Search results for: unbiased estimators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 194

Search results for: unbiased estimators

74 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk

Authors: Ariful Islam, Showkat Ahmad Lone

Abstract:

Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study

Procedia PDF Downloads 347
73 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 43
72 The Economic Effects of Crowdworking: A Comparative Analysis of Germany, Ukraine, and the United States

Authors: Lars Hornuf, Valeriia Khlopchyk

Abstract:

The labor market is experiencing a significant transformation as traditional employment is being progressively supplemented or replaced by temporary, platform-mediated work. However, the full extent and impact of this shift remain not fully measured yet. In this study, we explore the size and dynamics of the crowdworking industry. Most existing studies on the number and earnings of crowdworkers are based on surveys and interviews and can be subject to reporting bias. To overcome this limitation, we adopt a hard data approach by leveraging data from multiple online platforms to provide a more comprehensive and unbiased assessment of the crowdworking industry. We estimate the number of crowdworkers, crowdworking platform revenues, and crowdworkers earnings. Additionally, we analyze the existing labor relationships and tax implications in the crowdworking industry. Our findings indicate that the number of crowdworkers shows a substantial annual growth of 11.28%. Furthermore, our study estimates the revenues of crowdworking platforms and the earnings of crowdworkers showing consistent annual growth, which demonstrates the shift in perception from crowdwork being a supplementary income to a primary source of income. We also reveal that most crowdworkers are classified as independent contractors and are solely responsible for taxation, highlighting the lack of labor protection for crowdworkers and the challenges for tax authorities in tracking taxation and recovering unpaid taxes.

Keywords: crowdsourcing, online labor, platform economy, online work, labor supply

Procedia PDF Downloads 21
71 Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer

Authors: Noora Al Muftah, Reda Rawi, Richard Thompson, Halima Bensmail

Abstract:

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.

Keywords: cancer, gene network, Lasso, penalized regression, P-values, unbiased estimator

Procedia PDF Downloads 409
70 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals

Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam

Abstract:

The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study

Procedia PDF Downloads 319
69 The Impact of Economic Growth on Carbon Footprints of High-Income and Non-High-Income Countries: A Comparative Analysis

Authors: Ghunchq Khan

Abstract:

The increase in greenhouse gas (GHGs) emissions is a main environmental problem. Diverse human activities and inappropriate economic growth have stimulated a trade-off between economic growth and environmental deterioration all over the world. The impact of economic growth on the environment has received attention as global warming and environmental problems have become more serious. The focus of this study is on carbon footprints (production and consumption) and analyses the impact of GDP per capita on carbon footprints. A balanced panel of 99 countries from 2000 to 2016 is estimated by employing autoregressive distributed lags (ARDL) model – mean group (MG) and pooled mean group (PMG) estimators. The empirical results indicate that GDP per capita has a significant and positive impact in the short run but a negative effect in the long run on the carbon footprint of production in high-income countries by controlling trade openness, industry share, biological capacity, and population density. At the same time, GDP per capita has a significant and positive impact in both the short and long run on the carbon footprint of the production of non-high-income countries. The results also indicate that GDP per capita negatively impacts the carbon footprint of consumption for high-income countries; on the other hand, the carbon footprint of consumption increases as GDP per capita grows in non-high-income countries.

Keywords: ARDL, carbon footprint, economic growth, industry share, trade openness

Procedia PDF Downloads 95
68 Modelling Hydrological Time Series Using Wakeby Distribution

Authors: Ilaria Lucrezia Amerise

Abstract:

The statistical modelling of precipitation data for a given portion of territory is fundamental for the monitoring of climatic conditions and for Hydrogeological Management Plans (HMP). This modelling is rendered particularly complex by the changes taking place in the frequency and intensity of precipitation, presumably to be attributed to the global climate change. This paper applies the Wakeby distribution (with 5 parameters) as a theoretical reference model. The number and the quality of the parameters indicate that this distribution may be the appropriate choice for the interpolations of the hydrological variables and, moreover, the Wakeby is particularly suitable for describing phenomena producing heavy tails. The proposed estimation methods for determining the value of the Wakeby parameters are the same as those used for density functions with heavy tails. The commonly used procedure is the classic method of moments weighed with probabilities (probability weighted moments, PWM) although this has often shown difficulty of convergence, or rather, convergence to a configuration of inappropriate parameters. In this paper, we analyze the problem of the likelihood estimation of a random variable expressed through its quantile function. The method of maximum likelihood, in this case, is more demanding than in the situations of more usual estimation. The reasons for this lie, in the sampling and asymptotic properties of the estimators of maximum likelihood which improve the estimates obtained with indications of their variability and, therefore, their accuracy and reliability. These features are highly appreciated in contexts where poor decisions, attributable to an inefficient or incomplete information base, can cause serious damages.

