Search results for: manufacturing systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10713

Search results for: manufacturing systems

9213 The Potential Role of Industrialized Building Systems in Malaysian Sustainable Construction: Awareness and Barriers

Authors: Aawag Mohsen Al-Awag, Wesam Salah Alaloul, M. S. Liew

Abstract:

Industrialized building system (IBS) is a method of construction with concentrated practices consisting of techniques, products, and a set of linked elements which operate collectively to accomplish objectives. The Industrialised Building System (IBS) has been recognised as a viable method for improving overall construction performance in terms of quality, cost, safety and health, waste reduction, and productivity. The Malaysian construction industry is considered one of the contributors to the development of the country. The acceptance level of IBS is still below government expectations. Thus, the Malaysian government has been continuously encouraging the industry to use and implement IBS. Conventional systems have several drawbacks, including project delays, low economic efficiency, excess inventory, and poor product quality. When it comes to implementing IBS, construction companies still face several obstacles and problems, notably in terms of contractual and procurement concerns, which leads to the low adoption of IBS in Malaysia. There are barriers to the acceptance of IBS technology, focused on awareness of historical failure and risks connected to IBS practices to provide enhanced performance. Therefore, the transformation from the existing conventional building systems to the industrialized building systems (IBS) is needed more than ever. The flexibility of IBS in Malaysia’s construction industry is very low due to numerous shortcomings and obstacles. Due to its environmental, economic, and social benefits, IBS could play a significant role in the Malaysian construction industry in the future. This paper concentrates on the potential role of IBS in sustainable construction practices in Malaysia. It also highlights the awareness, barriers, advantages, and disadvantages of IBS in the construction sector. The study concludes with recommendations for Malaysian construction stakeholders to encourage and increase the utilization of industrialised building systems.

Keywords: construction industry, industrialized building system, barriers, advantages and disadvantages, construction, sustainability, Malaysia

Procedia PDF Downloads 90
9212 Heat Pipe Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is a simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of the heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force, the liquid phase flows to evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 482
9211 Heat Pipes Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: M. Heydari, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 433
9210 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box

Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar

Abstract:

To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.

Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection

Procedia PDF Downloads 122
9209 Deflection Effect on Mirror for Space Applications

Authors: Maamar Fatouma

Abstract:

Mirror optical performance can experience varying levels of stress and tolerances, which can have a notable impact on optical parametric systems. to ensure proper optical figure and position of mirror mounting within design tolerances, it is crucial to have a robust support structure in place for optical systems. The optical figure tolerance determines the allowable deviation from the ideal form of the mirror and the position tolerance determines the location and orientations of the optical axis of the optical systems. A variety of factors influence the optical figure of the mirror. Included are self-weight (Deflection), excitation from temperature change, temperature gradients and dimensional instability. This study employs an analytical approach and finite element method to examine the effects of stress resulting from mirror mounting on the wavefront passing through the mirror. The combined effect of tolerance and deflection on mirror performance is represented by an error budget. Numerical mirror mounting is presented to illustrate the space application of performance techniques.

Keywords: opto-mechanical, bonded optic, tolerance, self-weight distortion, Rayleigh criteria

Procedia PDF Downloads 77
9208 Hybrid Wind Solar Gas Reliability Optimization Using Harmony Search under Performance and Budget Constraints

Authors: Meziane Rachid, Boufala Seddik, Hamzi Amar, Amara Mohamed

Abstract:

Today’s energy industry seeks maximum benefit with maximum reliability. In order to achieve this goal, design engineers depend on reliability optimization techniques. This work uses a harmony search algorithm (HS) meta-heuristic optimization method to solve the problem of wind-Solar-Gas power systems design optimization. We consider the case where redundant electrical components are chosen to achieve a desirable level of reliability. The electrical power components of the system are characterized by their cost, capacity and reliability. The reliability is considered in this work as the ability to satisfy the consumer demand which is represented as a piecewise cumulative load curve. This definition of the reliability index is widely used for power systems. The proposed meta-heuristic seeks for the optimal design of series-parallel power systems in which a multiple choice of wind generators, transformers and lines are allowed from a list of product available in the market. Our approach has the advantage to allow electrical power components with different parameters to be allocated in electrical power systems. To allow fast reliability estimation, a universal moment generating function (UMGF) method is applied. A computer program has been developed to implement the UMGF and the HS algorithm. An illustrative example is presented.

Keywords: reliability optimization, harmony search optimization (HSA), universal generating function (UMGF)

Procedia PDF Downloads 566
9207 Number of Parameters of Anantharam's Model with Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of Anantharam’s model within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters of Anantharam’s model. We consider single-input single-output systems in this paper. By the investigation, we find three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: linear systems, parametrization, coprime factorization, number of parameters

Procedia PDF Downloads 204
9206 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean

Authors: S. Fares, K. Mellakh, A. Hmouri

Abstract:

The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.

