Search results for: feed conversions ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5601

Search results for: feed conversions ratio

4131 A Two-Pronged Truncated Deferred Sampling Plan for Log-Logistic Distribution

Authors: Braimah Joseph Odunayo, Jiju Gillariose

Abstract:

This paper is aimed at developing a sampling plan that uses information from precedent and successive lots for lot disposition with a pretention that the life-time of a particular product assumes a Log-logistic distribution. A Two-pronged Truncated Deferred Sampling Plan (TTDSP) for Log-logistic distribution is proposed when the testing is truncated at a precise time. The best possible sample sizes are obtained under a given Maximum Allowable Percent Defective (MAPD), Test Suspension Ratios (TSR), and acceptance numbers (c). A formula for calculating the operating characteristics of the proposed plan is also developed. The operating characteristics and mean-ratio values were used to measure the performance of the plan. The findings of the study show that: Log-logistic distribution has a decreasing failure rate; furthermore, as mean-life ratio increase, the failure rate reduces; the sample size increase as the acceptance number, test suspension ratios and maximum allowable percent defective increases. The study concludes that the minimum sample sizes were smaller, which makes the plan a more economical plan to adopt when cost and time of production are costly and the experiment being destructive.

Keywords: consumers risk, mean life, minimum sample size, operating characteristics, producers risk

Procedia PDF Downloads 140
4130 Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

Authors: P. Lestinsky, D. Jecha, V. Brummer, P. Stehlik

Abstract:

Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150 °C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150 °C to 40 °C. The pressure drop was increased with increasing of a liquid-gas ratio, but not as much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant.

Keywords: desulphurization, absorption, flue gas, modeling

Procedia PDF Downloads 399
4129 Preparation and Characterization of a Nickel-Based Catalyst Supported by Silica Promoted by Cerium for the Methane Steam Reforming Reaction

Authors: Ali Zazi, Ouiza Cherifi

Abstract:

Natural gas currently represents a raw material of choice for the manufacture of a wide range of chemical products via synthesis gas, among the routes of transformation of methane into synthesis gas The reaction of the oxidation of methane by gas vapor 'water. This work focuses on the study of the effect of cerieum on the nickel-based catalyst supported by silica for the methane vapor reforming reaction, with a variation of certain parameters of the reaction. The reaction temperature, the H₂O / CH₄ ratio and the flow rate of the reaction mixture (CH₄-H₂O). Two catalysts were prepared by impregnation of Degussa silica with a solution of nickel nitrates and a solution of cerium nitrates [Ni (NO₃) 2 6H₂O and Ce (NO₃) 3 6H₂O] so as to obtain the 1.5% nickel concentrations. For both catalysts and plus 1% cerium for the second catalyst. These Catalysts have been characterized by physical and chemical analysis techniques: BET technique, Atomic Absorption, IR Spectroscopy, X-ray diffraction. These characterizations indicated that the nitrates had impregnated the silica. And that the NiO and Ce₂O3 phases are present and Ni°(after reaction). The BET surface of the silica decreases without being affected. The catalytic tests carried out on the two catalysts for the steam reforming reactions show that the addition of cerium to the nickel improves the catalytic performances of the nickel. And that these performances also depend on the parameters of the reaction, namely the temperature, the rate of the reaction mixture, and the ratio (H₂O / CH₄).

Keywords: heterogeneous catalysis, steam reforming, Methane, Nickel, Cerium, synthesis gas, hydrogen

Procedia PDF Downloads 165
4128 Quantum Sieving for Hydrogen Isotope Separation

Authors: Hyunchul Oh

Abstract:

One of the challenges in modern separation science and technology is the separation of hydrogen isotopes mixtures since D2 and H2 consist of almost identical size, shape and thermodynamic properties. Recently, quantum sieving of isotopes by confinement in narrow space has been proposed as an alternative technique. Despite many theoretical suggestions, however, it has been difficult to discover a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as a promising material class for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored. Hence, we investigate experimentally the fundamental correlation between D2/H2 molar ratio and pore size at optimized operating conditions by using different ultramicroporous frameworks. The D2/H2 molar ratio is strongly depending on pore size, pressure and temperature. An experimentally determined optimum pore diameter for quantum sieving lies between 3.0 and 3.4 Å which can be an important guideline for designing and developing feasible microporous frameworks for isotope separation. Afterwards, we report a novel strategy for efficient hydrogen isotope separation at technologically relevant operating pressure through the development of quantum sieving exploited by the pore aperture engineering. The strategy involves installation of flexible components in the pores of the framework to tune the pore surface.