Keywords: generalized extreme values, likelihood estimation, precipitation data, Wakeby distribution

Procedia PDF Downloads 137
67 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation

Authors: Carl van Walraven, Meltem Tuna

Abstract:

Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.

Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation

Procedia PDF Downloads 235
66 Civilization and Violence: Islam, the West, and the Rest

Authors: Imbesat Daudi

Abstract:

One of the most discussed topics of the last century happens to be if Islamic civilization is violent. Many Western intellectuals have promoted the notion that Islamic civilization is violent. Citing 9/11, in which 3000 civilians were killed, they argue that Muslims are prone to violence because Islam promotes violence. However, Muslims reject this notion as nonsense. This topic has not been properly addressed. First, violence of civilizations cannot be proven by citing religious texts, which have been used in discussions over civilizational violence. Secondly, the question of whether Muslims are violent is inappropriate, as there is implicit bias suggesting that Islamic civilization is violent. A proper question should be which civilization is more violent. Third, whether Islamic civilization is indeed violent can only be established if more war-related casualties can be documented within the borders of Islamic civilization than that of their cohorts. This has never been done. Finally, the violent behavior of Muslim countries can be examined by comparing acts of violence committed by Muslim countries with acts of violence of groups of nations belonging to other civilizations by appropriate parameters of violence. Therefore, parameters reflecting group violence have been defined; violent conflicts of various civilizations of the last two centuries were documented, quantified by number of conflicts and number of victims, and compared with each other by following the established principles of statistics. The results show that whereas 80% of genocides and massacres were conducted by Western nations, less than 5% of acts of violence were committed by Muslim countries. Furthermore, the West has the highest incidence (new) and prevalence (new and old) of violent conflicts among all groups of nations. The result is unambiguous and statistically significant. Becoming informed can only be done by a methodical collection of relevant data, objective analysis of data, and unbiased information, a process which this paper follows.

Keywords: Islam and violence, demonization of Muslims, violence and the West, comparison of civilizational violence

Procedia PDF Downloads 52
65 Knowledge and Perceptions of Final-year Students towards Pharmacovigilance and Adverse Drug Reaction Reporting at the Faculty of Medical Sciences, Al-Razi University - Sana`a - Yemen

Authors: Nabil A. Albaser

Abstract:

Background: There is a serious problem with adverse drug reactions (ADRs) everywhere, including Yemen. Since it helps with the detection, assessment, reporting and prevention of ADRs, pharmacovigilance (PV) is an essential part of the healthcare system. The unbiased reporting of ADRs remains the foundation of PV. Students majoring in healthcare should acquire the knowledge and skills necessary to conduct PV in a range of clinical settings. The primary objective of this study was to evaluate the understanding and attitudes of final-year Pharmacy, Nursing, and Midwifery students at Al-Razi University in Sana'a, Yemen, regarding PV and ADRs reporting. Methods: The study followed descriptive cross-sectional approach. A validated, self-administered questionnaire with three parts—demographic information, knowledge, and perceptions of Pharmacovigilance was online distributed to final-year Pharmacy, Nursing, and Midwifery students. The questionnaire was given to 175 students; 122 of them responded with a percentage (69.7%). Results: The majority of respondents were male (79.5%). More than the tow-third of the students, 68.9%, were beyond the age of 23. Although the majority of students, 80%, heard about the terms of ADRs and PV, but only 50% and 57.4% of the respondents, respectively, could define the both terms correctly. However, only 11.48 % of them, nevertheless, took a PV course. More than a half of them (56.6%) had a positive perceptions towards pharmacovigilance and ADR reporting and had a moderate degree of knowledge (68.9%). Conclusion: The study demonstrated that the participants lacked sufficient knowledge of pharmacovigilance and ADR reporting. They showed a moderate level of understanding of reporting ADRs as well as a favorable opinion of dealing with and reporting ADRs. Yemen's health care curriculum should include lessons on pharmacovigilance.

