Search results for: evolutionary neural network
4147 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 1114146 Designing a Low Power Consumption Mote in Wireless Sensor Network
Authors: Saidi Nabiha, Khaled Zaatouri, Walid Fajraoui, Tahar Ezzeddine
Abstract:
The market of Wireless Sensor Network WSN has a great potential and development opportunities. Researchers are focusing on optimization in many fields like efficient deployment and routing protocols. In this article, we will concentrate on energy efficiency for WSN because WSN nodes are habitually deployed in severe No Man’s Land with batteries are not rechargeable, so reducing energy consumption represents an important challenge to extend the life of the network. We will present the design of new WSN mote based on ultra low power STM32L microcontrollers and the ZIGBEE transceiver CC2520. We will compare it to existent motes and we will conclude that our mote is promising in energy consumption.Keywords: component, WSN mote, power consumption, STM32L, sensors, CC2520
Procedia PDF Downloads 5764145 Molecular Evolutionary Relationships Between O-Antigens of Enteric Bacteria
Authors: Yuriy A. Knirel
Abstract:
Enteric bacteria Escherichia coli is the predominant facultative anaerobe of the colonic flora, and some specific serotypes are associated with enteritis, hemorrhagic colitis, and hemolytic uremic syndrome. Shigella spp. are human pathogens that cause diarrhea and bacillary dysentery (shigellosis). They are in effect E. coli with a specific mode of pathogenicity. Strains of Salmonella enterica are responsible for a food-borne infection (salmonellosis), and specific serotypes cause typhoid fever and paratyphoid fever. All these bacteria are closely related in respect to structure and genetics of the lipopolysaccharide, including the O-polysaccharide part (O‑antigen). Being exposed to the bacterial cell surface, the O antigen is subject to intense selection by the host immune system and bacteriophages giving rise to diverse O‑antigen forms and providing the basis for typing of bacteria. The O-antigen forms of many bacteria are unique, but some are structurally and genetically related to others. The sequenced O-antigen gene clusters between conserved galF and gnd genes were analyzed taking into account the O-antigen structures established by us and others for all S. enterica and Shigella and most E. coli O-serogroups. Multiple genetic mechanisms of diversification of the O-antigen forms, such as lateral gene transfer and mutations, were elucidated and are summarized in the present paper. They include acquisition or inactivation of genes for sugar synthesis or transfer or recombination of O-antigen gene clusters or their parts. The data obtained contribute to our understanding of the origins of the O‑antigen diversity, shed light on molecular evolutionary relationships between the O-antigens of enteric bacteria, and open a way for studies of the role of gene polymorphism in pathogenicity.Keywords: enteric bacteria, O-antigen gene cluster, polysaccharide biosynthesis, polysaccharide structure
Procedia PDF Downloads 1444144 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy
Procedia PDF Downloads 1574143 Evolutionary Analysis of Influenza A (H1N1) Pdm 09 in Post Pandemic Period in Pakistan
Authors: Nazish Badar
Abstract:
In early 2009, Pandemic type A (H1N1) Influenza virus emerged globally. Since then, it has continued circulation causing considerable morbidity and mortality. The purpose of this study was to evaluate the evolutionary changes in Influenza A (H1N1) pdm09 viruses from 2009-15 and their relevance with the current vaccine viruses. Methods: Respiratory specimens were collected with influenza-like illness and Severe Acute Respiratory Illness. Samples were processed according to CDC protocol. Sequencing and phylogenetic analysis of Haemagglutinin (HA) and neuraminidase (NA) genes was carried out comparing representative isolates from Pakistan viruses. Results: Between Jan2009 - Feb 2016, 1870 (13.2%) samples were positive for influenza A out of 14086. During the pandemic period (2009–10), Influenza A/ H1N1pdm 09 was the dominant strain with 366 (45%) of total influenza positives. In the post-pandemic period (2011–2016), a total of 1066 (59.6%) cases were positive Influenza A/ H1N1pdm 09 with co-circulation of different Influenza A subtypes. Overall, the Pakistan A(H1N1) pdm09 viruses grouped in two genetic clades. Influenza A(H1N1)pdm09 viruses only ascribed to Clade 7 during the pandemic period whereas viruses belong to clade 7 (2011) and clade 6B (2015) during the post-pandemic years. Amino acid analysis of the HA gene revealed mutations at positions S220T, I338V and P100S specially associated with outbreaks in all the analyzed strains. Sequence analyses of post-pandemic A(H1N1)pdm09 viruses showed additional substitutions at antigenic sites; S179N,K180Q (SA), D185N, D239G (CA), S202A (SB) and at receptor binding sites; A13T, S200P when compared with pandemic period. Substitution at Genetic markers; A273T (69%), S200P/T (15%) and D239G (7.6%) associated with severity and E391K (69%) associated with virulence was identified in viruses isolated during 2015. Analysis of NA gene revealed outbreak markers; V106I (23%) among pandemic and N248D (100%) during post-pandemic Pakistan viruses. Additional N-Glycosylation site; HA S179N (23%), NA I23T(7.6%) and N44S (77%) in place of N386K(77%) were only found in post-pandemic viruses. All isolates showed histidine (H) at position 275 in NA indicating sensitivity to neuraminidase inhibitors. Conclusion: This study shows that the Influenza A(H1N1)pdm09 viruses from Pakistan clustered into two genetic clades, with co-circulation of some variants. Certain key substitutions in the receptor binding site and few changes indicative of virulence were also detected in post-pandemic strains. Therefore, it is imperative to continue monitoring of the viruses for early identification of potential variants of high virulence or emergence of drug-resistant variants.Keywords: Influenza A (H1N1) pdm09, evolutionary analysis, post pandemic period, Pakistan
