Search results for: self-help and family support group
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16325

Search results for: self-help and family support group

935 Measuring the Impact of Implementing an Effective Practice Skills Training Model in Youth Detention

Authors: Phillipa Evans, Christopher Trotter

Abstract:

Aims: This study aims to examine the effectiveness of a practice skills framework implemented in three youth detention centres in Juvenile Justice in New South Wales (NSW), Australia. The study is supported by a grant from and Australian Research Council and NSW Juvenile Justice. Recent years have seen a number of incidents in youth detention centres in Australia and other places. These have led to inquiries and reviews with some suggesting that detention centres often do not even meet basic human rights and do little in terms of providing opportunities for rehabilitation of residents. While there is an increasing body of research suggesting that community based supervision can be effective in reducing recidivism if appropriate skills are used by supervisors, there has been less work considering worker skills in youth detention settings. The research that has been done, however, suggest that teaching interpersonal skills to youth officers may be effective in enhancing the rehabilitation culture of centres. Positive outcomes have been seen in a UK detention centre for example, from teaching staff to do five-minute problem-solving interventions. The aim of this project is to examine the effectiveness of training and coaching youth detention staff in three NSW detention centres in interpersonal practice skills. Effectiveness is defined in terms of reductions in the frequency of critical incidents and improvements in the well-being of staff and young people. The research is important as the results may lead to the development of more humane and rehabilitative experiences for young people. Method: The study involves training staff in core effective practice skills and supporting staff in the use of those skills through supervision and de-briefing. The core effective practice skills include role clarification, pro-social modelling, brief problem solving, and relationship skills. The training also addresses some of the background to criminal behaviour including trauma. Data regarding critical incidents and well-being before and after the program implementation are being collected. This involves interviews with staff and young people, the completion of well-being scales, and examination of departmental records regarding critical incidents. In addition to the before and after comparison a matched control group which is not offered the intervention is also being used. The study includes more than 400 young people and 100 youth officers across 6 centres including the control sites. Data collection includes interviews with workers and young people, critical incident data such as assaults, use of lock ups and confinement and school attendance. Data collection also includes analysing video-tapes of centre activities for changes in the use of staff skills. Results: The project is currently underway with ongoing training and supervision. Early results will be available for the conference.

Keywords: custody, practice skills, training, youth workers

Procedia PDF Downloads 99
934 The Role of People in Continuing Airworthiness: A Case Study Based on the Royal Thai Air Force

Authors: B. Ratchaneepun, N.S. Bardell

Abstract:

It is recognized that people are the main drivers in almost all the processes that affect airworthiness assurance. This is especially true in the area of aircraft maintenance, which is an essential part of continuing airworthiness. This work investigates what impact English language proficiency, the intersection of the military and Thai cultures, and the lack of initial and continuing human factors training have on the work performance of maintenance personnel in the Royal Thai Air Force (RTAF). A quantitative research method based on a cross-sectional survey was used to gather data about these three key aspects of “people” in a military airworthiness environment. 30 questions were developed addressing the crucial topics of English language proficiency, impact of culture, and human factors training. The officers and the non-commissioned officers (NCOs) who work for the Aeronautical Engineering Divisions in the RTAF comprised the survey participants. The survey data were analysed to support various hypotheses by using a t-test method. English competency in the RTAF is very important since all of the service manuals for Thai military aircraft are written in English. Without such competency, it is difficult for maintenance staff to perform tasks and correctly interpret the relevant maintenance manual instructions; any misunderstandings could lead to potential accidents. The survey results showed that the officers appreciated the importance of this more than the NCOs, who are the people actually doing the hands-on maintenance work. Military culture focuses on the success of a given mission, and leverages the power distance between the lower and higher ranks. In Thai society, a power distance also exists between younger and older citizens. In the RTAF, such a combination tends to inhibit a just reporting culture and hence hinders safety. The survey results confirmed this, showing that the older people and higher ranks involved with RTAF aircraft maintenance believe that the workplace has a positive safety culture and climate, whereas the younger people and lower ranks think the opposite. The final area of consideration concerned human factors training and non-technical skills training. The survey revealed that those participants who had previously attended such courses appreciated its value and were aware of its benefits in daily life. However, currently there is no regulation in the RTAF to mandate recurrent training to maintain such knowledge and skills. The findings from this work suggest that the people involved in assuring the continuing airworthiness of the RTAF would benefit from: (i) more rigorous requirements and standards in the recruitment, initial training and continuation training regarding English competence; (ii) the development of a strong safety culture that exploits the uniqueness of both the military culture and the Thai culture; and (iii) providing more initial and recurrent training in human factors and non-technical skills.

Keywords: aircraft maintenance, continuing airworthiness, military culture, people, Royal Thai Air Force

Procedia PDF Downloads 128
933 Functional Ingredients from Potato By-Products: Innovative Biocatalytic Processes

Authors: Salwa Karboune, Amanda Waglay

Abstract:

Recent studies indicate that health-promoting functional ingredients and nutraceuticals can help support and improve the overall public health, which is timely given the aging of the population and the increasing cost of health care. The development of novel ‘natural’ functional ingredients is increasingly challenging. Biocatalysis offers powerful approaches to achieve this goal. Our recent research has been focusing on the development of innovative biocatalytic approaches towards the isolation of protein isolates from potato by-products and the generation of peptides. Potato is a vegetable whose high-quality proteins are underestimated. In addition to their high proportion in the essential amino acids, potato proteins possess angiotensin-converting enzyme-inhibitory potency, an ability to reduce plasma triglycerides associated with a reduced risk of atherosclerosis, and stimulate the release of the appetite regulating hormone CCK. Potato proteins have long been considered not economically feasible due to the low protein content (27% dry matter) found in tuber (Solanum tuberosum). However, potatoes rank the second largest protein supplying crop grown per hectare following wheat. Potato proteins include patatin (40-45 kDa), protease inhibitors (5-25 kDa), and various high MW proteins. Non-destructive techniques for the extraction of proteins from potato pulp and for the generation of peptides are needed in order to minimize functional losses and enhance quality. A promising approach for isolating the potato proteins was developed, which involves the use of multi-enzymatic systems containing selected glycosyl hydrolase enzymes that synergistically work to open the plant cell wall network. This enzymatic approach is advantageous due to: (1) the use of milder reaction conditions, (2) the high selectivity and specificity of enzymes, (3) the low cost and (4) the ability to market natural ingredients. Another major benefit to this enzymatic approach is the elimination of a costly purification step; indeed, these multi-enzymatic systems have the ability to isolate proteins, while fractionating them due to their specificity and selectivity with minimal proteolytic activities. The isolated proteins were used for the enzymatic generation of active peptides. In addition, they were applied into a reduced gluten cookie formulation as consumers are putting a high demand for easy ready to eat snack foods, with high nutritional quality and limited to no gluten incorporation. The addition of potato protein significantly improved the textural hardness of reduced gluten cookies, more comparable to wheat flour alone. The presentation will focus on our recent ‘proof-of principle’ results illustrating the feasibility and the efficiency of new biocatalytic processes for the production of innovative functional food ingredients, from potato by-products, whose potential health benefits are increasingly being recognized.

Keywords: biocatalytic approaches, functional ingredients, potato proteins, peptides

Procedia PDF Downloads 376
932 Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode

Authors: Dyah Purwaningsih, Roto Roto, Hari Sutrisno

Abstract:

Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively.

Keywords: LiMₓMn₂₋ₓO₄, solid-state, reflux, two-stage method, ionic conductivity, specific capacity

Procedia PDF Downloads 191
931 Exploring Nature and Pattern of Mentoring Practices: A Study on Mentees' Perspectives

Authors: Nahid Parween Anwar, Sadia Muzaffar Bhutta, Takbir Ali

Abstract:

Mentoring is a structured activity which is designed to facilitate engagement between mentor and mentee to enhance mentee’s professional capability as an effective teacher. Both mentor and mentee are important elements of the ‘mentoring equation’ and play important roles in nourishing this dynamic, collaborative and reciprocal relationship. Cluster-Based Mentoring Programme (CBMP) provides an indigenous example of a project which focused on development of primary school teachers in selected clusters with a particular focus on their classroom practice. A study was designed to examine the efficacy of CBMP as part of Strengthening Teacher Education in Pakistan (STEP) project. This paper presents results of one of the components of this study. As part of the larger study, a cross-sectional survey was employed to explore nature and patterns of mentoring process from mentees’ perspectives in the selected districts of Sindh and Balochistan. This paper focuses on the results of the study related to the question: What are mentees’ perceptions of their mentors’ support for enhancing their classroom practice during mentoring process? Data were collected from mentees (n=1148) using a 5-point scale -‘Mentoring for Effective Primary Teaching’ (MEPT). MEPT focuses on seven factors of mentoring: personal attributes, pedagogical knowledge, modelling, feedback, system requirement, development and use of material, and gender equality. Data were analysed using SPSS 20. Mentees perceptions of mentoring practice of their mentors were summarized using mean and standard deviation. Results showed that mean scale scores on mentees’ perceptions of their mentors’ practices fell between 3.58 (system requirement) and 4.55 (personal attributes). Mentees’ perceives personal attribute of the mentor as the most significant factor (M=4.55) towards streamlining mentoring process by building good relationship between mentor and mentees. Furthermore, mentees have shared positive views about their mentors efforts towards promoting gender impartiality (M=4.54) during workshop and follow up visit. Contrary to this, mentees felt that more could have been done by their mentors in sharing knowledge about system requirement (e.g. school policies, national curriculum). Furthermore, some of the aspects in high scoring factors were highlighted by the mentees as areas for further improvement (e.g. assistance in timetabling, written feedback, encouragement to develop learning corners). Mentees’ perceptions of their mentors’ practices may assist in determining mentoring needs. The results may prove useful for the professional development programme for the mentors and mentees for specific mentoring programme in order to enhance practices in primary classrooms in Pakistan. Results would contribute into the body of much-needed knowledge from developing context.

Keywords: cluster-based mentoring programme, mentoring for effective primary teaching (MEPT), professional development, survey

Procedia PDF Downloads 229
930 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 176
929 Evaluation of Rhizobia for Nodulation, Shoot and Root Biomass from Host Range Studies Using Soybean, Common Bean, Bambara Groundnut and Mung Bean

Authors: Sharon K. Mahlangu, Mustapha Mohammed, Felix D. Dakora

Abstract:

Rural households in Africa depend largely on legumes as a source of high-protein food due to N₂-fixation by rhizobia when they infect plant roots. However, the legume/rhizobia symbiosis can exhibit some level of specificity such that some legumes may be selectively nodulated by only a particular group of rhizobia. In contrast, some legumes are highly promiscuous and are nodulated by a wide range of rhizobia. Little is known about the nodulation promiscuity of bacterial symbionts from wild legumes such as Aspalathus linearis, especially if they can nodulate cultivated grain legumes such as cowpea and Kersting’s groundnut. Determining the host range of the symbionts of wild legumes can potentially reveal novel rhizobial strains that can be used to increase nitrogen fixation in cultivated legumes. In this study, bacteria were isolated and tested for their ability to induce root nodules on their homologous hosts. Seeds were surface-sterilized with alcohol and sodium hypochlorite and planted in sterile sand contained in plastic pots. The pot surface was covered with sterile non-absorbent cotton wool to avoid contamination. The plants were watered with nitrogen-free nutrient solution and sterile water in alternation. Three replicate pots were used per isolate. The plants were grown for 90 days in a naturally-lit glasshouse and assessed for nodulation (nodule number and nodule biomass) and shoot biomass. Seven isolates from each of Kersting’s groundnut and cowpea and two from Rooibos tea plants were tested for their ability to nodulate soybean, mung bean, common bean and Bambara groundnut. The results showed that of the isolates from cowpea, where VUSA55 and VUSA42 could nodulate all test host plants, followed by VUSA48 which nodulated cowpea, Bambara groundnut and soybean. The two isolates from Rooibos tea plants nodulated Bambara groundnut, soybean and common bean. However, isolate L1R3.3.1 also nodulated mung bean. There was a greater accumulation of shoot biomass when cowpea isolate VUSA55 nodulated common bean. Isolate VUSA55 produced the highest shoot biomass, followed by VUSA42 and VUSA48. The two Kersting’s groundnut isolates, MGSA131 and MGSA110, accumulated average shoot biomass. In contrast, the two Rooibos tea isolates induced a higher accumulation of biomass in Bambara groundnut, followed by common bean. The results suggest that inoculating these agriculturally important grain legumes with cowpea isolates can contribute to improved soil fertility, especially soil nitrogen levels.