Keywords: adverse drug reaction reporting, pharmacovigilance, yemen, knowlegde

Procedia PDF Downloads 118
64 Gender Stereotypes at the Court of Georgia: Perceptions of Attorneys on Gender Bias

Authors: Tatia Kekelia

Abstract:

This paper is part of an ongoing research addressing gender discrimination in the Court of Georgia. The research suggests that gender stereotypes influence the processes at the Court in contemporary Georgia, which causes uneven fights for women and men, not to mention other gender identities. The sub-hypothesis proposes that the gender stereotypes derive from feudal representations, which persisted during the Soviet rule. It is precisely those stereotypes that feed gender-based discrimination today. However, this paper’s main focus is on the main hypothesis, describing the revealed stereotypes, and identifying the Court as a place where their presence is most hindering societal development. First of all, this happens by demotivating people, causing loss of trust in the Court, and therefore potentially encouraging crime. Secondly, it becomes harder to adequately mobilize human resources, since more than a half of the population is female, and under the influence of rigid or more subtle forms of discrimination, they lose not only equal rights, but also the motivation to work or fight for them. Consequently, this paper falls under democracy studies as well – considering that an unbiased Court is one of the most important criteria for assessing the democratic character of a state. As the research crosses the disciplines of sociology, law, and history, a complex of qualitative research methods is applied, among which this paper relies mainly on expert interviews, interviews with attorneys, and desk research. By showcasing and undermining the gender stereotypes that work at the Court of Georgia, this research might assist in rising trust towards it in the long-term. As for the broader relevance, the study of the Georgian case opens the possibility to conduct comparative analyses in the region and the continent, and, presumably, carve the lines of cultural influences.

Keywords: gender, stereotypes, bias, democratization, judiciary

Procedia PDF Downloads 79
63 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: artificial intelligence, COVID-19, depression detection, psychiatric disorder

Procedia PDF Downloads 131
62 Agarose Amplification Based Sequencing (AG-seq) Characterization Cell-free RNA in Preimplantation Spent Embryo Medium

Authors: Huajuan Shi

Abstract:

Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.

Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection

Procedia PDF Downloads 92
61 A Comprehensive Characterization of Cell-free RNA in Spent Blastocyst Medium and Quality Prediction for Blastocyst

Authors: Huajuan Shi

Abstract:

Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.

Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection

Procedia PDF Downloads 64
60 Planning Water Reservoirs as Complementary Habitats for Waterbirds

Authors: Tamar Trop, Ido Izhaki

Abstract:

Small natural freshwater bodies (SNFWBs), which are vital for many waterbird species, are considered endangered habitats due to their progressive loss and extensive degradation. While SNFWBs are becoming extinct, studies have indicated that many waterbird species may greatly benefit from various types of small artificial waterbodies (SAWBs), such as floodwater and treated water reservoirs. If designed and managed with care, SAWBs hold significant potential to serve as alternative or complementary habitats for birds, and thus mitigate the adverse effects of SNFWBs loss. Currently, most reservoirs are built as infrastructural facilities and designed according to engineering best practices and site-specific considerations, which do not include catering for waterbirds' needs. Furthermore, as things stand, there is still a lack of clear and comprehensive knowledge regarding the additional factors that should be considered in tackling the challenge of attracting waterbirds' to reservoirs, without compromising on the reservoirs' original functions. This study attempts to narrow this knowledge gap by performing a systematic review of the various factors (e.g., bird attributes; physical, structural, spatial, climatic, chemical, and biological characteristics of the waterbody; and anthropogenic activities) affecting the occurrence, abundance, richness, and diversity of waterbirds in SNFWBs. The methodical review provides a concise and relatively unbiased synthesis of the knowledge in the field, which can inform decision-making and practice regarding the planning, design, and management of reservoirs with birds in mind. Such knowledge is especially beneficial for arid and semiarid areas, where natural water sources are deteriorating and becoming extinct even faster due to climate change.

