Search results for: integrated network analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32854

Search results for: integrated network analysis

31384 Classification of IoT Traffic Security Attacks Using Deep Learning

Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem

Abstract:

The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.

Keywords: IoT, traffic security, deep learning, classification

Procedia PDF Downloads 153
31383 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System

Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah

Abstract:

Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.

Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm

Procedia PDF Downloads 502
31382 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 261
31381 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 21
31380 Flow Conservation Framework for Monitoring Software Defined Networks

Authors: Jesús Antonio Puente Fernández, Luis Javier Garcia Villalba

Abstract:

New trends on streaming videos such as series or films require a high demand of network resources. This fact results in a huge problem within traditional IP networks due to the rigidity of its architecture. In this way, Software Defined Networks (SDN) is a new concept of network architecture that intends to be more flexible and it simplifies the management in networks with respect to the existing ones. These aspects are possible due to the separation of control plane (controller) and data plane (switches). Taking the advantage of this separated control, it is easy to deploy a monitoring tool independent of device vendors since the existing ones are dependent on the installation of specialized and expensive hardware. In this paper, we propose a framework that optimizes the traffic monitoring in SDN networks that decreases the number of monitoring queries to improve the network traffic and also reduces the overload. The performed experiments (with and without the optimization) using a video streaming delivery between two hosts demonstrate the feasibility of our monitoring proposal.

Keywords: optimization, monitoring, software defined networking, statistics, query

Procedia PDF Downloads 331
31379 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 337
31378 Integrated Management of Tithonia Diversifolia in the Vhembe Biosphere Reserve

Authors: Mutavhatsindi Tshinakaho

Abstract:

Invasive alien plants (IAP’s) are referred to as species that are non-native to the ecosystem under consideration. Whose introduction causes or is likely to cause economic, ecological, or environmental harm. The integrated management of the invasive plant, Tithonia diversifolia, will be assessed through two herbicide trials (one on the seedlings and the other on matured plants) and a competitive trial between Tithonia and invasive grass species. The initial herbicide trial will be undertaken at the University of Venda Agricultural greenhouse facilities, where Tithonia will be planted in pot plants and watered every after two days until they reach at least 30 cm and will then be subjected to four different herbicide treatments (Metsulfuron methyl, Fluroxypyr, Picloram, Triclopyr), water will be utilised as a control. The percentage damage to foliar will be recorded. The second herbicide trial will be undertaken at Levubu road site, where matured Tithonia will be cut at at least 10cm above the ground and the subjected to herbicide treatments (Picloram, Fluroxypyr, Imazapyr, and Water as a control). The site will be visited post treatment for assessment. For the competition trial, tall grass species will be chosen as competitors (Panicum maximum and Eragrostis murvula), they will be grown at six densities per pot in the greenhouse facilities at the University of Venda, were they will be kept watered for the duration of the experiment. At the end of the experiment, plants will be removed from pots, and the above and below ground biomass will be weighed. The expected results are to know the effective integrated management strategy for T. diversifolia, the effective rehabilitation of T. diversifolia invaded habitats, and the effective chemical control of T. diversifolia

Keywords: foliar, biomass, competition, invasion

Procedia PDF Downloads 95
31377 The Implementation of an E-Government System in Developing Countries: A Case of Taita Taveta County, Kenya

Authors: Tabitha Mberi, Tirus Wanyoike, Joseph Sevilla

Abstract:

The use of Information and Communication Technology (ICT) in Government is gradually becoming a major requirement to transform delivery of services to its stakeholders by improving quality of service and efficiency. In Kenya, the devolvement of government from local authorities to county governments has resulted in many counties adopting online revenue collection systems which can be easily accessed by its stakeholders. Strathmore Research and Consortium Centre (SRCC) implemented a revenue collection system in Taita Taveta, a County in coastal Kenya. It consisted of two systems that are integrated; an online system dubbed “CountyPro” for processing county services such as Business Permit applications, General Billing, Property Rates Payments and any other revenue streams from the county. The second part was a Point of Sale(PoS) system used by the county revenue collectors to charge for market fees and vehicle parking fees. This study assesses the success and challenges in adoption of the integrated system. Qualitative and quantitative data collection methods were used to collect data on the adoption of the system with the researcher using focus groups, interviews, and questionnaires to collect data from various users of the system An analysis was carried out and revealed that 87% of the county revenue officers who are situated in county offices describe the system as efficient and has made their work easier in terms of processing of transactions for customers.