Keywords: gas adsorption, hydrogen isotope, metal organic frameworks(MOFs), quantum sieving

Procedia PDF Downloads 265
4127 Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor

Authors: Weerinda Appamana, Jirapong Keawkoon, Yamonporn Pacthong, Jirathiti Chitsanguansuk, Yanyong Sookklay

Abstract:

In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production.

Keywords: spinning disc reactor, biodiesel, process intensification, yield efficiency

Procedia PDF Downloads 155
4126 Contribution to the Hydrogeochemical Investigations on the Wajid Aquifer System, Southwestern Part of Saudi Arabia

Authors: Mohamed Ahmed, Ezat Korany, Abdelaziz Al Basam, Osama Kasem

Abstract:

The arid climate, low rate of precipitations and population reflect the increasing of groundwater uses as the main source of water in Saudi Arabia. The Wajid Aquifer System represents a regional groundwater aquifer system along the edge of the crystalline Arabian Shield near the southwestern tip of the Arabian Peninsula. The aquifer extends across the border of Saudi Arabia and Yemen from the Asir –Yemen Highlands to the Rub al Khali Depression and possibly to the Gulf coast (at the southwestern tip). The present work is representing a hydrogeochemical investigation on the Wajid Aquifer System. The studied area is being classified into three zones. The 1st zone is West of Wadi Ad Dawasir (Northern part of the studied area), the 2nd is Najran-Asir Zone (southern part of the studied area), and the 3rd zone is the intermediate -central zone (occupying the central area between the last two zones). The groundwater samples were collected and chemically analyzed for physicochemical properties such as pH, electrical conductivity, total hardness (TH), alkalinity (pH), total dissolved solids (TDS), major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42- and Cl-), and trace elements. Some parameters such as sodium adsorption ratio (SAR), soluble sodium percentage (Na%), potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio, hydrochemical coefficients, hydrochemical formula, ion dominance, salt combinations and water types were also calculated in order to evaluate the quality of the groundwater resources in the selected areas for different purposes. The distribution of the chemical constituents and their interrelationships are illustrated by different hydrochemical graphs. Groundwater depths and the depth to water were measured to study the effect of discharge on both the water level and the salinity of the studied groundwater wells. A detailed comparison between the three studied zones according to the variations shown by the chemical and field investigations are discussed in detailed within the work.

Keywords: Najran-Asir, Wadi Ad Dawasir, Wajid Aquifer System, effect of discharge

Procedia PDF Downloads 132
4125 A Kinetic Study on Recovery of High-Purity Rutile TiO₂ Nanoparticles from Titanium Slag Using Sulfuric Acid under Sonochemical Procedure

Authors: Alireza Bahramian

Abstract:

High-purity TiO₂ nanoparticles (NPs) with size ranging between 50 nm and 100 nm are synthesized from titanium slag through sulphate route under sonochemical procedure. The effect of dissolution parameters such as the sulfuric acid/slag weight ratio, caustic soda concentration, digestion temperature and time, and initial particle size of the dried slag on the extraction efficiency of TiO₂ and removal of iron are examined. By optimizing the digestion conditions, a rutile TiO₂ powder with surface area of 42 m²/g and mean pore diameter of 22.4 nm were prepared. A thermo-kinetic analysis showed that the digestion temperature has an important effect, while the acid/slag weight ratio and initial size of the slag has a moderate effect on the dissolution rate. The shrinking-core model including both chemical surface reaction and surface diffusion is used to describe the leaching process. A low value of activation energy, 38.12 kJ/mol, indicates the surface chemical reaction model is a rate-controlling step. The kinetic analysis suggested a first order reaction mechanism with respect to the acid concentrations.

