prompted this study including the lack of behavioural perspectives in the assessment of money laundering risk in the banking institutions. Utilizing experimental approach, respondents are randomly assigned within a controlled setting with manipulated situations upon which judgement of the respondents is solicited based on various observations related to the situations. The study suggests that it is imperative that informed judgement is exercised in arriving at the decision to proceed with the banking services required by the customers. Judgement forms a basis of opinion for the banking institution staff to decide if the customers posed money laundering risk. Failure to exercise good judgement could results in losses and absorption of unnecessary risk into the banking institutions. Although the banking institutions are exposed with choices of automated solutions in assessing money laundering risk, the human factor in assessing the risk is indispensable. Individual staff in the banking institutions is the first line of defence who are responsible for screening the impending risk of any customer soliciting for banking services. At the end of the spectrum, the individual role involvement on the subject of money laundering risk assessment is not a substitute for automated solutions as human judgement is inimitable.Keywords: banking institutions, experimental approach, money laundering, risk assessment
Procedia PDF Downloads 2657599 The Quality of Food and Drink Product Labels Translation from Indonesian into English
Authors: Rudi Hartono, Bambang Purwanto
Abstract:
The translation quality of food and drink labels from Indonesian into English is poor because the translation is not accurate, less natural, and difficult to read. The label translation can be found in some cans packages of food and drink products produced and marketed by several companies in Indonesia. If this problem is left unchecked, it will lead to a misunderstanding on the translation results and make consumers confused. This study was conducted to analyze the translation errors on food and drink products labels and formulate the solution for the better translation quality. The research design was the evaluation research with a holistic criticism approach. The data used were words, phrases, and sentences translated from Indonesian to English language printed on food and drink product labels. The data were processed by using Interactive Model Analysis that carried out three main steps: collecting, classifying, and verifying data. Furthermore, the data were analyzed by using content analysis to view the accuracy, naturalness, and readability of translation. The results showed that the translation quality of food and drink product labels from Indonesian to English has the level of accuracy (60%), level of naturalness (50%), and level readability (60%). This fact needs a help to create an effective strategy for translating food and drink product labels later.Keywords: translation quality, food and drink product labels, a holistic criticism approach, interactive model, content analysis
Procedia PDF Downloads 3707598 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 1267597 Assessment of Social Vulnerability of Urban Population to Floods – a Case Study of Mumbai
Authors: Sherly M. A., Varsha Vijaykumar, Subhankar Karmakar, Terence Chan, Christian Rau
Abstract:
This study aims at proposing an indicator-based framework for assessing social vulnerability of any coastal megacity to floods. The final set of indicators of social vulnerability are chosen from a set of feasible and available indicators which are prepared using a Geographic Information System (GIS) framework on a smaller scale considering 1-km grid cell to provide an insight into the spatial variability of vulnerability. The optimal weight for each individual indicator is assigned using data envelopment analysis (DEA) as it avoids subjective weights and improves the confidence on the results obtained. In order to de-correlate and reduce the dimension of multivariate data, principal component analysis (PCA) has been applied. The proposed methodology is demonstrated on twenty four wards of Mumbai under the jurisdiction of Municipal Corporation of Greater Mumbai (MCGM). This framework of vulnerability assessment is not limited to the present study area, and may be applied to other urban damage centers.Keywords: urban floods, vulnerability, data envelopment analysis, principal component analysis
Procedia PDF Downloads 3587596 Applying Laser Scanning and Digital Photogrammetry for Developing an Archaeological Model Structure for Old Castle in Germany
Authors: Bara' Al-Mistarehi
Abstract:
Documentation and assessment of conservation state of an archaeological structure is a significant procedure in any management plan. However, it has always been a challenge to apply this with a low coast and safe methodology. It is also a time-demanding procedure. Therefore, a low cost, efficient methodology for documenting the state of a structure is needed. In the scope of this research, this paper will employ digital photogrammetry and laser scanner to one of highly significant structures in Germany, The Old Castle (German: Altes Schloss). The site is well known for its unique features. However, the castle suffers from serious deterioration threats because of the environmental conditions and the absence of continuous monitoring, maintenance and repair plans. Digital photogrammetry is a generally accepted technique for the collection of 3D representations of the environment. For this reason, this image-based technique has been extensively used to produce high quality 3D models of heritage sites and historical buildings for documentation and presentation purposes. Additionally, terrestrial laser scanners are used, which directly measure 3D surface coordinates based on the run-time of reflected light pulses. These systems feature high data acquisition rates, good accuracy and high spatial data density. Despite the potential of each single approach, in this research work maximum benefit is to be expected by a combination of data from both digital cameras and terrestrial laser scanners. Within the paper, the usage, application and advantages of the technique will be investigated in terms of building high realistic 3D textured model for some parts of the old castle. The model will be used as diagnosing tool of the conservation state of the castle and monitoring mean for future changes.Keywords: Digital photogrammetry, Terrestrial laser scanners, 3D textured model, archaeological structure
Procedia PDF Downloads 1757595 Elements of Sector Benchmarking in Physical Education Curriculum: An Indian Perspective
Authors: Kalpana Sharma, Jyoti Mann
Abstract:
The study was designed towards institutional analysis for a clear understanding of the process involved in functioning and layout of determinants influencing physical education teacher’s education program in India. This further can be recommended for selection of parameters for creating sector benchmarking for physical education teachers training institutions across India. 165 stakeholders involving students, teachers, parents, administrators were surveyed from the identified seven institutions and universities from different states of India. They were surveyed on the basis of seven broad parameters which were associated with the post graduate physical education program in India. A physical education program assessment tool of 52 items was designed to administer it among the stakeholders selected for the survey. An item analysis of the contents was concluded through the review process from selected experts working in higher education with experience in teacher training program in physical education. The data was collected from the stakeholders of the selected institutions through Physical Education Program Assessment Tool (PEPAT). The hypothesis that PE teacher education program is independent of physical education institutions was significant. The study directed a need towards robust admission process emphasizing on identification, selection of potential candidates and quality control of intake with the scientific process developed according to the Indian education policies and academic structure. The results revealed that the universities do not have similar functional and delivery process related to the physical education teacher training program. The study reflects towards the need for physical education universities and institutions to identify the best practices to be followed regarding the functioning of delivery of physical education programs at various institutions through strategic management studies on the identified parameters before establishing strict standards and norms for achieving excellence in physical education in India.Keywords: assessment, benchmarking, curriculum, physical education, teacher education
Procedia PDF Downloads 5577594 Sinhala Sign Language to Grammatically Correct Sentences using NLP
Authors: Anjalika Fernando, Banuka Athuraliya
Abstract:
This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired communityKeywords: Sinhala sign language, sign Language, NLP, LSTM, NMT
Procedia PDF Downloads 1037593 Life Cycle Assessment of Residential Buildings: A Case Study in Canada
Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq
Abstract:
Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings
Procedia PDF Downloads 472