Keywords: oasis, rainfall harvesting, arid regions, Mediterranean

Procedia PDF Downloads 31
9205 Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 424
9204 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review

Authors: Qiyao Han, Xianhai Meng

Abstract:

Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.

Keywords: fractal, urban infrastructure, sustainability, system-level resilience

Procedia PDF Downloads 261
9203 Interfacing and Replication of Electronic Machinery Using MATLAB/SIMULINK

Authors: Abdulatif Abdulsalam, Mohamed Shaban

Abstract:

This paper introduces interfacing and replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. Power issue rectifier model includes solid state device models. The tools are the clear-cut structure and mock-up of complex energetic systems connecting with power electronic machines.

Keywords: power electronics, machine, MATLAB, simulink

Procedia PDF Downloads 337
9202 Optimal Applications of Solar Energy Systems: Comparative Analysis of Ground-Mounted and Rooftop Solar PV Installations in Drought-Prone and Residential Areas of the Indian Subcontinent

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhyay

Abstract:

The increasing demand for environmentally friendly energy solutions highlights the need to optimize solar energy systems. This study compares two types of solar energy systems: ground-mounted solar panels for drought-prone locations and rooftop solar PV installations measuring 300 sq. ft. (approx. 28 sq. m.). The electricity output of 4730 kWh/year saves ₹ 14191/year. As a clean and sustainable energy source, solar power is pivotal in reducing greenhouse gas CO2 emissions reduction by 85 tonnes in 25 years and combating climate change. This effort, "PM Suryadaya Ghar-Muft Bijli Yojana," seeks to empower Indian homes by giving free access to solar energy. The initiative is part of the Indian government's larger attempt to encourage clean and renewable energy sources while reducing reliance on traditional fossil fuels. This report reviews various installations and government reports to analyse the performance and impact of both ground-mounted and rooftop solar systems. Besides, effectiveness of government subsidy programs for residential on-grid solar systems, including the ₹78,000 incentive for systems above 3 kW. The study also looks into the subsidy schemes available for domestic agricultural grid use. Systems up to 3 kW receive ₹43,764, while systems over 10 kW receive a fixed subsidy of ₹94,822. Households can save a substantial amount of energy and minimize their reliance on grid electricity by installing the proper solar plant capacity. In terms of monthly consumption at home, the acceptable Rooftop Solar Plant capacity for households is 0-150 units (1-2 kW), 150-300 units (2-3 kW), and >300 units (above 3 kW). Ground-mounted panels, particularly in arid regions, offer benefits such as scalability and optimal orientation but face challenges like land use conflicts and environmental impact, particularly in drought-prone regions. By evaluating the distinct advantages and challenges of each system, this study aims to provide insights into their optimal applications, guiding stakeholders in making informed decisions to enhance solar energy efficiency and sustainability within regulatory constraints. This research also explores the implications of regulations, such as Italy's ban on ground-mounted solar panels on productive agricultural land, on solar energy strategies.

Keywords: sustainability, solar energy, subsidy, rooftop solar energy, renewable energy

Procedia PDF Downloads 28
9201 Automated Method Time Measurement System for Redesigning Dynamic Facility Layout

Authors: Salam Alzubaidi, G. Fantoni, F. Failli, M. Frosolini

Abstract:

The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.

Keywords: dynamic facility layout problem, internet of things, method time measurement, radio frequency identification, simulation

Procedia PDF Downloads 113
9200 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation

Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab

Abstract:

This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.

Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation

Procedia PDF Downloads 128
9199 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 459
9198 Life Cycle Assessment Applied to Supermarket Refrigeration System: Effects of Location and Choice of Architecture

Authors: Yasmine Salehy, Yann Leroy, Francois Cluzel, Hong-Minh Hoang, Laurence Fournaison, Anthony Delahaye, Bernard Yannou

Abstract:

Taking into consideration all the life cycle of a product is now an important step in the eco-design of a product or a technology. Life cycle assessment (LCA) is a standard tool to evaluate the environmental impacts of a system or a process. Despite the improvement in refrigerant regulation through protocols, the environmental damage of refrigeration systems remains important and needs to be improved. In this paper, the environmental impacts of refrigeration systems in a typical supermarket are compared using the LCA methodology under different conditions. The system is used to provide cold at two levels of temperature: medium and low temperature during a life period of 15 years. The most commonly used architectures of supermarket cold production systems are investigated: centralized direct expansion systems and indirect systems using a secondary loop to transport the cold. The variation of power needed during seasonal changes and during the daily opening/closure periods of the supermarket are considered. R134a as the primary refrigerant fluid and two types of secondary fluids are considered. The composition of each system and the leakage rate of the refrigerant through its life cycle are taken from the literature and industrial data. Twelve scenarios are examined. They are based on the variation of three parameters, 1. location: France (Paris), Spain (Toledo) and Sweden (Stockholm), 2. different sources of electric consumption: photovoltaic panels and low voltage electric network and 3. architecture: direct and indirect refrigeration systems. OpenLCA, SimaPro softwares, and different impact assessment methods were compared; CML method is used to evaluate the midpoint environmental indicators. This study highlights the significant contribution of electric consumption in environmental damages compared to the impacts of refrigerant leakage. The secondary loop allows lowering the refrigerant amount in the primary loop which results in a decrease in the climate change indicators compared to the centralized direct systems. However, an exhaustive cost evaluation (CAPEX and OPEX) of both systems shows more important costs related to the indirect systems. A significant difference between the countries has been noticed, mostly due to the difference in electric production. In Spain, using photovoltaic panels helps to reduce efficiently the environmental impacts and the related costs. This scenario is the best alternative compared to the other scenarios. Sweden is a country with less environmental impacts. For both France and Sweden, the use of photovoltaic panels does not bring a significant difference, due to a less sunlight exposition than in Spain. Alternative solutions exist to reduce the impact of refrigerating systems, and a brief introduction is presented.

Keywords: eco-design, industrial engineering, LCA, refrigeration system

Procedia PDF Downloads 172
9197 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks

Authors: Ashkan Ebadi, Adam Krzyzak

Abstract:

Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.

Keywords: tourism, hotel recommender system, hybrid, implicit features

Procedia PDF Downloads 263
9196 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 343
9195 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage

Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A. F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee

Abstract:

Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.

Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy

Procedia PDF Downloads 39
9194 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 414
9193 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 354
9192 Mastering Digital Transformation with the Strategy Tandem Innovation Inside-Out/Outside-In: An Approach to Drive New Business Models, Services and Products in the Digital Age

Authors: S. N. Susenburger, D. Boecker

Abstract:

In the age of Volatility, Uncertainty, Complexity, and Ambiguity (VUCA), where digital transformation is challenging long standing traditional hardware and manufacturing companies, innovation needs a different methodology, strategy, mindset, and culture. What used to be a mindset of scaling per quantity is now shifting to orchestrating ecosystems, platform business models and service bundles. While large corporations are trying to mimic the nimbleness and versatile mindset of startups in the core of their digital strategies, they’re at the frontier of facing one of the largest organizational and cultural changes in history. This paper elaborates on how a manufacturing giant transformed its Corporate Information Technology (IT) to enable digital and Internet of Things (IoT) business while establishing the mindset and the approaches of the Innovation Inside-Out/Outside-In Strategy. It gives insights into the core elements of an innovation culture and the tactics and methodologies leveraged to support the cultural shift and transformation into an IoT company. This paper also outlines the core elements for an innovation culture and how the persona 'Connected Engineer' thrives in the digital innovation environment. Further, it explores how tapping domain-focused ecosystems in vibrant innovative cities can be used as a part of the strategy to facilitate partner co-innovation. Therefore, findings from several use cases, observations and surveys led to conclusion for the strategy tandem of Innovation Inside-Out/Outside-In. The findings indicate that it's crucial in which phases and maturity level the Innovation Inside-Out/Outside-In Strategy is activated: cultural aspects of the business and the regional ecosystem need to be considered, as well as cultural readiness from management and active contributors. The 'not invented here syndrome' is a barrier of large corporations that need to be addressed and managed to successfully drive partnerships, as well as embracing co-innovation and a mindset shifting away from physical products toward new business models, services, and IoT platforms. This paper elaborates on various methodologies and approaches tested in different countries and cultures, including the U.S., Brazil, Mexico, and Germany.

Keywords: innovation management, innovation culture, innovation methodologies, digital transformation

Procedia PDF Downloads 129
9191 A New IFO Estimation Scheme for Orthogonal Frequency Division Multiplexing Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

We address a new integer frequency offset (IFO) estimation scheme with an aid of a pilot for orthogonal frequency division multiplexing systems. After correlating each continual pilot with a predetermined scattered pilot, the correlation value is again correlated to alleviate the influence of the timing offset. From numerical results, it is demonstrated that the influence of the timing offset on the IFO estimation is significantly decreased.

Keywords: estimation, integer frequency offset, OFDM, timing offset

Procedia PDF Downloads 560
9190 A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs

Authors: Muhammad Yasir Wadood, Fatemeh Babaeian

Abstract:

By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.

Keywords: band-pass filters, inter-digital filter, microstrip, via-less

Procedia PDF Downloads 144
9189 Methodologies, Systems Development Life Cycle and Modeling Languages in Agile Software Development

Authors: I. D. Arroyo

Abstract:

This article seeks to integrate different concepts from contemporary software engineering with an agile development approach. We seek to clarify some definitions and uses, we make a difference between the Systems Development Life Cycle (SDLC) and the methodologies, we differentiate the types of frameworks such as methodological, philosophical and behavioral, standards and documentation. We define relationships based on the documentation of the development process through formal and ad hoc models, and we define the usefulness of using DevOps and Agile Modeling as integrative methodologies of principles and best practices.