Keywords: legumes, nitrogen fixation, nodulation, rhizobia

Procedia PDF Downloads 217
928 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning

Authors: John Zanetich

Abstract:

Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.

Keywords: tacit knowledge, knowledge management, college programs, experiential learning

Procedia PDF Downloads 260
927 An Assessment of Involuntary Migration in India: Understanding Issues and Challenges

Authors: Rajni Singh, Rakesh Mishra, Mukunda Upadhyay

Abstract:

India is among the nations born out of partition that led to one of the greatest forced migrations that marked the past century. The Indian subcontinent got partitioned into two nation-states, namely India and Pakistan. This led to an unexampled mass displacement of people accounting for about 20 million in the subcontinent as a whole. This exemplifies the socio-political version of displacement, but there are other identified reasons leading to human displacement viz., natural calamities, development projects and people-trafficking and smuggling. Although forced migrations are rare in incidence, they are mostly region-specific and a very less percentage of population appears to be affected by it. However, when this percentage is transcripted in terms of volume, the real impact created by such migration can be realized. Forced migration is thus an issue related to the lives of many people and requires to be addressed with proper intervention. Forced or involuntary migration decimates peoples' assets while taking from them their most basic resources and makes them migrate without planning and intention. This in most cases proves to be a burden on the destination resources. Thus, the question related to their security concerns arise profoundly with regard to the protection and safeguards to these migrants who need help at the place of destination. This brings the human security dimension of forced migration into picture. The present study is an analysis of a sample of 1501 persons by NSSO in India (National Sample Survey Organisation), which identifies three reasons for forced migration- natural disaster, social/political problem and displacement by development projects. It was observed that, of the total forced migrants, about 4/5th comprised of the internally displaced persons. However, there was a huge inflow of such migrants to the country from across the borders also, the major contributing countries being Bangladesh, Pakistan, Sri Lanka, Gulf countries and Nepal. Among the three reasons for involuntary migration, social and political problem is the most prominent in displacing huge masses of population; it is also the reason where the share of international migrants to that of internally displaced is higher compared to the other two factors /reasons. Second to political and social problems, natural calamities displaced a high portion of the involuntary migrants. The present paper examines the factors which increase people's vulnerability to forced migration. On perusing the background characteristics of the migrants it was seen that those who were economically weak and socially fragile are more susceptible to migration. Therefore, getting an insight about this fragile group of society is required so that government policies can benefit these in the most efficient and targeted manner.

Keywords: involuntary migration, displacement, natural disaster, social and political problem

Procedia PDF Downloads 351
926 Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frames subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. Confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame, and the aspect ratio of the wall. All cases included tie columns and tie beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frames with identical characteristics to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in a cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls. This type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking, and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is a property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, infill wall, infilled frame, masonry wall

Procedia PDF Downloads 172
925 A Qualitative Exploration of the Beliefs and Experiences of HIV-Related Self-Stigma Amongst Young Adults Living with HIV in Zimbabwe

Authors: Camille Rich, Nadine Ferris France, Ann Nolan, Webster Mavhu, Vongai Munatsi

Abstract:

Background and Aim: Zimbabwe has one of the highest HIV rates in the world, with a 12.7% adult prevalence rate. Young adults are a key group affected by HIV, and one-third of all new infections in Zimbabwe are amongst people ages 18-24 years. Stigma remains one of the main barriers to managing and reducing the HIV crisis, especially for young adults. There are several types of stigma, including enacted stigma, the outward discrimination towards someone and self-stigma, the negative self-judgments one has towards themselves. Self-stigma can have severe consequences, including feelings of worthlessness, shame, suicidal thoughts, and avoidance of medical help. This can have detrimental effects on those living with HIV. However, the unique beliefs and impacts of self-stigma amongst key groups living with HIV have not yet been explored. Therefore, the focus of this study is on the beliefs and experiences of HIV-related self-stigma, as experienced by young adults living in Harare, Zimbabwe. Research Methods: A qualitative approach was taken for this study, using sixteen semi-structured interviews with young adults (18-24 years) who are living with HIV in Harare. Participants were conveniently and purposefully sampled as members of Africa, an organization dedicated to young people living with HIV. Interviews were conducted over Zoom due to the COVID-19 pandemic, recorded and then coded using the software NVivo. The data was analyzed using both inductive and deductive Thematic Analysis to find common themes. Results: All of the participants experienced HIV-related self-stigma, and both beliefs and experiences were explored. These negative self-perceptions included beliefs of worthlessness, hopelessness, and negative body image. The young adults described believing they were not good enough to be around HIV negative people or that they could never be loved due to their HIV status. Developing self-stigmatizing thoughts came from internalizing negative cultural values, stereotypes about people living with HIV, and adverse experiences. Three main themes of self-stigmatizing experiences emerged: disclosure difficulties, relationship complications, and being isolated. Fear of telling someone their status, rejection in a relationship, and being excluded by others due to their HIV status contributed to their self-stigma. These experiences caused feelings of loneliness, sadness, shame, fear, and low self-worth. Conclusions: This study explored the beliefs and experiences of HIV-related self-stigma of these young adults. The emergence of negative self-perceptions demonstrated deep-rooted beliefs of HIV-related self-stigma that adversely impact the participants. The negative self-perceptions and self-stigmatizing experiences caused the participants to feel worthless, hopeless, shameful, and alone-negatively impacting their physical and mental health, personal relationships, and sense of self-identity. These results can now be used to pursue interventions to target the specific beliefs and experiences of young adults living with HIV and reduce the adverse consequences of self-stigma.