Keywords: e-government, counties, information technology, online system, point of sale

Procedia PDF Downloads 247
31376 An Integrated Theoretical Framework on Mobile-Assisted Language Learning: User’s Acceptance Behavior

Authors: Gyoomi Kim, Jiyoung Bae

Abstract:

In the field of language education research, there are not many tries to empirically examine learners’ acceptance behavior and related factors of mobile-assisted language learning (MALL). This study is one of the few attempts to propose an integrated theoretical framework that explains MALL users’ acceptance behavior and potential factors. Constructs from technology acceptance model (TAM) and MALL research are tested in the integrated framework. Based on previous studies, a hypothetical model was developed. Four external variables related to the MALL user’s acceptance behavior were selected: subjective norm, content reliability, interactivity, self-regulation. The model was also composed of four other constructs: two latent variables, perceived ease of use and perceived usefulness, were considered as cognitive constructs; attitude toward MALL as an affective construct; behavioral intention to use MALL as a behavioral construct. The participants were 438 undergraduate students who enrolled in an intensive English program at one university in Korea. This particular program was held in January 2018 using the vacation period. The students were given eight hours of English classes each day from Monday to Friday for four weeks and asked to complete MALL courses for practice outside the classroom. Therefore, all participants experienced blended MALL environment. The instrument was a self-response questionnaire, and each construct was measured by five questions. Once the questionnaire was developed, it was distributed to the participants at the final ceremony of the intensive program in order to collect the data from a large number of the participants at a time. The data showed significant evidence to support the hypothetical model. The results confirmed through structural equation modeling analysis are as follows: First, four external variables such as subjective norm, content reliability, interactivity, and self-regulation significantly affected perceived ease of use. Second, subjective norm, content reliability, self-regulation, perceived ease of use significantly affected perceived usefulness. Third, perceived usefulness and perceived ease of use significantly affected attitude toward MALL. Fourth, attitude toward MALL and perceived usefulness significantly affected behavioral intention to use MALL. These results implied that the integrated framework from TAM and MALL could be useful when adopting MALL environment to university students or adult English learners. Key constructs except interactivity showed significant relationships with one another and had direct and indirect impacts on MALL user’s acceptance behavior. Therefore, the constructs and validated metrics is valuable for language researchers and educators who are interested in MALL.

Keywords: blended MALL, learner factors/variables, mobile-assisted language learning, MALL, technology acceptance model, TAM, theoretical framework

Procedia PDF Downloads 238
31375 Privacy-Preserving Location Sharing System with Client/Server Architecture in Mobile Online Social Network

Authors: Xi Xiao, Chunhui Chen, Xinyu Liu, Guangwu Hu, Yong Jiang

Abstract:

Location sharing is a fundamental service in mobile Online Social Networks (mOSNs), which raises significant privacy concerns in recent years. Now, most location-based service applications adopt client/server architecture. In this paper, a location sharing system, named CSLocShare, is presented to provide flexible privacy-preserving location sharing with client/server architecture in mOSNs. CSLocShare enables location sharing between both trusted social friends and untrusted strangers without the third-party server. In CSLocShare, Location-Storing Social Network Server (LSSNS) provides location-based services but do not know the users’ real locations. The thorough analysis indicates that the users’ location privacy is protected. Meanwhile, the storage and the communication cost are saved. CSLocShare is more suitable and effective in reality.

Keywords: mobile online social networks, client/server architecture, location sharing, privacy-preserving

Procedia PDF Downloads 330
31374 The Friendship Network Stability of Preschool Children during One Pedagogical Season

Authors: Yili Wang, Jarmo Kinos, Tuire Palonen, Tarja-Riitta Hurme

Abstract:

This longitudinal study aims to examine how five- and six-year-old children’s peer relationships are formed and fostered during one preschool year in a southwestern Finnish preschool. All 16 kindergarteners participated in the study (at dyad level N=240; i.e., 16 x 15 relationships among the children). The children were divided into four daily groups, based on the table order during the daily routines, and four intervention groups, based on the teachers’ pedagogical plan. During the intervention, one iPad was given to each group in order to stimulate interaction among peers and, thus, enable the children to form new peer relationships. In the data gathering, sociometric nomination techniques were used to investigate the nature (i.e., stability and mutuality) of the peer relationships. The data was collected five times during the year to see what kind of peer relationship changes occurred at the dyad level and the group level, i.e., in establishing and losing friendship ties among the children. Social network analyses were used to analyze the data. The results indicate that the children’s preference for gender segregation was strong compared to age preference and intervention. In all, the number of reciprocal friendship ties and the mutual absence of friendship ties increased towards the end of the year, whereas the number of unilateral friendship ties decreased. This indicates that children’s nominations narrow down; thus, the group structure becomes more crystalized. Instead of extending their friendship networks, children seek stable and mutual relationships with their peers in their middle childhood years. The intervention only had a slightly negative influence on children’s peer relationships.