Procedia PDF Downloads 2084142 An Improved Discrete Version of Teaching–Learning-Based Optimization for Supply Chain Network Design
Authors: Ehsan Yadegari
Abstract:
While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation
Procedia PDF Downloads 524141 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification
Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui
Abstract:
Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.Keywords: EEG, ICA, SVM, wavelet
Procedia PDF Downloads 3844140 Impact of Social Networks on Agricultural Technology Adoption: A Case Study of Ongoing Extension Programs for Paddy Cultivation in Matara District in Sri Lanka
Authors: Paulu Saramge Shalika Nirupani Seram
Abstract:
The study delves into the complex dynamics of social networks and how they affect paddy farmers’ adoption of agricultural technologies, which are included in Yaya Development program, Weedy rice program and Good Agricultural Practices (GAP) program in Matara district. Identify the social networks among the farmers of ongoing Extension Programs in Matara district, examine the farmers’ adoption level to the ongoing extension programs in Matara district, analyze the impacts of social networks for the adoption to the technologies of ongoing extension programs and give suggestions and recommendations to improve the social network of paddy farmers in Matara District for ongoing extension programs are the objectives of this research. A structured questionnaire survey was conducted with 25 farmers from Matara-North (Wilpita), 25 farmers from Matara-Central (Kamburupitiya), and 25 farmers from Matara-South (Malimbada). UCINET (Version -6.771) software was used for social network analysis, and other than that, descriptive statistics and inferential statistics were used to analyze the findings. Matara-North has the highest social network density, and Matara-South has the lowest social network density according to the social network analysis. Dissemination of intensive technologies requires the most prominent actors of the social network, and in Matara district, agricultural instructors have the highest ability to disseminate technologies. The influence of actors in the social network, the trustworthiness of AI officers, and the trust of indigenous knowledge about paddy cultivation have a significant effect on the technology adoption of farmers. The research endeavors to contribute a nuanced understanding of the social networks and agricultural technology adoption in Matara District, offering practical insights for stakeholders involved in agricultural extension services.Keywords: agricultural extension, paddy cultivation, social network, technology adoption
Procedia PDF Downloads 664139 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 1284138 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 6224137 Peer Support Groups as a Tool to Increase Chances of Passing General Practice UK Qualification Exams
Authors: Thomas Abraham, Garcia de la Vega Felipe, Lubna Nishath, Nzekwe Nduka, Powell Anne-Marie
Abstract:
Introduction: The purpose of this paper is to discuss the effectiveness of a peer support network created to provide medical education, pastoral support, and reliable resources to registrars to help them pass the MRCGP exams. This paper will include a description of the network and its purpose, discuss how it has been used by trainees since its creation, and explain how this methodology can be applied to other areas of medical education and primary care. Background: The peer support network was created in February 2021, using Facebook, Telegram, and WhatsApp platforms to facilitate discussion of cases and answer queries about the exams, share resources, and offer peer support from qualified GPs and specialists. The network was created and is maintained by the authors of this paper and is open to anyone who is registered with the General Medical Council (GMC) and is studying for the MRCGP exams. Purpose: The purpose of the network is to provide medical education, pastoral support, and reliable resources to registrars to help them pass the exams. The network is free to use and is designed to take the onus away from a single medical educator and collate a vast amount of information from multiple medical educators/trainers; thereby creating a digital library of information for all trainees - exam related or otherwise. Methodology The network is managed by a team of moderators who respond to queries and facilitate discussion. Smaller study groups are created from the main group and provide a platform for trainees to work together, share resources, and provide peer support. The network has had thousands of trainees using it since February 2021, with positive feedback from all trainees. Results: The feedback from trainees has been overwhelmingly positive. Word of mouth has spread rapidly, growing the groups exponentially. Trainees add colleagues to the groups and often stay after they pass their exams to 'give back' to their fellow trainees. To date, thousands of trainees have passed the MRCGP exams using the resources and support provided by the network. Conclusion The success of this peer support network demonstrates the effectiveness of creating a network of thousands of doctors to provide medical education and support.Keywords: peer support, medical education, pastoral support, MRCGP exams