Keywords: beliefs, HIV, self-stigma, stigma, Zimbabwe

Procedia PDF Downloads 110
924 Planckian Dissipation in Bi₂Sr₂Ca₂Cu₃O₁₀₋δ

Authors: Lalita, Niladri Sarkar, Subhasis Ghosh

Abstract:

Since the discovery of high temperature superconductivity (HTSC) in cuprates, several aspects of this phenomena have fascinated physics community. The most debated one is the linear temperature dependence of normal state resistivity over wide range of temperature in violation of with Fermi liquid theory. The linear-in-T resistivity (LITR) is the indication of strongly correlated metallic, known as “strange metal”, attributed to non Fermi liquid theory (NFL). The proximity of superconductivity to LITR suggests that there may be underlying common origin. The LITR has been shown to be due to unknown dissipative phenomena, restricted by quantum mechanics and commonly known as ‘‘Planckian dissipation” , the term first coined by Zaanen and the associated inelastic scattering time τ and given by 1/τ=αkBT/ℏ, where ℏ, kB and α are reduced Planck’s constant, Boltzmann constant and a dimensionless constant of order of unity, respectively. Since the first report, experimental support for α ~ 1 is appearing in literature. There are several striking issues which remain to be resolved if we desire to find out or at least get a clue towards microscopic origin of maximal dissipation in cuprates. (i) Universality of α ~ 1, recently some doubts have been raised in some cases. (ii) So far, Planckian dissipation has been demonstrated in overdoped Cuprates, but if the proximity to quantum criticality is important, then Planckian dissipation should be observed in optimally doped and marginally underdoped cuprates. The link between Planckian dissipation and quantum criticality still remains an open problem. (iii) Validity of Planckian dissipation in all cuprates is an important issue. Here, we report reversible change in the superconducting behavior of high temperature superconductor Bi2Sr2Ca2Cu3O10+δ (Bi-2223) under dynamic doping induced by photo-excitation. Two doped Bi-223 samples, which are x = 0.16 (optimal-doped), x = 0.145 (marginal-doped) have been used for this investigation. It is realized that steady state photo-excitation converts magnetic Cu2+ ions to nonmagnetic Cu1+ ions which reduces superconducting transition temperature (Tc) by killing superfluid density. In Bi-2223, one would expect the maximum of suppression of Tc should be at charge transfer gap. We have observed suppression of Tc starts at 2eV, which is the charge transfer gap in Bi-2223. We attribute this transition due to Cu-3d9(Cu2+) to Cu-3d10(Cu+), known as d9 − d10 L transition, photoexcitation makes some Cu ions in CuO2 planes as spinless non-magnetic potential perturbation as Zn2+ does in CuO2 plane in case Zn-doped cuprates. The resistivity varies linearly with temperature with or without photo-excitation. Tc can be varied by almost by 40K be photoexcitation. Superconductivity can be destroyed completely by introducing ≈ 2% of Cu1+ ions for this range of doping. With this controlled variation of Tc and resistivity, detailed investigation has been carried out to reveal Planckian dissipation underdoped to optimally doped Bi-2223. The most important aspect of this investigation is that we could vary Tc dynamically and reversibly, so that LITR and associated Planckian dissipation can be studied over wide ranges of Tc without changing the doping chemically.

Keywords: linear resistivity, HTSC, Planckian dissipation, strange metal

Procedia PDF Downloads 54
923 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 167
922 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 180
921 An Investigation of Wind Loading Effects on the Design of Elevated Steel Tanks with Lattice Tower Supporting Structures

Authors: J. van Vuuren, D. J. van Vuuren, R. Muigai

Abstract:

In recent times, South Africa has experienced extensive droughts that created the need for reliable small water reservoirs. These reservoirs have comparatively quick fabrication and installation times compared to market alternatives. An elevated water tank has inherent potential energy, resulting in that no additional water pumps are required to sustain water pressure at the outlet point – thus ensuring that, without electricity, a water source is available. The initial construction formwork and the complex geometric shape of concrete towers that requires casting can become time-consuming, rendering steel towers preferable. Reinforced concrete foundations, cast in advance, are required to be of sufficient strength. Thereafter, the prefabricated steel supporting structure and tank, which consist of steel panels, can be assembled and erected on site within a couple of days. Due to the time effectiveness of this system, it has become a popular solution to aid drought-stricken areas. These sites are normally in rural, schools or farmland areas. As these tanks can contain up to 2000kL (approximately 19.62MN) of water, combined with supporting lattice steel structures ranging between 5m and 30m in height, failure of one of the supporting members will result in system failure. Thus, there is a need to gain a comprehensive understanding of the operation conditions because of wind loadings on both the tank and the supporting structure. The aim of the research is to investigate the relationship between the theoretical wind loading on a lattice steel tower in combination with an elevated sectional steel tank, and the current wind loading codes, as applicable to South Africa. The research compares the respective design parameters (both theoretical and wind loading codes) whereby FEA analyses are conducted on the various design solutions. The currently available wind loading codes are not sufficient to design slender cantilever latticed steel towers that support elevated water storage tanks. Numerous factors in the design codes are not comprehensively considered when designing the system as these codes are dependent on various assumptions. Factors that require investigation for the study are; the wind loading angle to the face of the structure that will result in maximum load; the internal structural effects on models with different bracing patterns; the loading influence of the aspect ratio of the tank; and the clearance height of the tank on the structural members. Wind loads, as the variable that results in the highest failure rate of cantilevered lattice steel tower structures, require greater understanding. This study aims to contribute towards the design process of elevated steel tanks with lattice tower supporting structures.