Keywords: TiO₂ nanoparticles, titanium slag, dissolution rate, sonochemical method, thermo-kinetic study

Procedia PDF Downloads 256
4124 Evaluation of Surface Water and Groundwater Quality in Parts of Umunneochi Southeast, Nigeria

Authors: Joshua Chima Chizoba, Wisdom Izuchukwu Uzoma, Elizabeth Ifeyiwa Okoyeh

Abstract:

Water cannot be optimally used and sustained unless the quality is periodically assessed. The study area Umunneochi and environs are located in south eastern part of Nigeria. It stretches geographically from latitudes 50501N to 60000N and longitudes 70201E to 70301. The major geologic formations in the area include the Asu River group, Nkporo Shale, and Ajali Sandstone. The aim of this study is to evaluate the hydrochemical characteristics of surface and ground water sources in parts of Umunneochi and environs in order to establish portability of the water sources for drinking, domestic and irrigation purposes. A total of 15 samples were collected randomly from streams, springs and wells. The samples were analyzed for physicochemical parameters and heavy metals using handheld digital kits, photometer, titration method and Atomic Absorption Spectrophotometer (AAS) following acceptable standards. The obtained analytical data were interpreted, and results were compared with World Health Organization (WHO) standard. The concentration of pH, SO42-and Cl- range from 5.81 mg/l – 6.07 mg/l, 41.93 mg/l – 142.95 mg/l and 20.00 mg/l – 111 mg/l respectively, while Pb and Zn revealed a relative low mean concentration of 0.14 mg/l and 0.40 mg/l, which are all within (WHO) permissible limits except pH. About 27% of the samples are moderately hard. This is attributed to the mining activities in the areas. The abundance of cations and anions in the area are in the order of K+>Na+>Mg2+>Ca2+ and SO4->Cl->HCO3->NO3-, respectively. Chloride, bicarbonate, and nitrate are all within the permissible limits. 13.33% of the total samples contain Sulphate above the standard permissible limits. The values of calculated Water Quality Index (WQI) are less than 50 indicating excellent water. The predominant water-type in the study area is Na-Cl water type and mixed Ca-Mg-Cl water type based on the sample plots on the Piper diagram. The Sodium Absorption Ratio (SAR) calculations showed excellent water for consumption and also good water for irrigation purpose with low sodium and alkalinity ratio respectively. Government water projects are recommended in the area for sustainable domestic and agricultural water supply to ease the stress of water supply problems.

Keywords: groundwater, hydrochemical, physichochemical, water-type, sodium adsorption ratio

Procedia PDF Downloads 130
4123 The Role of Biosecurity in Sustainable Aquaculture

Authors: Barbara Montwill

Abstract:

The last three decades of continuing increase in the farming of aquatic animals worldwide placed a biosecurity in a different perspective. An introduction of new countries, technologies, species to aquaculture, increased movement of animals are a few factors the might be associated with biosecurity risks. Most farms depend on trade for various inputs such as broodstock, post-larvae/fingerlings and feed. These inputs represent potential pathways by which pathogens can enter farming operations and create conditions for emergence of new or reoccurrence of diseases and production loses. Farm biosecurity should be considered an essential component of a national aquatic animal biosecurity program and together with adequate import and export controls can lead to the development of successful aquaculture industry as a reliable source of safe seafood product. This presentation would describe some biosecurity management approaches to minimize the negative impact of aquatic diseases on production and preserve the power of antibiotics.

Keywords: aquaculture, biosecurity, antibiotics, antibiotics residues

Procedia PDF Downloads 280
4122 Extracting Polyhydroxyalkanoates from Waste Sludge of Husbandry Industry Wastewater Treatment Plants

Authors: M. S. Lu, Y. P. Tsai, H. Shu, K. F. Chen, L. L. Lai

Abstract:

This study used sodium hypochlorite/sodium dodecyl sulfate method to successfully extract polyhydroxyalkanoates (PHA) from the wasted sludge of a husbandry industry wastewater treatment plant. We investigated the optimum operational conditions of three key factors with respect to effectively extract PHAs from husbandry industry wastewater sludge, including the sodium hypochlorite concentration, liquid-solid ratio, and reaction time. The experimental results showed the optimum operational conditions for polyhydroxyalkanoate recovery as follows: (1) being digested by the sodium hypochlorite/sodium dodecyl sulfate solution with 15% (v/v) of hypochlorite concentration, (2) being operated at the condition of 1.25 mLmg-1 of liquid-solid ratio, and (3) being reacted for more than 60 min. Under these conditions, the content of the recovered PHAs was about 53.2±0.66 mgPHAs/gVSS, and the purity of the recovered PHAs was about 78.5±6.91 wt%. The recovered PHAs were further used to produce biodegradable plastics for decomposition test buried in soils. The decomposition test showed 66.5% of the biodegradable plastics produced in the study remained after being buried in soils for 49 days. The cost for extracting PHAs is about 10.3 US$/kgPHAs and is lower than those produced by pure culture methods (12-15 US$/kgPHAs).