Keywords: artificial waterbodies, reservoirs, small waterbodies, waterbirds

Procedia PDF Downloads 72
59 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System

Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi

Abstract:

Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.

Keywords: channel estimation, OFDM, pilot-assist, VLC

Procedia PDF Downloads 180
58 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: audit fee lagrange multiplier test, heteroscedasticity, lagrange multiplier test, Monte-Carlo scheme, periodicity

Procedia PDF Downloads 141
57 Improving Our Understanding of the in vivo Modelling of Psychotic Disorders

Authors: Zsanett Bahor, Cristina Nunes-Fonseca, Gillian L. Currie, Emily S. Sena, Lindsay D.G. Thomson, Malcolm R. Macleod

Abstract:

Psychosis is ranked as the third most disabling medical condition in the world by the World Health Organization. Despite a substantial amount of research in recent years, available treatments are not universally effective and have a wide range of adverse side effects. Since many clinical drug candidates are identified through in vivo modelling, a deeper understanding of these models, and their strengths and limitations, might help us understand reasons for difficulties in psychosis drug development. To provide an unbiased summary of the preclinical psychosis literature we performed a systematic electronic search of PubMed for publications modelling a psychotic disorder in vivo, identifying 14,721 relevant studies. Double screening of 11,000 publications from this dataset so far established 2403 animal studies of psychosis, with the most common model being schizophrenia (95%). 61% of these models are induced using pharmacological agents. For all the models only 56% of publications test a therapeutic treatment. We propose a systematic review of these studies to assess the prevalence of reporting of measures to reduce risk of bias, and a meta-analysis to assess the internal and external validity of these animal models. Our findings are likely to be relevant to future preclinical studies of psychosis as this generation of strong empirical evidence has the potential to identify weaknesses, areas for improvement and make suggestions on refinement of experimental design. Such a detailed understanding of the data which inform what we think we know will help improve the current attrition rate between bench and bedside in psychosis research.

Keywords: animal models, psychosis, systematic review, schizophrenia

Procedia PDF Downloads 290
56 Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: bayesian rule, gaussian process classification model with multiclass, gaussian process prior, human action classification, laplace approximation, variational EM algorithm

Procedia PDF Downloads 334
55 Mediating and Moderating Function of Corporate Governance on Firm Tax Planning and Firm Tax Disclosure Relationship

Authors: Mahfoudh Hussein Mgammal

Abstract:

The purpose of this paper is to investigate the moderating and mediating effect of corporate governance mechanisms proxy on the relationship of tax planning measured by effective tax rate components and tax disclosure. This paper tested the hypotheses by a 3-step hierarchical regression with 2010 to 2012 Malaysian-listed nonfinancial firms. We found companies positively value tax-planning activities. This indicates that tax planning is seen as a source of companies' wealth creation as the results show that there is an association between the tax disclosure and the extent of tax planning, and this relationship is highly significant. Examination of the implications of corporate governance mechanisms on the tax disclosure-tax planning association showed the lack of a significant coefficient related to any of the interactive variables. This makes it hard to understand the nature of the association. Finally, we further study the sensitivity of the results, the outcomes were also examined for the robustness and strength of the model specification utilizing OLS-effect estimators and the absence of tax planning related factors (GRTH, LEVE, and CAPNT). The findings of these tests display there is no effect on the tax planning-tax disclosure association. The outcomes of the annual regressions test show that the panel regressions results differ over time because there is a time difference impact on the associations, and the different models are not completely proportionate as a whole. Moreover, our paper lends some support to recent theory on the importance of taxes to corporate governance by demonstrating how the agency costs of tax planning allow certain shareholders to benefit from firm activities at the expense of others.