Procedia PDF Downloads 1374136 Robust Stabilization against Unknown Consensus Network
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.Keywords: single agent control, multi-agent system, transfer function, graph angle
Procedia PDF Downloads 4524135 Role of Artificial Intelligence in Nano Proteomics
Authors: Mehrnaz Mostafavi
Abstract:
Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence
Procedia PDF Downloads 1034134 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio
Authors: Danilo López, Edwin Rivas, Fernando Pedraza
Abstract:
Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.Keywords: ANFIS, cognitive radio, prediction primary user, RNA
Procedia PDF Downloads 4224133 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 4324132 On the Optimization of a Decentralized Photovoltaic System
Authors: Zaouche Khelil, Talha Abdelaziz, Berkouk El Madjid
Abstract:
In this paper, we present a grid-tied photovoltaic system. The studied topology is structured around a seven-level inverter, supplying a non-linear load. A three-stage step-up DC/DC converter ensures DC-link balancing. The presented system allows the extraction of all the available photovoltaic power. This extracted energy feeds the local load; the surplus energy is injected into the electrical network. During poor weather conditions, where the photovoltaic panels cannot meet the energy needs of the load, the missing power is supplied by the electrical network. At the common connexion point, the network current shows excellent spectral performances.Keywords: seven-level inverter, multi-level DC/DC converter, photovoltaic, non-linear load
Procedia PDF Downloads 1944131 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data
Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple
Abstract:
In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network
Procedia PDF Downloads 1404130 Social Network Impact on Self Learning in Teaching and Learning in UPSI (Universiti Pendidikan Sultan Idris)
Authors: Azli Bin Ariffin, Noor Amy Afiza Binti Mohd Yusof
Abstract:
This study aims to identify effect of social network usage on the self-learning method in teaching and learning at Sultan Idris Education University. The study involved 270 respondents consisting of students in the pre-graduate and post-graduate levels from nine fields of study offered. Assessment instrument used is questionnaire which measures respondent’s background includes level of study, years of study and field of study. Also measured the extent to which social pages used for self-learning and effect received when using social network for self-learning in learning process. The results of the study showed that students always visit Facebook more than other social sites. But, it is not for the purpose of self-learning. Analyzed data showed that 45.5% students not sure about using social sites for self-learning. But they realize the positive effect that they will received when use social sites for self-learning to improve teaching and learning process when 72.7% respondent agreed with all the statements provided.Keywords: facebook, self-learning, social network, teaching, learning
Procedia PDF Downloads 5394129 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market
Authors: Zahra Hatami, Hesham Ali, David Volkman
Abstract:
Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.Keywords: portfolio management performance, network analysis, centrality measurements, Sharpe ratio
Procedia PDF Downloads 1564128 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 1294127 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 724126 Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 4904125 Allocation of Mobile Units in an Urban Emergency Service System
Authors: Dimitra Alexiou
Abstract:
In an urban area the allocation placement of an emergency service mobile units, such as ambulances, police patrol must be designed so as to achieve a prompt response to demand locations. In this paper, a partition of a given urban network into distinct sub-networks is performed such that; the vertices in each component are close and simultaneously the difference of the sums of the corresponding population in the sub-networks is almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in the framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.Keywords: graph partition, emergency service, distances, location
Procedia PDF Downloads 5014124 Mechanically Strong and Highly Thermal Conductive Polymer Composites Enabled by Three-Dimensional Interconnected Graphite Network
Authors: Jian Zheng
Abstract:
Three-dimensional (3D) network structure has been recognized as an effective approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry and infiltrating with the polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m⁻¹ K⁻¹ by 1094% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 82% and 310%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).Keywords: mechanical properties, oriented network, graphite polymer composite, thermal conductivity