Keywords: biodegradable plastic, biopolymers, polyhydroxyalkanoates (PHAs), waste sludge

Procedia PDF Downloads 344
4121 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks

Authors: V. Revathi, J. Thaarrini, M. Venkob Rao

Abstract:

This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA:GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.

Keywords: bottom ash, GGBS, alkali activation, paver block

Procedia PDF Downloads 353
4120 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4

Authors: Farmesk Abubaker, Francesco Tortorici, Marco Capogni, Concetta Sutera, Vincenzo Bellini

Abstract:

This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.

Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter

Procedia PDF Downloads 148
4119 Removal of Heavy Metal Ions from Aqueous Solution by Polymer Enhanced Ultrafiltration Using Unmodified Starch as Biopolymer

Authors: Nurul Huda Baharuddin, Nik Meriam Nik Sulaiman, Mohammed Kheireddine Aroua

Abstract:

The effects of pH, polymer concentration, and metal ions feed concentration for four selected heavy metals Zn (II), Pb (II), Cr (III) and Cr (VI) were tested by using Polymer Enhanced Ultrafiltration (PEUF). An alternative biopolymer namely unmodified starch is proposed as a binding reagent in consequences, as compared to commonly used water-soluble polymers namely polyethylene glycol (PEG) and polyethyleneimine (PEI) in the removal of selected four heavy metal ions. The speciation species profiles of four selected complexes ions namely Zn (II), Pb (II), Cr (III) and Cr (VI) and the present of hydroxides ions (OH-) in variously charged ions were investigated by available software at certain pH range. In corresponds to identify the potential of complexation behavior between metal ion-polymers, potentiometric titration studies were obtained at first before carried out experimental works. Experimental works were done using ultrafiltration systems obtained by laboratory ultrafiltration bench scale equipped with 10 kDa polysulfone hollow fiber membrane. Throughout the laboratory works, the rejection coefficient and permeate flux were found to be significantly affected by the main operating parameter, namely the effects of pH, polymer composition and metal ions concentrations. The interaction of complexation between two binding polymers namely unmodified starch and PEG were occurred due to physical attraction of metal ions to the polymer on the molecular surface with high possibility of chemical occurrence. However, these selected metal ions are mainly complexes by polymer functional groups whenever there is interaction with PEI polymer. For study of single metal ions solutions, Zn (II) ions' rejections approaching over 90% were obtained at pH 7 for each tested polymer. This behavior was similar to Pb (II), Cr (III) and Cr (VI); where the rejections were obtained at lower acidic pH and increased at neutral pH of 7. Different behavior was found by Cr (VI) ions where a high rejection was only achieved at acidic pH region with PEI. Polymer concentration and metal ions concentration are found to have a significant effect on rejections. For mixed metal ion solutions, the behavior of metal ion rejections was similar to single metal ion solutions for investigation on the effects of pH. Rejection values were high at pH 7 for Zn (II) pH 7 for Zn (II) and Cr (III) ions, corresponding to higher rejections with unmodified starch. Pb (II) ions obtained high rejections when tested with PEG whenever carried out in mixed metal ion solutions. High Cr (VI) ions' rejection was found with PEI in single and mixed metal ions solutions at neutral pH range. The influence of starch’s granule structure towards the rejections of these four selected metal ions is found to be attracted in a non-ionic manner. No significant effects on permeate flux were obtained when tested at different pH ranges, polymer concentrations and metal ions feed either by single or mixtures metal ions solutions. Canizares Model was employed as the theoretical model to predict permeate flux and metal ions retention on the study of heavy metal ions removal.