Keywords: tax disclosure, tax planning, corporate governance, effective tax rate

Procedia PDF Downloads 151
54 Primary Analysis of a Randomized Controlled Trial of Topical Analgesia Post Haemorrhoidectomy

Authors: James Jin, Weisi Xia, Runzhe Gao, Alain Vandal, Darren Svirkis, Andrew Hill

Abstract:

Background: Post-haemorrhoidectomy pain is concerned by patients/clinicians. Minimizing the postoperation pain is highly interested clinically. Combinations of topical cream targeting three hypothesised post-haemorrhoidectomy pain mechanisms were developed and their effectiveness were evaluated. Specifically, a multi-centred double-blinded randomized clinical trial (RCT) was conducted in adults undergoing excisional haemorrhoidectomy. The primary analysis was conveyed on the data collected to evaluate the effectiveness of the combinations of topical cream targeting three hypothesized pain mechanisms after the operations. Methods: 192 patients were randomly allocated to 4 arms (each arm has 48 patients), and each arm was provided with pain cream 10% metronidazole (M), M and 2% diltiazem (MD), M with 4% lidocaine (ML), or MDL, respectively. Patients were instructed to apply topical treatments three times a day for 7 days, and record outcomes for 14 days after the operations. The primary outcome was VAS pain on day 4. Covariates and models were selected in the blind review stage. Multiple imputations were applied for the missingness. LMER, GLMER models together with natural splines were applied. Sandwich estimators and Wald statistics were used. P-values < 0.05 were considered as significant. Conclusions: The addition of topical lidocaine or diltiazem to metronidazole does not add any benefit. ML had significantly better pain and recovery scores than combination MDL. Multimodal topical analgesia with ML after haemorrhoidectomy could be considered for further evaluation. Further trials considering only 3 arms (M, ML, MD) might be worth exploring.

Keywords: RCT, primary analysis, multiple imputation, pain scores, haemorrhoidectomy, analgesia, lmer

Procedia PDF Downloads 120
53 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data

Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa

Abstract:

A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.

Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation

Procedia PDF Downloads 202
52 The Relationship between Renewable Energy, Real Income, Tourism and Air Pollution

Authors: Eyup Dogan

Abstract:

One criticism of the energy-growth-environment literature, to the best of our knowledge, is that only a few studies analyze the influence of tourism on CO₂ emissions even though tourism sector is closely related to the environment. The other criticism is the selection of methodology. Panel estimation techniques that fail to consider both heterogeneity and cross-sectional dependence across countries can cause forecasting errors. To fulfill the mentioned gaps in the literature, this study analyzes the impacts of real GDP, renewable energy and tourism on the levels of carbon dioxide (CO₂) emissions for the top 10 most-visited countries around the world. This study focuses on the top 10 touristic (most-visited) countries because they receive about the half of the worldwide tourist arrivals in late years and are among the top ones in 'Renewables Energy Country Attractiveness Index (RECAI)'. By looking at Pesaran’s CD test and average growth rates of variables for each country, we detect the presence of cross-sectional dependence and heterogeneity. Hence, this study uses second generation econometric techniques (cross-sectionally augmented Dickey-Fuller (CADF), and cross-sectionally augmented IPS (CIPS) unit root test, the LM bootstrap cointegration test, and the DOLS and the FMOLS estimators) which are robust to the mentioned issues. Therefore, the reported results become accurate and reliable. It is found that renewable energy mitigates the pollution whereas real GDP and tourism contribute to carbon emissions. Thus, regulatory policies are necessary to increase the awareness of sustainable tourism. In addition, the use of renewable energy and the adoption of clean technologies in tourism sector as well as in producing goods and services play significant roles in reducing the levels of emissions.