Keywords: aspect ratio, bracing patterns, clearance height, elevated steel tanks, lattice steel tower, wind loads

Procedia PDF Downloads 149
920 Need for Eye Care Services, Clinical Characteristics, Surgical Outcome and Prognostic Predictors of Cataract in Adult Participants with Intellectual Disability

Authors: Yun-Shan Tsai, Si-Ping Lin, En-Chieh Lin, Xin-Hong Chen, Shin-Yun Ho, Shin-Hong Huang, Ching-ju Hsieh

Abstract:

Background and significance: Uncorrected refractive errors and cataracts are the main visually debilitating ophthalmological abnormalities in adult participants with intellectual disability (ID). However, not all adult participants with ID may receive a regular and timely ophthalmological assessment. Consequently, some of the ocular diseases may not be diagnosed until late, thereby causing unnecessary ocular morbidity. In addition, recent clinical practice and researches have also suggested that eye-care services for this group are neglected. Purpose: To investigate the unmet need for eye care services, clinical characteristics of cataract, visual function, surgical outcome and prognostic predictors in adult participants with ID at Taipei City Hospital in Taiwan. Methods: This is a one-year prospective clinical study. We recruited about 120 eyes of 60 adult participants with ID who were received cataract surgery. Caregivers of all participants received a questionnaire on current eye care services. Clinical demographic data, such as age, gender, and associated systemic diseases or syndromes, were collected. All complete ophthalmologic examinations were performed 1 month preoperatively and 3 months postoperatively, including ocular biometry, visual function, refractive status, morphology of cataract, associated ocular features, anesthesia methods, surgical types, and complications. Morphology of cataract, visual and surgical outcome was analyzed. Results: A total of 60 participants with mean age 43.66 ± 13.94 years, including 59.02% male and 40.98% female, took part in comprehensive eye-care services. The prevalence of unmet need for eye care services was high (about 70%). About 50% of adult participants with ID have bilateral cataracts at the time of diagnosis. White cataracts were noted in about 30% of all adult participants with ID at the time of presentation. Associated ocular disorders were included myopic maculopathy (4.54%), corneal disorders (11.36%), nystagmus (20.45%), strabismus (38.64%) and glaucoma (2.27%). About 26.7% of adult participants with ID underwent extracapsular cataract extraction whereas a phacoemulsification was performed in 100% of eyes. Intraocular lens implantation was performed in all eyes. The most common postoperative complication was posterior capsular opacification (30%). The mean best-corrected visual acuity was significantly improved from preoperatively (mean log MAR 0.48 ± 0.22) to at 3 months postoperatively (mean log MAR 0.045 ± 0.22) (p < .05). Conclusions: Regular follow up will help address the need for eye-care services in participants with ID. A high incidence of bilateral cataracts, as well as white cataracts, was observed in adult participants with ID. Because of early diagnosis and early intervention of cataract, the visual and surgical outcomes of cataract are good, but the visual outcomes are suboptimal due to associated ocular comorbidities.

Keywords: adult participants with intellectual disability, cataract, cataract surgery

Procedia PDF Downloads 306
919 Seasonal Variability of M₂ Internal Tides Energetics in the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty

Abstract:

The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, subsurface ridges, and the seamounts, etc. The IWs of the tidal frequency are generally known as internal tides. These waves have a significant influence on the vertical density and hence causes mixing in the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the Bay of Bengal with special emphasis on its energetics is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution in-situ data sets are available. The model is initially validated through the spectral estimates of density and the baroclinic velocities. From the estimates, it is inferred that the internal tides associated with semi-diurnal frequency are more dominant in both observations and model simulations for November-December and March-April. However, in August, the estimate is found to be maximum near-inertial frequency at all the available depths. The observed vertical structure of the baroclinic velocities and its magnitude are found to be well captured by the model. EOF analysis is performed to decompose the zonal and meridional baroclinic tidal currents into different vertical modes. The analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The first three modes are sufficient to describe most of the variability for semidiurnal internal tides, as they represent 90-95% of the total variance for all the seasons. The phase speed, group speed, and wavelength are found to be maximum for post-monsoon season compared to other two seasons. The model simulation suggests that the internal tide is generated all along the shelf-slope regions and propagate away from the generation sites in all the months. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m²) in northern BoB and minimum in August (14kg/m²). The detailed energy budget calculation are made for all the seasons and results are analysed.

Keywords: available potential energy, baroclinic energy flux, internal tides, Bay of Bengal

Procedia PDF Downloads 165
918 Open Joint Surgery for Temporomandibular Joint Internal Derangement: Wilkes Stages III-V

Authors: T. N. Goh, M. Hashmi, O. Hussain

Abstract:

Temporomandibular joint (TMJ) dysfunction (TMD) is a condition that may affect patients via restricted mouth opening, significant pain during normal functioning, and/or reproducible joint noise. TMD includes myofascial pain, TMJ functional derangements (internal derangement, dislocation), and TMJ degenerative/inflammatory joint disease. Internal derangement (ID) is the most common cause of TMD-related clicking and locking. These patients are managed in a stepwise approach, from patient education (homecare advice and analgesia), splint therapy, physiotherapy, botulinum toxin treatment, to arthrocentesis. Arthrotomy is offered when the aforementioned treatment options fail to alleviate symptoms and improve quality of life. The aim of this prospective study was to review the outcomes of jaw joint open surgery in TMD patients. Patients who presented from 2015-2022 at the Oral and Maxillofacial Surgery Department in the Doncaster NHS Foundation Trust, UK, with a Wilkes classification of III -V were included. These patients underwent either i) discopexy with bone-anchoring suture (9); ii) intrapositional temporalis flap (ITF) with bone-anchoring suture (3); iii) eminoplasty and discopexy with suturing to the capsule (3); iii) discectomy + ITF with bone-anchoring suture (1); iv) discoplasty + bone-anchoring suture (1); v) ITF (1). Maximum incisal opening (MIO) was assessed pre-operatively and at each follow-up. Pain score, determined via the visual analogue scale (VAS, with 0 being no pain and 10 being the worst pain), was also recorded. A total of 18 eligible patients were identified with a mean age of 45 (range 22 - 79), of which 16 were female. The patients were scored by Wilkes Classification as III (14), IV (1), or V (4). Twelve patients had anterior disc displacement without reduction (66%) and six had degenerative/arthritic changes (33%) to the TMJ. The open joint procedure resulted in an increase in MIO and reduction in pain VAS and for the majority of patients, across all Wilkes Classifications. Pre-procedural MIO was 22.9 ± 7.4 mm and VAS was 7.8 ± 1.5. At three months post-procedure there was an increase in MIO to 34.4 ± 10.4 mm (p < 0.01) and a decrease in the VAS to 1.5 ± 2.9 (p < 0.01). Three patients were lost to follow-up prior to six months. Six were discharged at six month review and five patients were discharged at 12 months review as they were asymptomatic with good mouth opening. Four patients are still attending for annual botulinum toxin treatment. Two patients (Wilkes III and V) subsequently underwent TMJ replacement (11%). One of these patients (Wilkes III) had improvement initially to MIO of 40 mm, but subsequently relapsed to less than 20 mm due to lack of compliance with jaw rehabilitation device post-operatively. Clinical improvements in 89% of patients within the study group were found, with a return to near normal MIO range and reduced pain score. Intraoperatively, the operator found bone-anchoring suture used for discopexy/discoplasty more secure than the soft tissue anchoring suturing technique.

Keywords: bone anchoring suture, open temporomandibular joint surgery, temporomandibular joint, temporomandibular joint dysfunction

Procedia PDF Downloads 103
917 Getting to Know the Enemy: Utilization of Phone Record Analysis Simulations to Uncover a Target’s Personal Life Attributes

Authors: David S. Byrne

Abstract:

The purpose of this paper is to understand how phone record analysis can enable identification of subjects in communication with a target of a terrorist plot. This study also sought to understand the advantages of the implementation of simulations to develop the skills of future intelligence analysts to enhance national security. Through the examination of phone reports which in essence consist of the call traffic of incoming and outgoing numbers (and not by listening to calls or reading the content of text messages), patterns can be uncovered that point toward members of a criminal group and activities planned. Through temporal and frequency analysis, conclusions were drawn to offer insights into the identity of participants and the potential scheme being undertaken. The challenge lies in the accurate identification of the users of the phones in contact with the target. Often investigators rely on proprietary databases and open sources to accomplish this task, however it is difficult to ascertain the accuracy of the information found. Thus, this paper poses two research questions: how effective are freely available web sources of information at determining the actual identification of callers? Secondly, does the identity of the callers enable an understanding of the lifestyle and habits of the target? The methodology for this research consisted of the analysis of the call detail records of the author’s personal phone activity spanning the period of a year combined with a hypothetical theory that the owner of said phone was a leader of terrorist cell. The goal was to reveal the identity of his accomplices and understand how his personal attributes can further paint a picture of the target’s intentions. The results of the study were interesting, nearly 80% of the calls were identified with over a 75% accuracy rating via datamining of open sources. The suspected terrorist’s inner circle was recognized including relatives and potential collaborators as well as financial institutions [money laundering], restaurants [meetings], a sporting goods store [purchase of supplies], and airline and hotels [travel itinerary]. The outcome of this research showed the benefits of cellphone analysis without more intrusive and time-consuming methodologies though it may be instrumental for potential surveillance, interviews, and developing probable cause for wiretaps. Furthermore, this research highlights the importance of building upon the skills of future intelligence analysts through phone record analysis via simulations; that hands-on learning in this case study emphasizes the development of the competencies necessary to improve investigations overall.

Keywords: hands-on learning, intelligence analysis, intelligence education, phone record analysis, simulations

Procedia PDF Downloads 10
916 Complementing Assessment Processes with Standardized Tests: A Work in Progress

Authors: Amparo Camacho

Abstract:

ABET accredited programs must assess the development of student learning outcomes (SOs) in engineering programs. Different institutions implement different strategies for this assessment, and they are usually designed “in house.” This paper presents a proposal for including standardized tests to complement the ABET assessment model in an engineering college made up of six distinct engineering programs. The engineering college formulated a model of quality assurance in education to be implemented throughout the six engineering programs to regularly assess and evaluate the achievement of SOs in each program offered. The model uses diverse techniques and sources of data to assess student performance and to implement actions of improvement based on the results of this assessment. The model is called “Assessment Process Model” and it includes SOs A through K, as defined by ABET. SOs can be divided into two categories: “hard skills” and “professional skills” (soft skills). The first includes abilities, such as: applying knowledge of mathematics, science, and engineering and designing and conducting experiments, as well as analyzing and interpreting data. The second category, “professional skills”, includes communicating effectively, and understanding professional and ethnical responsibility. Within the Assessment Process Model, various tools were used to assess SOs, related to both “hard” as well as “soft” skills. The assessment tools designed included: rubrics, surveys, questionnaires, and portfolios. In addition to these instruments, the Engineering College decided to use tools that systematically gather consistent quantitative data. For this reason, an in-house exam was designed and implemented, based on the curriculum of each program. Even though this exam was administered during various academic periods, it is not currently considered standardized. In 2017, the Engineering College included three standardized tests: one to assess mathematical and scientific reasoning and two more to assess reading and writing abilities. With these exams, the college hopes to obtain complementary information that can help better measure the development of both hard and soft skills of students in the different engineering programs. In the first semester of 2017, the three exams were given to three sample groups of students from the six different engineering programs. Students in the sample groups were either from the first, fifth, and tenth semester cohorts. At the time of submission of this paper, the engineering college has descriptive statistical data and is working with various statisticians to have a more in-depth and detailed analysis of the sample group of students’ achievement on the three exams. The overall objective of including standardized exams in the assessment model is to identify more precisely the least developed SOs in order to define and implement educational strategies necessary for students to achieve them in each engineering program.