Keywords: polyethyleneimine, polyethylene glycol, polymer-enhanced ultrafiltration, unmodified starch

Procedia PDF Downloads 176
4118 Implementation of Maqasid Sharia in Islamic Financial Institution in Indonesia

Authors: Deden Misbahudin Muayyad, Lavlimatria Esya

Abstract:

Up to the month of June 2015, Indonesia has 12 Islamic Commercial Banks, 22 Islamic Business Unit, 327 offices in 33 provinces. The initial purpose of the establishment of Islamic financial institutions is to achieve and the welfare of the people in this world and in the hereafter. To realize these goals, the Islamic financial institutions in every kind of aspect of product development and in terms of operations should be based on maqashid sharia, namely keeping the faith, keep the soul, keep the sense, maintain the property, keeping the offspring. To see whether Islamic banking grounded in maqasid sharia, the Islamic banking performance measurements based on the principles of maqasid sharia. Banking performance measurement is not only focusing on profit and other financial measures, but put other values of banks reflects the size of the benefit of non-profit in accordance with the bank's objectives. The measurement using the measurement of financial performance called maqasid sharia index. Maqasid syariah index is a model of Islamic banking performance measurement in accordance with the objectives and characteristics of Islamic banking. Maqasid syariah index was developed based on three main factors, namely the education of individuals, the creation of justice, the achievement of well-being, where the three factors were in accordance with the common goal of maqasid sharia is achieving prosperity and avoid evil. Maqasid syariah index shows that maqasid sharia approach can be a strategic alternative approach to describe how good the performance of the banking system and it can be implemented in the comprehensive policy strategy. This study uses a model of performance measurement framework based on maqasid syariah, in addition to financial performance measures that already exist. Methods to develop the idea of a performance measurement framework of Islamic banking by maqasid sharia is the Sekaran method. Operationally, the methods have now able to describe the elements that will be measured by this study. This is done by observing the behavior of the dimensions illustrated through a concept that has been set. These dimensions translate into derivative elements that can be observed and more scalable, so it can establish measurement indices. This research is descriptive quantitative. Techniques are being made to collect data in this paper is by using purposive sampling method, with 12 Islamic Commercial Banks that qualify as research samples. The financial data taken at 12 banks was sourced from the annual financial statements the period 2008 to 2012 with consideration of the database and ease of access to data. The ratio measured in this study only 7 ratio used in determining the performance of Islamic banking, namely: four ratio refers to the sharia objectives related to education. three ratio while again referring to sharia objectives related to the achievement of welfare. While other ratios associated with justice can not be used in this study because of the limited data used. Total overall calculation of performance indicators and performance ratios on each goal for each bank describes the maqasid syariah index.

Keywords: Islamic banking, Maslahah, maqashid syariah, maqashid syariah index

Procedia PDF Downloads 268
4117 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets

Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar

Abstract:

Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).

Keywords: coupled effect, heat transfer, sink, solid rocket motors, source

Procedia PDF Downloads 223
4116 Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel

Authors: Rubén Bãnos, José Arcos, Oscar Bautista, Federico Méndez

Abstract:

The Oscillatory electroosmotic flow (OEOF) in power law fluids through a microchannel is studied numerically. A time-dependent external electric field (AC) is suddenly imposed at the ends of the microchannel which induces the fluid motion. The continuity and momentum equations in the x and y direction for the flow field were simplified in the limit of the lubrication approximation theory (LAT), and then solved using a numerical scheme. The solution of the electric potential is based on the Debye-H¨uckel approximation which suggest that the surface potential is small,say, smaller than 0.025V and for a symmetric (z : z) electrolyte. Our results suggest that the velocity profiles across the channel-width are controlled by the following dimensionless parameters: the angular Reynolds number, Reω, the electrokinetic parameter, ¯κ, defined as the ratio of the characteristic length scale to the Debye length, the parameter λ which represents the ratio of the Helmholtz-Smoluchowski velocity to the characteristic length scale and the flow behavior index, n. Also, the results reveal that the velocity profiles become more and more non-uniform across the channel-width as the Reω and ¯κ are increased, so oscillatory OEOF can be really useful in micro-fluidic devices such as micro-mixers.

Keywords: low zeta potentials, non-newtonian, oscillatory electroosmotic flow, power-law model

Procedia PDF Downloads 169
4115 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting

Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong

Abstract:

The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.

Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate

Procedia PDF Downloads 121
4114 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis

Procedia PDF Downloads 353
4113 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology

Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea

Abstract:

The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.

Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties

Procedia PDF Downloads 167
4112 Study on Compressive Strength and Setting Time of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

Fresh concrete that is on bound to be rejected due to belated use either from delay construction process or unflavored traffic cause delay on concrete delivering can recover the slump and use once again by introduce second dose of superplasticizer(naphthalene based type F) into system. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting time and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting time of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash is increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Keywords: compressive strength, fly ash concrete, second dose of superplasticizer, setting times

Procedia PDF Downloads 281
4111 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 181
4110 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Authors: Man Young Kim

Abstract:

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity

Procedia PDF Downloads 274
4109 Application of Fourier Series Based Learning Control on Mechatronic Systems

Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt

Abstract:

A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.