Keywords: air pollution, tourism, renewable energy, income, panel data

Procedia PDF Downloads 184
51 Transcriptome Analysis Reveals Role of Long Non-Coding RNA NEAT1 in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Background: Long non-coding RNAs (lncRNAs) are the important regulators of gene expression and play important role in viral replication and disease progression. The role of lncRNA genes in the pathogenesis of Dengue virus-mediated pathogenesis is currently unknown. Methods: To gain additional insights, we utilized an unbiased RNA sequencing followed by in silico analysis approach to identify the differentially expressed lncRNA and genes that are associated with dengue disease progression. Further, we focused our study on lncRNAs NEAT1 (Nuclear Paraspeckle Assembly Transcript 1) as it was found to be differentially expressed in PBMC of dengue infected patients. Results: The expression of lncRNAs NEAT1, as compared to dengue infection (DI), was significantly down-regulated as the patients developed the complication. Moreover, pairwise analysis on follow up patients confirmed that suppression of NEAT1 expression was associated with rapid fall in platelet count in dengue infected patients. Severe dengue patients (DS) (n=18; platelet count < 20K) when recovered from infection showing high NEAT1 expression as it observed in healthy donors. By co-expression network analysis and subsequent validation, we revealed that coding gene; IFI27 expression was significantly up-regulated in severe dengue cases and negatively correlated with NEAT1 expression. To discriminate DI from dengue severe, receiver operating characteristic (ROC) curve was calculated. It revealed sensitivity and specificity of 100% (95%CI: 85.69 – 97.22) and area under the curve (AUC) = 0.97 for NEAT1. Conclusions: Altogether, our first observations demonstrate that monitoring NEAT1and IFI27 expression in dengue patients could be useful in understanding dengue virus-induced disease progression and may be involved in pathophysiological processes.

Keywords: dengue, lncRNA, NEAT1, transcriptome

Procedia PDF Downloads 310
50 Non-melanoma Nasal Skin Cancer: Literature Review

Authors: Geovanna dos Santos Romeiro, Polintia Rayza Brito da Silva, Luis Henrique Moura, Izadora Moreira Do Amaral, Marília Vitória Pinto Milhomem

Abstract:

Introduction: The nose is one of the most likely sites for the appearance of malignancy on the face. This can be associated with its unique position of exposure to environmental damage, lack of photoprotection and because it is an area susceptible to greater sun exposure. It is already known that the most common type of nasal tumor is basal cell carcinoma. Squamous cell carcinoma is less common but considerably more aggressive, with a tendency to grow rapidly and metastasize. Nasal skin cancer can have a good prognosis, regardless of the type of treatment chosen, i.e., surgery, radiotherapy or electrodissection. However, tumors that are not diagnosed and treated quickly can be harmful and have a greater chance of metastasizing. When curative surgery is performed, therapies and reconstructive surgical procedures are usually required. Objective: The objective is to review the literature on nasal skin tumors and their types and specific locations. Forty-four articles published in Pubmed related to the location of skin cancer in the specific nasal areas region were analyzed. Twelve were excluded for being prior to the year 2000, three with inconclusive results, and one with unbiased conclusions. Results and Conclusion: Regarding the prevalence of types of nasal tumors, basal cell carcinoma comprises the majority, occurring predominantly in the ala, tip and root; squamous cell carcinoma, on the other hand, is more common in the lateral borders and columella. Even so, 2 articles report that the prevalence of metastasis has a higher incidence in squamous cell carcinomas. All of this points to the importance of early location, including regions that are often overlooked in the examination if the patient is wearing glasses. This topic needs further investigation for a greater correlation between anatomy and clinical-surgical implications.

Keywords: skin cancer, melanoma, non-melanoma, surgery

Procedia PDF Downloads 52
49 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 115
48 Importance of Assessing Racial Trauma after George Floyd in Children of Color in Schools

Authors: Gabriela Macera DiFilippo

Abstract:

The world watched in disbelief as George Floyd was killed by a policeman. The images from the scene were made more memorable by Mr. Floyd’s pleas and cries for his mother. In the aftermath of this tragedy, the Black Lives Matter movement gained momentum. Weeks and months after the protests, global interest in learning about tackling systemic racism erupted. One must wonder how school children of color viewed and processed this trauma. This study will examine the kinds of trauma experienced by children of color and the opportunity for school mental health providers to support these children. This study used literature searches that were previously conducted for proven and practical assessment methods that can help deal with racial trauma for children. As part of the assessment, trauma symptoms experienced by children of color were summarized and characterized in a non-imperial manner. The research was also will be done in practical ways to make adequate and effective mental health services available in schools and lessen the stigma. This research study found that there is a need to provide an analysis of the ongoing racial trauma of children of color after the death of George Floyd. Impactful and appropriate assessment methods, such as surveys, were presented to all school professionals. Lastly, this paper attempted to provide mental health professionals with the tools to screen and provide guidance based on unequivocal, unbiased methods for helping these children. There is a need for both schools and community leaders to ensure that every child has access to mental health care and is being assessed for their overall well-being. There is a need to educate the communities about racial trauma and its impact on individuals, especially children. School mental health professionals are encouraged to offer and educate schools and communities about racial trauma awareness, its importance, and ways to cope with it in different settings. The delivery of these informed services should focus on behavioral health and must be sensitive to children of color and different ways of self-care.