Keywords: assessment, hard skills, soft skills, standardized tests

Procedia PDF Downloads 281
915 The Joy of Painless Maternity: The Reproductive Policy of the Bolsheviks in the 1930s

Authors: Almira Sharafeeva

Abstract:

In the Soviet Union of the 1930s, motherhood was seen as a natural need of women. The masculine Bolshevik state did not see the emancipated woman as free from her maternal burden. In order to support the idea of "joyful motherhood," a medical discourse on the anesthesia of childbirth emerges. In March 1935 at the IX Congress of obstetricians and gynecologists the People's Commissar of Public Health of the RSFSR G.N. Kaminsky raised the issue of anesthesia of childbirth. It was also from that year that medical, literary and artistic editions with enviable frequency began to publish articles, studies devoted to the issue, the goal - to anesthetize all childbirths in the USSR - was proclaimed. These publications were often filled with anti-German and anti-capitalist propaganda, through which the advantages of socialism over Capitalism and Nazism were demonstrated. At congresses, in journals, and at institute meetings, doctors' discussions around obstetric anesthesia were accompanied by discussions of shortening the duration of the childbirth process, the prevention and prevention of disease, the admission of nurses to the procedure, and the proper behavior of women during the childbirth process. With the help of articles from medical periodicals of the 1930s., brochures, as well as documents from the funds of the Institute of Obstetrics and Gynecology of the Academy of Medical Sciences of the USSR (TsGANTD SPb) and the Department of Obstetrics and Gynecology of the NKZ USSR (GARF) in this paper we will show, how the advantages of the Soviet system and the socialist way of life were constructed through the problem of childbirth pain relief, and we will also show how childbirth pain relief in the USSR was related to the foreign policy situation and how projects of labor pain relief were related to the anti-abortion policy of the state. This study also attempts to answer the question of why anesthesia of childbirth in the USSR did not become widespread and how, through this medical procedure, the Soviet authorities tried to take control of a female function (childbirth) that was not available to men. Considering this subject from the perspective of gender studies and the social history of medicine, it is productive to use the term "biopolitics. Michel Foucault and Antonio Negri, wrote that biopolitics takes under its wing the control and management of hygiene, nutrition, fertility, sexuality, contraception. The central issue of biopolitics is population reproduction. It includes strategies for intervening in collective existence in the name of life and health, ways of subjectivation by which individuals are forced to work on themselves. The Soviet state, through intervention in the reproductive lives of its citizens, sought to realize its goals of population growth, which was necessary to demonstrate the benefits of living in the Soviet Union and to train a pool of builders of socialism. The woman's body was seen as the object over which the socialist experiment of reproductive policy was being conducted.

Keywords: labor anesthesia, biopolitics of stalinism, childbirth pain relief, reproductive policy

Procedia PDF Downloads 68
914 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 97
913 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 182
912 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 139
911 The Role of Community Beliefs and Practices on the Spread of Ebola in Uganda, September 2022

Authors: Helen Nelly Naiga, Jane Frances Zalwango, Saudah N. Kizito, Brian Agaba, Brenda N Simbwa, Maria Goretti Zalwango, Richard Migisha, Benon Kwesiga, Daniel Kadobera, Alex Ario Riolexus, Sarah Paige, Julie R. Harris

Abstract:

Background: Traditional community beliefs and practices can facilitate the spread of Ebola virus during outbreaks. On September 20, 2022, Uganda declared a Sudan Virus Disease (SVD) outbreak after a case was confirmed in Mubende District. During September–November 2022, the outbreak spread to eight additional districts. We investigated the role of community beliefs and practices in the spread of SUDV in Uganda in 2022. Methods: A qualitative study was conducted in Mubende, Kassanda, and Kyegegwa districts in February 2023. We conducted nine focus group discussions (FGDs) and six key informant interviews (KIIs). FGDs included SVD survivors, household members of SVD patients, traditional healers, religious leaders, and community leaders. Key informants included community, political, and religious leaders, traditional healers, and health workers. We asked about community beliefs and practices to understand if and how they contributed to the spread of SUDV. Interviews were recorded, translated, transcribed, and analyzed thematically. Results: Frequently-reported themes included beliefs that the community deaths, later found to be due to SVD, were the result of witchcraft or poisoning. Key informants reported that SVD patients frequently first consulted traditional healers or spiritual leaders before seeking formal healthcare, and noted that traditional healers treated patients with signs and symptoms of SVD without protective measures. Additional themes included religious leaders conducting laying-on-of-hands prayers for SVD patients and symptomatic contacts, SVD patients and their symptomatic contacts hiding in friends’ homes, and exhumation of SVD patients originally buried in safe and dignified burials, to enable traditional burials. Conclusion: Multiple community beliefs and practices likely promoted SVD outbreak spread during the 2022 outbreak in Uganda. Engaging traditional and spiritual healers early during similar outbreaks through risk communication and community engagement efforts could facilitate outbreak control. Targeted community messaging, including clear biological explanations for clusters of deaths and information on the dangers of exhuming bodies of SVD patients, could similarly facilitate improved control in future outbreaks in Uganda.

