Search results for: input shaping
1253 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting
Procedia PDF Downloads 2721252 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 1451251 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning
Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas
Abstract:
During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.Keywords: cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation
Procedia PDF Downloads 1821250 Development of Concurrent Engineering through the Application of Software Simulations of Metal Production Processing and Analysis of the Effects of Application
Authors: D. M. Eric, D. Milosevic, F. D. Eric
Abstract:
Concurrent engineering technologies are a modern concept in manufacturing engineering. One of the key goals in designing modern technological processes is further reduction of production costs, both in the prototype and the preparatory part, as well as during the serial production. Thanks to many segments of concurrent engineering, these goals can be accomplished much more easily. In this paper, we give an overview of the advantages of using modern software simulations in relation to the classical aspects of designing technological processes of metal deformation. Significant savings are achieved thanks to the electronic simulation and software detection of all possible irregularities in the functional-working regime of the technological process. In order for the expected results to be optimal, it is necessary that the input parameters are very objective and that they reliably represent the values of these parameters in real conditions. Since it is a metal deformation treatment here, the particularly important parameters are the coefficient of internal friction between the working material and the tools, as well as the parameters related to the flow curve of the processing material. The paper will give a presentation for the experimental determination of some of these parameters.Keywords: production technologies, metal processing, software simulations, effects of application
Procedia PDF Downloads 2351249 Effects of Repeated High Loadings on the Performance of Adhesively-Bonded Single Lap Joints
Authors: Orkun Yavuz, Ferhat Kadioğlu, M. Emin Ercan
Abstract:
This study aims to investigate the effects of repeated high loadings on the performance of adhesively-bonded Single Lap Joints (SLJs) by employing both experimental and numerical approaches. A projectile with a mass of 1.25 gr and density of 11.3 gr/cm3 was fired at the joints with a velocity of about 280 m/s using a specially designed experimental set-up, and the impact was recorded via a high-speed camera. The SLJs were manufactured from 6061 aluminum adherend (AA6061) material and an adhesive film. The joints, which have an adherend thickness of 4 mm and overlap length of 15 mm, were subjected to up to 3 shots for the ballistic test, followed by quasi-static tensile testing. The impacted joints, then, were compared to the non-impacted and one-shot impacted ones, which was a subject of investigation carried out before. It was found that while the joints subjected to 2 shots mechanically deteriorated, those subjected to 3 shots experienced a complete failure at the end of the experiment. A numerical study was also conducted using an ABAQUS package program. While the adherends were modelled using the Johnson-Cook deformation parameters, an elastoplastic behavior of the adhesive was used as input data in the analyses. It seems the experimental results confirm the numerical ones.Keywords: ballistic tests, adhesive joints, numerical analysis, SLJ
Procedia PDF Downloads 651248 Optical Flow Based System for Cross Traffic Alert
Authors: Giuseppe Spampinato, Salvatore Curti, Ivana Guarneri, Arcangelo Bruna
Abstract:
This document describes an advanced system and methodology for Cross Traffic Alert (CTA), able to detect vehicles that move into the vehicle driving path from the left or right side. The camera is supposed to be not only on a vehicle still, e.g. at a traffic light or at an intersection, but also moving slowly, e.g. in a car park. In all of the aforementioned conditions, a driver’s short loss of concentration or distraction can easily lead to a serious accident. A valid support to avoid these kinds of car crashes is represented by the proposed system. It is an extension of our previous work, related to a clustering system, which only works on fixed cameras. Just a vanish point calculation and simple optical flow filtering, to eliminate motion vectors due to the car relative movement, is performed to let the system achieve high performances with different scenarios, cameras and resolutions. The proposed system just uses as input the optical flow, which is hardware implemented in the proposed platform and since the elaboration of the whole system is really speed and power consumption, it is inserted directly in the camera framework, allowing to execute all the processing in real-time.Keywords: clustering, cross traffic alert, optical flow, real time, vanishing point
Procedia PDF Downloads 2051247 Theory and Practice of Wavelets in Signal Processing
Authors: Jalal Karam
Abstract:
The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression
Procedia PDF Downloads 4191246 Assessment of Solar Hydrogen Production in Energetic Hybrid PV-PEMFC System
Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui
Abstract:
This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.Keywords: electrolyzer, hydrogen, hydrogen fueled cell, photovoltaic
Procedia PDF Downloads 4931245 Robust ResNets for Chemically Reacting Flows
Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi
Abstract:
Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets
Procedia PDF Downloads 1211244 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients
Procedia PDF Downloads 2601243 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior
Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj
Abstract:
New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.Keywords: CS pedagogy, student research, cluster computing, machine learning
Procedia PDF Downloads 1031242 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance
Authors: Emad Alenany, M. Adel El-Baz
Abstract:
In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.Keywords: queueing network, discrete-event simulation, health applications, SPT
Procedia PDF Downloads 1891241 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 551240 Integration of a Load Switch with DC/DC Buck Converter for Power Distribution in Low Cost Educational Nanosatellite
Authors: Bentoutou Houari, Boutte Aissa, Belaidi El Yazid, Limam Lakhdar
Abstract:
The integration of a load switch with a DC/DC buck converter using LM2596 for power distribution in low-cost educational nanosatellites is a technique that aims to efficiently manage the power distribution system in these small spacecraft. The converter is based on the LM2596 regulator and designed to step down the input voltage of +16.8V to +12V, +5V, and +3.3V output, which are suitable for the nanosatellite's various subsystems. The load switch is based on MOSFET and is used to turn on or off the power supply to a particular load and protect the nanosatellite from power surges. A prototype of a +12V DC/DC buck converter with a high side load switch has been realized and tested, which meets our requirements and shows a good efficiency of 89%. In addition, the prototype features a capacitor between the source and gate of the MOSFET, which has effectively reduced the inrush current, demonstrating the effectiveness of this approach in reducing surges of current when the load is connected. The output current and voltage were measured at 0.7A and 11.89V, respectively, making this design suitable for use in low-cost educational nanosatellites.Keywords: DC/DC buck converter, load switch, LM2596, electrical power subsystems, nanosatellite, inrush current
Procedia PDF Downloads 1031239 The Implication of News Segments and Movies for Enhancing Listening Comprehension of Language Learners
Authors: Taher Bahrani
Abstract:
Armed with technological development, the present study aimed at gauging the effectiveness of exposure to news and movies as two types of audio-visual programs on improving language learners’ listening comprehension at the intermediate level. To this end, a listening comprehension test was administered to 108 language learners and finally 60 language learners were selected as intermediate language learners and randomly divided into group one and group two. During the experiment, group one participants had exposure to audio-visual news stories to work on in-and out-side the classroom. On the contrary, the participants in group two had only exposure to a sample selected utterances extracted from different kinds of movies. At the end of the experiment, both groups took another sample listening test to find out to what extent the participants in each group could enhance their listening comprehension. The results obtained from the post-test were indicative of the fact that the participants who had exposure to news outperformed the participants who had exposure to movies. The findings of the present research seem to indicate that the language input embedded in the type of audio-visual programs which language learners are exposed to is more important than the amount of exposure.Keywords: audio-visual news, movies, listening comprehension, intermediate level
Procedia PDF Downloads 3841238 Material Characterization of Medical Grade Woven Bio-Fabric for Use in ABAQUS *FABRIC Material Model
Authors: Lewis Wallace, William Dempster, David Nash, Alexandros Boukis, Craig Maclean
Abstract:
This paper, through traditional test methods and close adherence to international standards, presents a characterization study of a woven Polyethylene Terephthalate (PET). Testing is undergone in the axial, shear, and out-of-plane (bend) directions, and the results are fitted to the *FABRIC material model with ABAQUS FEA. The non-linear behaviors of the fabric in the axial and shear directions and behaviors on the macro scale are explored at the meso scale level. The medical grade bio-fabric is tested in untreated and heat-treated forms, and deviations are closely analyzed at the micro, meso, and macro scales to determine the effects of the process. The heat-treatment process was found to increase the stiffness of the fabric during axial and bending stiffness testing but had a negligible effect on the shear response. The ability of *FABRIC to capture behaviors unique to fabric deformation is discussed, whereby the unique phenomenological input can accurately represent the experimentally derived inputs.Keywords: experimental techniques, FEA modelling, materials characterization, post-processing techniques