Keywords: climbing stairs, FSBLC, ILC, service robot

Procedia PDF Downloads 314
4108 Associations between Surrogate Insulin Resistance Indices and the Risk of Metabolic Syndrome in Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A well-defined insulin resistance (IR) is one of the requirements for the good understanding and evaluation of metabolic syndrome (MetS). However, underlying causes for the development of IR are not clear. Endothelial dysfunction also participates in the pathogenesis of this disease. IR indices are being determined in various obesity groups and also in diagnosing MetS. Components of MetS have been well established and used in adult studies. However, there are some ambiguities particularly in the field of pediatrics. The aims of this study were to compare the performance of fasting blood glucose (FBG), one of MetS components, with some other IR indices and check whether FBG may be replaced by some other parameter or ratio for a better evaluation of pediatric MetS. Five-hundred and forty-nine children were involved in the study. Five groups were constituted. Groups 109, 40, 100, 166, 110, 24 children were included in normal-body mass index (N-BMI), overweight (OW), obese (OB), morbid obese (MO), MetS with two components (MetS2) and MetS with three components (MetS3) groups, respectively. Age and sex-adjusted BMI percentiles tabulated by World Health Organization were used for the classification of obesity groups. MetS components were determined. Aside from one of the MetS components-FBG, eight measures of IR [homeostatic model assessment of IR (HOMA-IR), homeostatic model assessment of beta cell function (HOMA-%β), alanine transaminase-to-aspartate transaminase ratio (ALT/AST), alanine transaminase (ALT), insulin (INS), insulin-to-FBG ratio (INS/FBG), the product of fasting triglyceride and glucose (TyG) index, McAuley index] were evaluated. Statistical analyses were performed. A p value less than 0.05 was accepted as the statistically significance degree. Mean values for BMI of the groups were 15.7 kg/m2, 21.0 kg/m2, 24.7 kg/m2, 27.1 kg/m2, 28.7 kg/m2, 30.4 kg/m2 for N-BMI, OW, OB, MO, MetS2, MetS3, respectively. Differences between the groups were significant (p < 0.001). The only exception was MetS2-MetS3 couple, in spite of an increase detected in MetS3 group. Waist-to-hip circumference ratios significantly differed only for N-BMI vs, OB, MO, MetS2; OW vs MO; OB vs MO, MetS2 couples. ALT and ALT/AST did not differ significantly among MO-MetS2-MetS3. HOMA-%β differed only between MO and MetS2. INS/FBG, McAuley index and TyG were not significant between MetS2 and MetS3. HOMA-IR and FBG were not significant between MO and MetS2. INS was the only parameter, which showed statistically significant differences between MO-MetS2, MO-MetS3, and MetS2-MetS3. In conclusion, these findings have suggested that FBG presently considered as one of the five MetS components, may be replaced by INS during the evaluation of pediatric morbid obesity and MetS.

Keywords: children, insulin resistance indices, metabolic syndrome, obesity

Procedia PDF Downloads 122
4107 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 369
4106 Explore Urban Spatial Density with Boltzmann Statistical Distribution

Authors: Jianjia Wang, Tong Yu, Haoran Zhu, Kun Liu, Jinwei Hao

Abstract:

The underlying pattern in the modern city is agglomeration. To some degree, the distribution of urban spatial density can be used to describe the status of this assemblage. There are three intrinsic characteristics to measure urban spatial density, namely, Floor Area Ratio (FAR), Building Coverage Ratio (BCR), and Average Storeys (AS). But the underlying mechanism that contributes to these quantities is still vague in the statistical urban study. In this paper, we explore the corresponding extrinsic factors related to spatial density. These factors can further provide the potential influence on the intrinsic quantities. Here, we take Shanghai Inner Ring Area and Manhattan in New York as examples to analyse the potential impacts on urban spatial density with six selected extrinsic elements. Ebery single factor presents the correlation to the spatial distribution, but the overall global impact of all is still implicit. To handle this issue, we attempt to develop the Boltzmann statistical model to explicitly explain the mechanism behind that. We derive a corresponding novel quantity, called capacity, to measure the global effects of all other extrinsic factors to the three intrinsic characteristics. The distribution of capacity presents a similar pattern to real measurements. This reveals the nonlinear influence on the multi-factor relations to the urban spatial density in agglomeration.