Keywords: Ebola, Sudan virus, outbreak, beliefs, traditional

Procedia PDF Downloads 54
910 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration

Authors: M. G. Shilina

Abstract:

The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.

Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt

Procedia PDF Downloads 146
909 Linguistic and Cultural Human Rights for Indigenous Peoples in Education

Authors: David Hough

Abstract:

Indigenous peoples can generally be described as the original or first peoples of a land prior to colonization. While there is no single definition of indigenous peoples, the United Nations has developed a general understanding based on self-identification and historical continuity with pre-colonial societies. Indigenous peoples are often traditional holders of unique languages, knowledge systems and beliefs who possess valuable knowledge and practices which support sustainable management of natural resources. They often have social, economic, political systems, languages and cultures, which are distinct from dominant groups in the society or state where they live. They generally resist attempts by the dominant culture at assimilation and endeavour to maintain and reproduce their ancestral environments and systems as distinctive peoples and communities. In 2007, the United Nations General Assembly passed a declaration on the rights of indigenous peoples, known as UNDRIP. It (in addition to other international instruments such as ILO 169), sets out far-reaching guidelines, which – among other things – attempt to protect and promote indigenous languages and cultures. Paragraphs 13 and 14 of the declaration state the following regarding language, culture and education: Article 13, Paragraph 1: Indigenous peoples have the right to revitalize, use, develop and transmit for future generations their histories, languages, oral traditions, philosophies, writing systems, and literatures, and to designate and retain their own names for communities, places and persons. Article 14, Paragraph I: Indigenous peoples have the right to establish and control their educational systems and institutions providing education in their own languages, in a manner appropriate to their cultural methods of teaching and learning. These two paragraphs call for the right of self-determination in education. Paragraph 13 gives indigenous peoples the right to control the content of their teaching, while Paragraph 14 states that the teaching of this content should be based on methods of teaching and learning which are appropriate to indigenous peoples. This paper reviews an approach to furthering linguistic and cultural human rights for indigenous peoples in education, which supports UNDRIP. It has been employed in countries in Asia and the Pacific, including the Republic of the Marshall Islands, the Federated States of Micronesia, Far East Russia and Nepal. It is based on bottom-up community-based initiatives where students, teachers and local knowledge holders come together to produce classroom materials in their own languages that reflect their traditional beliefs and value systems. They may include such things as knowledge about herbal medicines and traditional healing practices, local history, numerical systems, weights and measures, astronomy and navigation, canoe building, weaving and mat making, life rituals, feasts, festivals, songs, poems, etc. Many of these materials can then be mainstreamed into math, science language arts and social studies classes.

Keywords: Indigenous peoples, linguistic and cultural human rights, materials development, teacher training, traditional knowledge

Procedia PDF Downloads 244
908 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 80
907 Development and Obtaining of Solid Dispersions to Increase the Solubility of Efavirenz in Anti-HIV Therapy

Authors: Salvana P. M. Costa, Tarcyla A. Gomes, Giovanna C. R. M. Schver, Leslie R. M. Ferraz, Cristovão R. Silva, Magaly A. M. Lyra, Danilo A. F. Fonte, Larissa A. Rolim, Amanda C. Q. M. Vieira, Miracy M. Albuquerque, Pedro J. Rolim-neto

Abstract:

Efavirenz (EFV) is considered one of the most widely used anti-HIV drugs. However, it is classified as a drug class II (poorly soluble, highly permeable) according to the biopharmaceutical classification system, presenting problems of absorption in the gastrointestinal tract and thereby inadequate bioavailability for its therapeutic action. This study aimed to overcome these barriers by developing and obtaining solid dispersions (SD) in order to increase the EFZ bioavailability. For the development of SD with EFV, theoretical and practical studies were initially performed. Thus, there was a choice of a carrier to be used. For this, it was analyzed the various criteria such as glass transition temperature of the polymer, intra- and intermolecular interactions of hydrogen bonds between drug and polymer, the miscibility between the polymer and EFV. The choice of the obtainment method of the SD came from the analysis of which method is the most consolidated in both industry and literature. Subsequently, the choice of drug and carrier concentrations in the dispersions was carried out. In order to obtain DS to present the drug in its amorphous form, as the DS were obtained, they were analyzed by X-ray diffraction (XRD). SD are more stable the higher the amount of polymer present in the formulation. With this assumption, a SD containing 10% of drug was initially prepared and then this proportion was increased until the XRD showed the presence of EFV in its crystalline form. From this point, it was not produced SD with a higher concentration of drug. Thus, it was allowed to select PVP-K30, PVPVA 64 and the SOLUPLUS formulation as carriers, once it was possible the formation of hydrogen bond between EFV and polymers since these have hydrogen acceptor groups capable of interacting with the donor group of the drug hydrogen. It is worth mentioning also that the films obtained, independent of concentration used, were presented homogeneous and transparent. Thus, it can be said that the EFV is miscible in the three polymers used in the study. The SD and Physical Mixtures (PM) with these polymers were prepared by the solvent method. The EFV diffraction profile showed main peaks at around 2θ of 6,24°, in addition to other minor peaks at 14,34°, 17,08°, 20,3°, 21,36° and 25,06°, evidencing its crystalline character. Furthermore, the polymers showed amorphous nature, as evidenced by the absence of peaks in their XRD patterns. The XRD patterns showed the PM overlapping profile of the drug with the polymer, indicating the presence of EFV in its crystalline form. Regardless the proportion of drug used in SD, all the samples showed the same characteristics with no diffraction peaks EFV, demonstrating the behavior amorphous products. Thus, the polymers enabled, effectively, the formation of amorphous SD, probably due to the potential hydrogen bonds between them and the drug. Moreover, the XRD analysis showed that the polymers were able to maintain its amorphous form in a concentration of up to 80% drug.

Keywords: amorphous form, Efavirenz, solid dispersions, solubility

Procedia PDF Downloads 566
906 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 75