Procedia PDF Downloads 971237 Simulation-Based Optimization Approach for an Electro-Plating Production Process Based on Theory of Constraints and Data Envelopment Analysis
Authors: Mayada Attia Ibrahim
Abstract:
Evaluating and developing the electroplating production process is a key challenge in this type of process. The process is influenced by several factors such as process parameters, process costs, and production environments. Analyzing and optimizing all these factors together requires extensive analytical techniques that are not available in real-case industrial entities. This paper presents a practice-based framework for the evaluation and optimization of some of the crucial factors that affect the costs and production times associated with this type of process, energy costs, material costs, and product flow times. The proposed approach uses Design of Experiments, Discrete-Event Simulation, and Theory of Constraints were respectively used to identify the most significant factors affecting the production process and simulate a real production line to recognize the effect of these factors and assign possible bottlenecks. Several scenarios are generated as corrective strategies for improving the production line. Following that, data envelopment analysis CCR input-oriented DEA model is used to evaluate and optimize the suggested scenarios.Keywords: electroplating process, simulation, design of experiment, performance optimization, theory of constraints, data envelopment analysis
Procedia PDF Downloads 1001236 Investigation of Preschool Children's Mathematics Concept Acquisition in Terms of Different Variables
Authors: Hilal Karakuş, Berrin Akman
Abstract:
Preschool years are considered as critical years because of shaping the future lives of individuals. All of the knowledge, skills, and concepts are acquired during this period. Also, basis of academic skills is based on this period. As all of the developmental areas are the fastest in that period, the basis of mathematics education should be given in this period, too. Mathematics is seen as a difficult and abstract course by the most people. Therefore, the enjoyable side of mathematics should be presented in a concrete way in this period to avoid any bias of children for mathematics. This study is conducted to examine mathematics concept acquisition of children in terms of different variables. Screening model is used in this study which is carried out in a quantity way. The study group of this research consists of total 300 children, selected from each class randomly in groups of five, who are from public and private preschools in Çankaya, which is district of Ankara, in 2014-2015 academic year and attending children in the nursery classes and preschool institutions are connected to the Ministry of National Education. The study group of the research was determined by stage sampling method. The schools, which formed study group, are chosen by easy sampling method and the children are chosen by simple random method. Research data were collected with Bracken Basic Concept Scale–Revised Form and Child’s Personal Information Form generated by the researcher in order to get information about children and their families. Bracken Basic Concept Scale-Revised Form consists of 11 sub-dimensions (color, letter, number, size, shape, comparison, direction-location, and quantity, individual and social awareness, building- material) and 307 items. Subtests related to the mathematics were used in this research. In the “Child Individual Information Form” there are items containing demographic information as followings: age of children, gender of children, attending preschools educational intuitions for children, school attendance, mother’s and father’s education levels. At the result of the study, while it was found that children’s mathematics skills differ from age, state of attending any preschool educational intuitions , time of attending any preschool educational intuitions, level of education of their mothers and their fathers; it was found that it does not differ by the gender and type of school they attend.Keywords: preschool education, preschool period children, mathematics education, mathematics concept acquisitions
Procedia PDF Downloads 3521235 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control
Authors: R. S. Sheu, H. Usman, M. S. Lawal
Abstract:
Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control
Procedia PDF Downloads 3991234 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 1721233 Drinking Water Quality Assessment Using Fuzzy Inference System Method: A Case Study of Rome, Italy
Authors: Yas Barzegar, Atrin Barzegar
Abstract:
Drinking water quality assessment is a major issue today; technology and practices are continuously improving; Artificial Intelligence (AI) methods prove their efficiency in this domain. The current research seeks a hierarchical fuzzy model for predicting drinking water quality in Rome (Italy). The Mamdani fuzzy inference system (FIS) is applied with different defuzzification methods. The Proposed Model includes three fuzzy intermediate models and one fuzzy final model. Each fuzzy model consists of three input parameters and 27 fuzzy rules. The model is developed for water quality assessment with a dataset considering nine parameters (Alkalinity, Hardness, pH, Ca, Mg, Fluoride, Sulphate, Nitrates, and Iron). Fuzzy-logic-based methods have been demonstrated to be appropriate to address uncertainty and subjectivity in drinking water quality assessment; it is an effective method for managing complicated, uncertain water systems and predicting drinking water quality. The FIS method can provide an effective solution to complex systems; this method can be modified easily to improve performance.Keywords: water quality, fuzzy logic, smart cities, water attribute, fuzzy inference system, membership function
Procedia PDF Downloads 771232 Resource Creation Using Natural Language Processing Techniques for Malay Translated Qur'an
Authors: Nor Diana Ahmad, Eric Atwell, Brandon Bennett
Abstract:
Text processing techniques for English have been developed for several decades. But for the Malay language, text processing methods are still far behind. Moreover, there are limited resources, tools for computational linguistic analysis available for the Malay language. Therefore, this research presents the use of natural language processing (NLP) in processing Malay translated Qur’an text. As the result, a new language resource for Malay translated Qur’an was created. This resource will help other researchers to build the necessary processing tools for the Malay language. This research also develops a simple question-answer prototype to demonstrate the use of the Malay Qur’an resource for text processing. This prototype has been developed using Python. The prototype pre-processes the Malay Qur’an and an input query using a stemming algorithm and then searches for occurrences of the query word stem. The result produced shows improved matching likelihood between user query and its answer. A POS-tagging algorithm has also been produced. The stemming and tagging algorithms can be used as tools for research related to other Malay texts and can be used to support applications such as information retrieval, question answering systems, ontology-based search and other text analysis tasks.Keywords: language resource, Malay translated Qur'an, natural language processing (NLP), text processing
Procedia PDF Downloads 3201231 Intelligent System of the Grinding Robot for Spiral Welded Pipe
Authors: Getachew Demeissie Ayalew, Yongtao Sun, Yang Yang
Abstract:
The spiral welded pipe manufacturing industry requires strict production standards for automated grinders for welding seams. However, traditional grinding machines in this sector are insufficient due to a lack of quality control protocols and inconsistent performance. This research aims to improve the quality of spiral welded pipes by developing intelligent automated abrasive belt grinding equipment. The system has equipped with six degrees of freedom (6 DOF) KUKA KR360 industrial robots, enabling concurrent grinding operations on both internal and external welds. The grinding robot control system is designed with a PLC, and a human-machine interface (HMI) system is employed for operations. The system includes an electric speed controller, data connection card, DC driver, analog amplifier, and HMI for input data. This control system enables the grinding of spiral welded pipe. It ensures consistent production quality and cost-effectiveness by reducing the product life cycle and minimizing risks in the working environment.Keywords: Intelligent Systems, Spiral Welded Pipe, Grinding, Industrial Robot, End-Effector, PLC Controller System, 3D Laser Sensor, HMI.
Procedia PDF Downloads 3011230 Investigating the Effect of Different Design Factors on the Required Length of the Ambient Air Vaporizer
Authors: F. S. Alavi
Abstract:
In this study, MATLAB engineering software was used in order to model an industrial Ambient Air Vaporizer (AAV), considering combined convection and conduction heat transfers from the fins and the tube. The developed theoretical model was then used to investigate the effects of various design factors such as gas flow rate, ambient air temperature, fin thickness and etc. on total vaporizer ‘s length required. Cryogenic liquid nitrogen was selected as an input fluid, in all cases. According to the results, increasing the inlet fluid flow rate has direct linear effect on the total required length of vaporizer. Vaporizer’s required length decreases by increasing the size of fin radius or size of fin thickness. The dependency of vaporizer’s length on fin thickness’ size reduces at higher values of thickness and gradually converge to zero. For low flow rates, internal convection heat transfer coefficient depends directly on gas flow rate but it becomes constant, independent on flow rate after a specific value. As the ambient air temperature increases, the external heat transfer coefficient also increases and the total required length of vaporizer decreases.Keywords: heat exchanger, modeling, heat transfer, design