Keywords: urban spatial density, Boltzmann statistics, multi-factor correlation, spatial distribution

Procedia PDF Downloads 150
4105 Gravitational Energy Storage by Using Concrete Stacks

Authors: Anusit Punsirichaiyakul, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong

Abstract:

The paper aims to study the energy storage system in the form of gravity energy by the weight of concrete stacks. This technology has the potential to replace expensive battery storage. This paper is a trial plan in abandoned mines in Thailand. This is to start with construct concrete boxes to be stacked vertically or obliquely to form appropriate shapes and, therefore, to store the potential energy. The stored energy can be released or discharged back to the system by deploying the concrete stacks to the ground. This is to convert the potential energy stored in the concrete stacks to the kinetic energy of the concrete box movement. This design is incorporating mechanical transmission to reduce the height of the concrete stacks. This study also makes a comparison between the energy used to construct concrete stacks in various shapes and the energy to deploy all the concrete boxes to ground. This paper consists of 2 test systems. The first test is to stack the concrete in vertical shape. The concrete stack has a maximum height of 50 m with a gear ratio of 1:200. The concrete box weight is 115 tons/piece with a total stored energy of 1800 kWh. The oblique system has a height of 50 m with a similar gear ratio of 1:200. The weight of the concrete box is 90 tons/piece and has a total stored energy of 1440 kWh. Also, it has an overall efficiency of 65% and a lifetime of 50 years. This storage has higher storage densities compared to other systems.

Keywords: gravity, concrete stacks, vertical, oblique

Procedia PDF Downloads 165
4104 Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia

Authors: Fathul Mubin, Budi E. Nurcahya

Abstract:

In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index.

Keywords: amplification factor, dominant frequency, microzonation analysis, seismic vulnerability index

Procedia PDF Downloads 195
4103 A New Microstrip Diplexer Using Coupled Stepped Impedance Resonators

Authors: A. Chinig, J. Zbitou, A. Errkik, L. Elabdellaoui, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This paper presents a new structure of microstrip band pass filter (BPF) based on coupled stepped impedance resonators. Each filter consists of two coupled stepped impedance resonators connected to microstrip feed lines. The coupled junction is utilized to connect the two BPFs to the antenna. This two band pass filters are designed and simulated to operate for the digital communication system (DCS) and Industrial Scientific and Medical (ISM) bands at 1.8 GHz and 2.45 GHz respectively. The proposed circuit presents good performances with an insertion loss lower than 2.3 dB and isolation between the two channels greater than 21 dB. The prototype of the optimized diplexer have been investigated numerically by using ADS Agilent and verified with CST microwave software.

Keywords: band pass filter, coupled junction, coupled stepped impedance resonators, diplexer, insertion loss, isolation

Procedia PDF Downloads 432
4102 Cooking Attributes of Rice Stored under Varying Temperature and Moisture Regimes

Authors: Lakshmi E. Jayachandran, Manepally Rajkumar, Pavuluri Srinivasa Rao

Abstract:

The objective of this research was to study the changes in eating quality of rice during storage under varying temperature and moisture regimes. Paddy (IR-36) with high amylose content (27%) was stored at a temperature range between 10 to 40°C and moisture content from 9 to 18% (d.b.) for 6 months. Drastic changes in color and parameters representing cooking qualities, cooked rice texture, and surface morphology occurred after 4 months of storage, especially at elevated temperature conditions. Head rice yield was stable throughout the storage except at extreme conditions of temperature and moisture content. Yellowing of rice was prominent at combinations of high temperature and moisture content, both of which had a synergistic effect on the b* values of rice. The cooking time, length expansion ratio and volume expansion ratio of all the rice samples increased with prolonged storage. The texture parameter, primarily, the hardness, cohesiveness, and adhesiveness of cooked rice samples were higher following storage at elevated temperature. Surface morphology was also significantly affected in stored rice as compared to fresh rice. Storage of rice at 10°C with a grain moisture content of 10% for 2 months gave cooked rice samples with good palatability and minimal cooking time. The temperature was found to be the most prominent storage parameter for rough rice, followed by moisture content and storage duration, influencing the quality of rice.

Keywords: rice, cooking quality, storage, surface morphology

Procedia PDF Downloads 179