Procedia PDF Downloads 1614123 American Sign Language Recognition System
Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba
Abstract:
The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.Keywords: sign language, computer vision, vision transformer, VGG16, CNN
Procedia PDF Downloads 444122 Structural Vulnerability of Banking Network – Systemic Risk Approach
Authors: Farhad Reyazat, Richard Werner
Abstract:
This paper contributes to the existent literature by developing a framework that explains how to monitor potential threats to banking sector stability. The study explores structural vulnerabilities at the country level, but also look at bilateral exposures within a network context. The study contributes in analysing of the European banking systemic risk at aggregated level, which integrates the characteristics of bank size, and interconnectedness relative to the size of the economy which ultimate risk belong to, taking to account the concentration ratio of the banking industry within the whole economy. The nature of the systemic risk depends on the interplay of the network topology with the nature of financial transactions over the network, assets and buffer stemming from bank size, correlations, and the nature of the shocks to the financial system. The study’s results illustrate the contribution of banks’ size, size of economy and concentration of counterparty exposures to a given country’s banks in explaining its systemic importance, how much the banking network depends on a few traditional hubs activities and the changes of this dependencies over the last 9 years. The role of few of traditional hubs such as Swiss banks and British Banks and also Irish banks- where the financial sector is fairly new and grew strongly between 1990s till 2008- take the fourth position on 2014 reducing the relative size since 2006 where they had the first position. In-degree concentration index analysis in the study shows concentration index of banking network was not changed since financial crisis 2007-8. In-degree concentration index on first quarter of 2014 indicates that US, UK and Germany together, getting over 70% of the network exposures. The result of comparing the in-degree concentration index with 2007-4Q, shows the same group having over 70% of the network exposure, however the UK getting more important role in the hub and the market share of US and Germany are slightly diminished.Keywords: systemic risk, counterparty risk, financial stability, interconnectedness, banking concentration, european banks risk, network effect on systemic risk, concentration risk
Procedia PDF Downloads 4924121 Top-K Shortest Distance as a Similarity Measure
Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard
Abstract:
Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.Keywords: graph matching, link prediction, shortest path, similarity
Procedia PDF Downloads 3594120 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning
Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour
Abstract:
In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.Keywords: decision criteria, decision making, sewer network planning, decision making, strict uncertainty
Procedia PDF Downloads 5624119 Proactive WPA/WPA2 Security Using DD-WRT Firmware
Authors: Mustafa Kamoona, Mohamed El-Sharkawy
Abstract:
Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.Keywords: Wi-Fi, WPS, TLS, DD-WRT
Procedia PDF Downloads 2344118 Investigation on Cost Reflective Network Pricing and Modified Cost Reflective Network Pricing Methods for Transmission Service Charges
Authors: K. Iskandar, N. H. Radzi, R. Aziz, M. S. Kamaruddin, M. N. Abdullah, S. A. Jumaat
Abstract:
Nowadays many developing countries have been undergoing a restructuring process in the power electricity industry. This process has involved disaggregating former state-owned monopoly utilities both vertically and horizontally and introduced competition. The restructuring process has been implemented by the Australian National Electricity Market (NEM) started from 13 December 1998, began operating as a wholesale market for supply of electricity to retailers and end-users in Queensland, New South Wales, the Australian Capital Territory, Victoria and South Australia. In this deregulated market, one of the important issues is the transmission pricing. Transmission pricing is a service that recovers existing and new cost of the transmission system. The regulation of the transmission pricing is important in determining whether the transmission service system is economically beneficial to both side of the users and utilities. Therefore, an efficient transmission pricing methodology plays an important role in the Australian NEM. In this paper, the transmission pricing methodologies that have been implemented by the Australian NEM which are the Cost Reflective Network Pricing (CRNP) and Modified Cost Reflective Network Pricing (MCRNP) methods are investigated for allocating the transmission service charges to the transmission users. A case study using 6-bus system is used in order to identify the best method that reflects a fair and equitable transmission service charge.Keywords: cost-reflective network pricing method, modified cost-reflective network pricing method, restructuring process, transmission pricing
Procedia PDF Downloads 445