Keywords: methodologies, modeling languages, agile modeling, UML

Procedia PDF Downloads 171
9188 Integration of Thermal Energy Storage and Electric Heating with Combined Heat and Power Plants

Authors: Erich Ryan, Benjamin McDaniel, Dragoljub Kosanovic

Abstract:

Combined heat and power (CHP) plants are an efficient technology for meeting the heating and electric needs of large campus energy systems, but have come under greater scrutiny as the world pushes for emissions reductions and lower consumption of fossil fuels. The electrification of heating and cooling systems offers a great deal of potential for carbon savings, but these systems can be costly endeavors due to increased electric consumption and peak demand. Thermal energy storage (TES) has been shown to be an effective means of improving the viability of electrified systems, by shifting heating and cooling load to off-peak hours and reducing peak demand charges. In this study, we analyze the integration of an electrified heating and cooling system with thermal energy storage into a campus CHP plant, to investigate the potential of leveraging existing infrastructure and technologies with the climate goals of the 21st century. A TRNSYS model was built to simulate a ground source heat pump (GSHP) system with TES using measured campus heating and cooling loads. The GSHP with TES system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Using known CHP production information, costs and emissions were investigated for a unique large energy user rate structure that operates a CHP plant. The results highlight the cost and emissions benefits of a targeted integration of heat pump technology within the framework of existing CHP systems, along with the performance impacts and value of TES capability within the combined system.

Keywords: thermal energy storage, combined heat and power, heat pumps, electrification

Procedia PDF Downloads 83
9187 IoT Based Information Processing and Computing

Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed

Abstract:

The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.

Keywords: IoT, computing, information processing, Iot computing

Procedia PDF Downloads 170
9186 Analysis of Thermal Effect on Functionally Graded Micro-Beam via Mixed Finite Element Method

Authors: Cagri Mollamahmutoglu, Ali Mercan, Aykut Levent

Abstract:

Studies concerning the microstructures are becoming more important as the utilization of various micro-electro mechanical systems (MEMS) are increasing. Thus in recent years, thermal buckling and vibration analysis of microstructures have been subject to many investigations that are utilizing different numerical methods. In this study, thermal effects on mechanical response of a functionally graded (FG) Timoshenko micro-beam are presented in the framework of a mixed finite element formulation. Size effects are taken into consideration via modified couple stress theory. The mixed formulation is based on a function which in turn is derived via Gateaux Differential scientifically. After the resolution of all field equations of the beam, a potential operator is carefully constructed. Then this operator is used for the manufacturing of the functional. Usual procedures of finite element approximation are utilized for the derivation of the mixed finite element equations once the potential is obtained. Resulting finite element formulation allows usage of C₀ type simple linear shape functions and avoids shear-locking phenomena, which is a common shortcoming of the displacement-based formulations of moderately thick beams. The developed numerical scheme is used to obtain the effects of thermal loads on the static bending, free vibration and buckling of FG Timoshenko micro-beams for different power-law parameters, aspect ratios and boundary conditions. The versatility of the mixed formulation is presented over other numerical methods such as generalized differential quadrature method (GDQM). Another attractive property of the formulation is that it allows direct calculation of the contribution of micro effects on the overall mechanical response.

Keywords: micro-beam, functionally graded materials, thermal effect, mixed finite element method

Procedia PDF Downloads 123
9185 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems

Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos

Abstract:

Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.

Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system

Procedia PDF Downloads 176
9184 New York’s Heat Pump Mandate: Doubling Annual Heating Costs to Achieve a 13% Reduction in New York’s CO₂ Gas Emissions

Authors: William Burdick

Abstract:

Manmade climate change is an existential threat that must be mitigated at the earliest opportunity. The role of government in climate change mitigation is enacting and enforcing law and policy to affect substantial reductions in greenhouse gasses, in the short and long term, without substantial increases in the cost of energy. To be optimally effective those laws and policies must be established and enforced based on peer reviewed evidence and scientific facts and result in substantial outcomes in years, not decades. Over the next fifty years, New York’s 2019 Climate Change and Community Protection Act and 2021 All Electric Building Act that mandate replacing natural gas heating systems with heat pumps will, immediately double annual heating costs and by 2075, yield less than 16.2% reduction in CO₂ emissions from heating systems in new housing units, less than a 13% reduction in total CO₂ emissions, and affect a $40B in cumulative additional heating cost, compared to natural gas fueled heating systems.

Keywords: climate change, mandate, heat pump, natural gas

Procedia PDF Downloads 55