Keywords: trauma, children, black psychology, students

Procedia PDF Downloads 58
47 The Impact of Bim Technology on the Whole Process Cost Management of Civil Engineering Projects in Kenya

Authors: Nsimbe Allan

Abstract:

The study examines the impact of Building Information Modeling (BIM) on the cost management of engineering projects, focusing specifically on the Mombasa Port Area Development Project. The objective of this research venture is to determine the mechanisms through which Building Information Modeling (BIM) facilitates stakeholder collaboration, reduces construction-related expenses, and enhances the precision of cost estimation. Furthermore, the study investigates barriers to execution, assesses the impact on the project's transparency, and suggests approaches to maximize resource utilization. The study, selected for its practical significance and intricate nature, conducted a Systematic Literature Review (SLR) using credible databases, including ScienceDirect and IEEE Xplore. To constitute the diverse sample, 69 individuals, including project managers, cost estimators, and BIM administrators, were selected via stratified random sampling. The data were obtained using a mixed-methods approach, which prioritized ethical considerations. SPSS and Microsoft Excel were applied to the analysis. The research emphasizes the crucial role that project managers, architects, and engineers play in the decision-making process (47% of respondents). Furthermore, a significant improvement in cost estimation accuracy was reported by 70% of the participants. It was found that the implementation of BIM resulted in enhanced project visibility, which in turn optimized resource allocation and facilitated the process of budgeting. In brief, the study highlights the positive impacts of Building Information Modeling (BIM) on collaborative decision-making and cost estimation, addresses challenges related to implementation, and provides solutions for the efficient assimilation and understanding of BIM principles.

Keywords: cost management, resource utilization, stakeholder collaboration, project transparency

Procedia PDF Downloads 67
46 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments

Authors: Xiaoqin Wang, Li Yin

Abstract:

Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.

Keywords: causal effect, point effect, statistical modelling, sequential causal inference

Procedia PDF Downloads 205
45 Syntax and Words as Evolutionary Characters in Comparative Linguistics

Authors: Nancy Retzlaff, Sarah J. Berkemer, Trudie Strauss

Abstract:

In the last couple of decades, the advent of digitalization of any kind of data was probably one of the major advances in all fields of study. This paves the way for also analysing these data even though they might come from disciplines where there was no initial computational necessity to do so. Especially in linguistics, one can find a rather manual tradition. Still when considering studies that involve the history of language families it is hard to overlook the striking similarities to bioinformatics (phylogenetic) approaches. Alignments of words are such a fairly well studied example of an application of bioinformatics methods to historical linguistics. In this paper we will not only consider alignments of strings, i.e., words in this case, but also alignments of syntax trees of selected Indo-European languages. Based on initial, crude alignments, a sophisticated scoring model is trained on both letters and syntactic features. The aim is to gain a better understanding on which features in two languages are related, i.e., most likely to have the same root. Initially, all words in two languages are pre-aligned with a basic scoring model that primarily selects consonants and adjusts them before fitting in the vowels. Mixture models are subsequently used to filter ‘good’ alignments depending on the alignment length and the number of inserted gaps. Using these selected word alignments it is possible to perform tree alignments of the given syntax trees and consequently find sentences that correspond rather well to each other across languages. The syntax alignments are then filtered for meaningful scores—’good’ scores contain evolutionary information and are therefore used to train the sophisticated scoring model. Further iterations of alignments and training steps are performed until the scoring model saturates, i.e., barely changes anymore. A better evaluation of the trained scoring model and its function in containing evolutionary meaningful information will be given. An assessment of sentence alignment compared to possible phrase structure will also be provided. The method described here may have its flaws because of limited prior information. This, however, may offer a good starting point to study languages where only little prior knowledge is available and a detailed, unbiased study is needed.

Keywords: alignments, bioinformatics, comparative linguistics, historical linguistics, statistical methods

Procedia PDF Downloads 154