Keywords: intervention study, peer relationship, preschool education, social network analysis, sociometric ratings

Procedia PDF Downloads 273
31373 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set

Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques

Procedia PDF Downloads 416
31372 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa

Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete

Abstract:

This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.

Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model

Procedia PDF Downloads 369
31371 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks

Authors: M. Heydari Vini

Abstract:

There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.

Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips

Procedia PDF Downloads 505
31370 Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 100
31369 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis

Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda

Abstract:

Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.

Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology

Procedia PDF Downloads 275
31368 Assessment of Soil Quality Indicators in Rice Soils Under Rainfed Ecosystem

Authors: R. Kaleeswari

Abstract:

An investigation was carried out to assess the soil biological quality parameters in rice soils under rainfed and to compare soil quality indexing methods viz., Principal component analysis, Minimum data set and Indicator scoring method and to develop soil quality indices for formulating soil and crop management strategies.Soil samples were collected and analyzed for soil biological properties by adopting standard procedure. Biological indicators were determined for soil quality assessment, viz., microbial biomass carbon and nitrogen (MBC and MBN), potentially mineralizable nitrogen (PMN) and soil respiration and dehydrogenease activity. Among the methods of rice cultivation, Organic nutrition, Integrated Nutrient Management (INM) and System of Rice Intensification (SRI ), rice cultivation registered higher values of MBC, MBN and PMN. Mechanical and conventional rice cultivation registered lower values of biological quality indicators. Organic nutrient management and INM enhanced the soil respiration rate. SRI and aerobic rice cultivation methods increased the rate of soil respiration, while conventional and mechanical rice farming lowered the soil respiration rate. Dehydrogenase activity (DHA) was registered to be higher in soils under organic nutrition and Integrated Nutrient Management INM. System of Rice Intensification SRI and aerobic rice cultivation enhanced the DHA; while conventional and mechanical rice cultivation methods reduced DHA. The microbial biomass carbon (MBC) of the rice soils varied from 65 to 244 mg kg-1. Among the nutrient management practices, INM registered the highest available microbial biomass carbon of 285 mg kg-1.Potentially mineralizable N content of the rice soils varied from 20.3 to 56.8 mg kg-1. Aerobic rice farming registered the highest potentially mineralizable N of 78.9 mg kg-1..The soil respiration rate of the rice soils varied from 60 to 125 µgCO2 g-1. Nutrient management practices ofINM practice registered the highest. soil respiration rate of 129 µgCO2 g-1.The dehydrogenase activity of the rice soils varied from 38.3 to 135.3µgTPFg-1 day-1. SRI method of rice cultivation registered the highest dehydrogenase activity of 160.2 µgTPFg-1 day-1. Soil variables from each PC were considered for minimum soil data set (MDS). Principal component analysis (PCA) was used to select the representative soil quality indicators. In intensive rice cultivating regions, soil quality indicators were selected based on factor loading value and contribution percentage value using principal component analysis (PCA).Variables having significant difference within production systems were used for the preparation of minimum data set (MDS).

Keywords: soil quality, rice, biological properties, PCA analysis

Procedia PDF Downloads 110
31367 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images

Authors: Khitem Amiri, Mohamed Farah

Abstract:

Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.

Keywords: hyperspectral images, deep belief network, radiometric indices, image classification

Procedia PDF Downloads 280
31366 Gold-Bearing Alteration Zones in South Eastern Desert of Egypt: Geology and Remote Sensing Analysis

Authors: Mohamed F. Sadek, Safaa M. Hassan, Safwat S. Gabr

Abstract:

Several alteration zones hosting gold mineralization are wide spreading in the South Eastern Desert of Egypt where gold has been mined from many localities since the time of the Pharaohs. The Sukkari is the only mine currently producing gold in the Eastern Desert of Egypt. Therefore, it is necessary to conduct more detailed studies on these locations using modern exploratory methods. The remote sensing plays an important role in lithological mapping and detection of associated hydrothermal mineralization particularly the exploration of gold mineralization. This study is focused on three localities in South Eastern Desert of Egypt, namely Beida, Defiet and Hoteib-Eiqat aiming to detect the gold-bearing hydrothermal alteration zones using the integrated data of remote sensing, field study and mineralogical investigation. Generally, these areas are dominated by Precambrian basement rocks including metamorphic and magmatic assemblages. They comprise ophiolitic serpentinite-talc carbonate, island-arc metavolcanics which were intruded by syn to late orogenic mafic and felsic intrusions mainly gabbro, granodiorite and monzogranite. The processed data of Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Landsat-8 images are used in the present study to map the gold bearing-hydrothermal alteration zones. Band rationing and principal component analysis techniques are used to discriminate the different lithologic units exposed in the studied three areas. Field study and mineralogical investigation have been used to verify the remote sensing data. This study concluded that, the integrated remote sensing data with geological, field and mineralogical investigations are very effective in lithological discrimination, detailed geological mapping and detection of the gold-bearing hydrothermal alteration zones. More detailed exploration for gold mineralization with the help of remote sensing techniques is recommended to evaluate its potentiality in the study areas.

Keywords: pan-african, Egypt, landsat-8; ASTER, gold, alteration zones

Procedia PDF Downloads 127
31365 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Check, diabetes, neural network, pattern recognition

Procedia PDF Downloads 147
31364 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing

Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca de Marchi

Abstract:

This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes available a larger monitored area. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary chars the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.

Keywords: data compression, ultrasonic communication, guided waves, FEM analysis

Procedia PDF Downloads 124
31363 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: sustainability, post-disaster temporary housing, integrated value model for sustainability assessment, life cycle assessment

Procedia PDF Downloads 255
31362 Multi-Modal Visualization of Working Instructions for Assembly Operations

Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger

Abstract:

Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.

Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization

Procedia PDF Downloads 165
31361 Quality of Romanian Food Products on Rapid Alert System for Food and Feed Notifications

Authors: Silvius Stanciu

Abstract:

Romanian food products sold on European markets have been accused of several non-conformities of quality and safety. Most products incriminated last period were those of animal origin, especially meat and meat products. The study proposed an analysis of the notifications made by network members through Rapid Alert System for Food and Feed on products originating in Romania. As a source of information, the Rapid Alert System portal and the official communications of the National Sanitary Veterinary and Food Safety Authority were used. The research results showed that nearly a quarter of network notifications were rejected and were withdrawn by the European Authority. Although national authorities present these issues as success stories of national quality policies, the large number of notifications related to the volume of exported products is worrying. The paper is of practical and applicative importance for both the business environment and the academic environment, laying the basis for a wider research on the quality differences between Romanian and imported products.

Keywords: food, quality, RASFF, Rapid Alert System for Food and Feed, Romania

Procedia PDF Downloads 160
31360 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression

Procedia PDF Downloads 422
31359 Landscape Classification in North of Jordan by Integrated Approach of Remote Sensing and Geographic Information Systems

Authors: Taleb Odeh, Nizar Abu-Jaber, Nour Khries

Abstract:

The southern part of Wadi Al Yarmouk catchment area covers north of Jordan. It locates within latitudes 32° 20’ to 32° 45’N and longitudes 35° 42’ to 36° 23’ E and has an area of about 1426 km2. However, it has high relief topography where the elevation varies between 50 to 1100 meter above sea level. The variations in the topography causes different units of landforms, climatic zones, land covers and plant species. As a results of these different landscapes units exists in that region. Spatial planning is a major challenge in such a vital area for Jordan which could not be achieved without determining landscape units. However, an integrated approach of remote sensing and geographic information Systems (GIS) is an optimized tool to investigate and map landscape units of such a complicated area. Remote sensing has the capability to collect different land surface data, of large landscape areas, accurately and in different time periods. GIS has the ability of storage these land surface data, analyzing them spatially and present them in form of professional maps. We generated a geo-land surface data that include land cover, rock units, soil units, plant species and digital elevation model using ASTER image and Google Earth while analyzing geo-data spatially were done by ArcGIS 10.2 software. We found that there are twenty two different landscape units in the study area which they have to be considered for any spatial planning in order to avoid and environmental problems.

Keywords: landscape, spatial planning, GIS, spatial analysis, remote sensing

Procedia PDF Downloads 528
31358 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 203
31357 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: social networks, community detection, modularity optimization, geographically dispersed communities

Procedia PDF Downloads 235
31356 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 203
31355 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions

Authors: Cheng-Chi Yu, Chi-Shiun Chiou

Abstract:

This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.

Keywords: plug-in hybrid power system, fuel economy, performance, continuously variable transmission

Procedia PDF Downloads 289