Procedia PDF Downloads 1161229 Enhancing Dents through Lean Six Sigma
Authors: Prateek Guleria, Shubham Sharma, Rakesh Kumar Shukla, Harshit Sharma
Abstract:
Performance measurement of small and medium-sized businesses is the primary need for all companies to survive and thrive in a dynamic global company. A structured and systematic, integrated organization increases employee reliability, sustainability, and loyalty. This paper is a case study of a gear manufacturing industry that was facing the problem of rejection due to dents and damages in gear. The DMAIC cycle, along with different tools used in the research work includes SIPOC (Supply, Input, Process, Output, Control) Pareto analysis, Root & Cause analysis, and FMEA (Failure Mode and Effect Analysis). The six-sigma level was improved from 4.06 to 3.46, and the rejection rate was reduced from 7.44% to 1.56%. These findings highlighted the influence of a Lean Six Sigma module in the gear manufacturing unit, which has already increased operational quality and continuity to increase market success and meet customer expectations. According to the findings, applying lean six sigma tools will result in increased productivity. The results could assist businesses in deciding the quality tools that were likely to improve efficiency, competitiveness, and expense.Keywords: six sigma, DMAIC, SIPOC, failure mode, effect analysis
Procedia PDF Downloads 1161228 Approach to Formulate Intuitionistic Fuzzy Regression Models
Authors: Liang-Hsuan Chen, Sheng-Shing Nien
Abstract:
This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method
Procedia PDF Downloads 1401227 A GIS Based Approach in District Peshawar, Pakistan for Groundwater Vulnerability Assessment Using DRASTIC Model
Authors: Syed Adnan, Javed Iqbal
Abstract:
In urban and rural areas groundwater is the most economic natural source of drinking. Groundwater resources of Pakistan are degraded due to high population growth and increased industrial development. A study was conducted in district Peshawar to assess groundwater vulnerable zones using GIS based DRASTIC model. Six input parameters (groundwater depth, groundwater recharge, aquifer material, soil type, slope and hydraulic conductivity) were used in the DRASTIC model to generate the groundwater vulnerable zones. Each parameter was divided into different ranges or media types and a subjective rating from 1-10 was assigned to each factor where 1 represented very low impact on pollution potential and 10 represented very high impact. Weight multiplier from 1-5 was used to balance and enhance the importance of each factor. The DRASTIC model scores obtained varied from 47 to 147. Using quantile classification scheme these values were reclassified into three zones i.e. low, moderate and high vulnerable zones. The areas of these zones were calculated. The final result indicated that about 400 km2, 506 km2, and 375 km2 were classified as low, moderate, and high vulnerable areas, respectively. It is recommended that the most vulnerable zones should be treated on first priority to facilitate the inhabitants for drinking purposes.Keywords: DRASTIC model, groundwater vulnerability, GIS in groundwater, drinking sources
Procedia PDF Downloads 4511226 The Reality of Engineering Education in the Kingdom of Saudi Arabia and Its Suitainability to The Requirements of The Labor Market
Authors: Hamad Albadr
Abstract:
With the development that has occurred in the orientation of universities from liability cognitive and maintain the culture of the community to responsibility job formation graduates to work according to the needs of the community development; representing universities in today's world, the prime motivator for the wheel of development in the community and find appropriate solutions to the problems they are facing and adapt to the demands of the changing environment. In this paper review of the reality of engineering education in the Kingdom of Saudi Arabia and its suitability to the requirements of the labor market, where they will be looking at the university as a system administrator educational using System Analysis Approach as one of the methods of modern management to analyze the performance of organizations and institutions, administrative and quality assessment. According to this approach is to deal with the system as a set of subsystems as components of the main divided into : input, process, and outputs, and the surrounding environment, will also be used research descriptive method and analytical , to gather information, data and analysis answers of the study population that consisting of a random sample of the beneficiaries of these services that the universities provided that about 500 professionals about employment in the business sector.Keywords: universities in Saudi Arabia, engineering education, labor market, administrative, quality assessment
Procedia PDF Downloads 3431225 An Investigation into the Impact of Brexit on Consumer Perception of Trust in the Food Industry
Authors: Babatope David Omoniyi, Fiona Lalor, Sinead Furey
Abstract:
This ongoing project investigates the impact of Brexit on consumer perceptions of trust in the food industry. Brexit has significantly impacted the food industry, triggering a paradigm shift in the movement of food/agricultural produce, regulations, and cross-border collaborations between Great Britain, Northern Ireland, and the Republic of Ireland. In a world where the dynamics have shifted because of regulatory changes that impact trade and the free movement of foods and agricultural produce between these three countries, monitoring and controlling every stage of the food supply chain have become challenging, increasing the potential for food fraud and food safety incidents. As consumers play a pivotal role in shaping the market, understanding any shifts in trust post-Brexit enables them to navigate the market with confidence and awareness. This study aims to explore the complexities of consumer perceptions, focusing on trust as a cornerstone of consumer confidence in the post-Brexit food landscape. The objectives include comparing trust in official controls pre- and post-Brexit, determining consumer awareness of food fraud, and devising recommendations that reflect the evidence from this primary research regarding consumer trust in food authenticity post-Brexit. The research design follows an exploratory sequential mixed methods approach, incorporating qualitative methods such as focus groups and structured interviews, along with quantitative research through a large-scale survey. Participants from UCD and Ulster University campuses, comprising academic and non-academic staff, students, and researchers, will provide insights into the impact of Brexit on consumer trust. Preliminary findings from focus groups and interviews highlight changes in labelling, reduced quantity and quality of foods in both Northern Ireland and the Republic of Ireland, fewer food choices, and increased food prices since Brexit. The study aims to further investigate and quantify these impacts through a comprehensive large-scale survey involving participants from Northern Ireland and the Republic of Ireland. The results will inform official controls and consumer-facing messaging contributing valuable insights to navigate the evolving post-Brexit food landscape.Keywords: Brexit, consumer trust, food fraud, food authenticity, food safety, food industry
Procedia PDF Downloads 481224 A Critical Discourse Analysis of ‘Youth Radicalisation’: A Case of the Daily Nation Kenya Online Newspaper
Authors: Miraji H. Mohamed
Abstract:
The purpose of this study is to critique ‘radicalisation’ and more particularly ‘youth radicalisation’ by exploring its usage in online newspapers. ‘Radicalisation’ and ‘extremism’ have become the most common terms in terrorism studies since the 9/11 attacks. Regardless of the geographic location, when the word terrorism is used the terms ‘radicalisation’ and ‘extremism’ always follow to attempt to explore the journey of the perpetrators towards violence. These terms have come to represent a discourse of dominantly pejorative traits often used to describe spaces, groups, and processes identified as problematic. Even though ambiguously defined they feature widely in government documents, political statements, news articles, academic research, social media platforms, religious gatherings, and public discussions. Notably, ‘radicalisation’ and ‘extremism’ have been closely conflated with the term youth to form ‘youth radicalisation’ to refer to a discourse of ‘youth at risk’. The three terms largely continue to be used unquestioningly and interchangeably hence the reason why they are placed in single quotation marks to deliberately question their conventional usage. Albeit this comes timely in the Kenyan context where there has been a proliferation of academic and expert research on ‘youth radicalisation’ (used as a neutral label) without considering the political, cultural and socio-historical contexts that inform this label. This study seeks to draw these nuances by employing a genealogical approach that historicises and deconstructs ‘youth radicalisation’; and by applying a Discourse-Historical Approach (DHA) of Critical Discourse Analysis to analyse Kenyan online newspaper - The Daily Nation between 2015 and 2018. By applying the concept of representation to analyse written texts, the study reveals that the use of ‘youth radicalisation’ as a discursive strategy disproportionately affects young people especially those from cultural/ethnic/religious minority groups. Also, the ambiguous use of ‘radicalisation’ and ‘youth radicalisation’ by the media reinforces the discourse of ‘youth at risk’ which has become the major framework underpinning Countering Violent Extremism (CVE) interventions. Similarly, the findings indicate that the uncritical use of ‘youth radicalisation’ has been used to serve political interests; and has become an instrument of policing young people, thus contributing to their cultural shaping. From this, it is evident that the media could thwart rather than assist CVE efforts. By exposing the political nature of the three terms through evidence-based research, this study offers recommendations on how critical reflective reporting by the media could help to make CVE more nuanced.Keywords: discourse, extremism, radicalisation, terrorism, youth
Procedia PDF Downloads 132