Search results for: spatiotemporal bipartite knowledge graph
7822 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 1007821 Scheduling in Cloud Networks Using Chakoos Algorithm
Authors: Masoumeh Ali Pouri, Hamid Haj Seyyed Javadi
Abstract:
Nowadays, cloud processing is one of the important issues in information technology. Since scheduling of tasks graph is an NP-hard problem, considering approaches based on undeterminisitic methods such as evolutionary processing, mostly genetic and cuckoo algorithms, will be effective. Therefore, an efficient algorithm has been proposed for scheduling of tasks graph to obtain an appropriate scheduling with minimum time. In this algorithm, the new approach is based on making the length of the critical path shorter and reducing the cost of communication. Finally, the results obtained from the implementation of the presented method show that this algorithm acts the same as other algorithms when it faces graphs without communication cost. It performs quicker and better than some algorithms like DSC and MCP algorithms when it faces the graphs involving communication cost.Keywords: cloud computing, scheduling, tasks graph, chakoos algorithm
Procedia PDF Downloads 647820 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations
Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang
Abstract:
Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.Keywords: source identification, ordinary differential equations, label propagation, complex networks
Procedia PDF Downloads 207819 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 2037818 Nonlinear Evolution on Graphs
Authors: Benniche Omar
Abstract:
We are concerned with abstract fully nonlinear differential equations having the form y’(t)=Ay(t)+f(t,y(t)) where A is an m—dissipative operator (possibly multi—valued) defined on a subset D(A) of a Banach space X with values in X and f is a given function defined on I×X with values in X. We consider a graph K in I×X. We recall that K is said to be viable with respect to the above abstract differential equation if for each initial data in K there exists at least one trajectory starting from that initial data and remaining in K at least for a short time. The viability problem has been studied by many authors by using various techniques and frames. If K is closed, it is shown that a tangency condition, which is mainly linked to the dynamic, is crucial for viability. In the case when X is infinite dimensional, compactness and convexity assumptions are needed. In this paper, we are concerned with the notion of near viability for a given graph K with respect to y’(t)=Ay(t)+f(t,y(t)). Roughly speaking, the graph K is said to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)), if for each initial data in K there exists at least one trajectory remaining arbitrary close to K at least for short time. It is interesting to note that the near viability is equivalent to an appropriate tangency condition under mild assumptions on the dynamic. Adding natural convexity and compactness assumptions on the dynamic, we may recover the (exact) viability. Here we investigate near viability for a graph K in I×X with respect to y’(t)=Ay(t)+f(t,y(t)) where A and f are as above. We emphasis that the t—dependence on the perturbation f leads us to introduce a new tangency concept. In the base of a tangency conditions expressed in terms of that tangency concept, we formulate criteria for K to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)). As application, an abstract null—controllability theorem is given.Keywords: abstract differential equation, graph, tangency condition, viability
Procedia PDF Downloads 1447817 Applying Spanning Tree Graph Theory for Automatic Database Normalization
Authors: Chetneti Srisa-an
Abstract:
In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.Keywords: relational database, functional dependency, automatic normalization, primary key, spanning tree
Procedia PDF Downloads 3537816 Creating Risk Maps on the Spatiotemporal Occurrence of Agricultural Insecticides in Sub-Saharan Africa
Authors: Chantal Hendriks, Harry Gibson, Anna Trett, Penny Hancock, Catherine Moyes
Abstract:
The use of modern inputs for crop protection, such as insecticides, is strongly underestimated in Sub-Saharan Africa. Several studies measured toxic concentrations of insecticides in fruits, vegetables and fish that were cultivated in Sub-Saharan Africa. The use of agricultural insecticides has impact on human and environmental health, but it also has the potential to impact on insecticide resistance in malaria transmitting mosquitos. To analyse associations between historic use of agricultural insecticides and the distribution of insecticide resistance through space and time, the use and environmental fate of agricultural insecticides needs to be mapped through the same time period. However, data on the use and environmental fate of agricultural insecticides in Africa are limited and therefore risk maps on the spatiotemporal occurrence of agricultural insecticides are created using environmental data. Environmental data on crop density and crop type were used to select the areas that most likely receive insecticides. These areas were verified by a literature review and expert knowledge. Pesticide fate models were compared to select most dominant processes that are involved in the environmental fate of insecticides and that can be mapped at a continental scale. The selected processes include: surface runoff, erosion, infiltration, volatilization and the storing and filtering capacity of soils. The processes indicate the risk for insecticide accumulation in soil, water, sediment and air. A compilation of all available data for traces of insecticides in the environment was used to validate the maps. The risk maps can result in space and time specific measures that reduce the risk of insecticide exposure to non-target organisms.Keywords: crop protection, pesticide fate, tropics, insecticide resistance
Procedia PDF Downloads 1417815 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach
Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez
Abstract:
The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling
Procedia PDF Downloads 377814 Modeling of Bioelectric Activity of Nerve Cells Using Bond Graph Method
Authors: M. Ghasemi, F. Eskandari, B. Hamzehei, A. R. Arshi
Abstract:
Bioelectric activity of nervous cells might be changed causing by various factors. This alteration can lead to unforeseen circumstances in other organs of the body. Therefore, the purpose of this study was to model a single neuron and its behavior under an initial stimulation. This study was developed based on cable theory by means of the Bond Graph method. The numerical values of the parameters were derived from empirical studies of cellular electrophysiology experiments. Initial excitation was applied through square current functions, and the resulted action potential was estimated along the neuron. The results revealed that the model was developed in this research adapted with the results of experimental studies and demonstrated the electrical behavior of nervous cells properly.Keywords: bond graph, stimulation, nervous cells, modeling
Procedia PDF Downloads 4277813 Robust Diagnosis Efficiency by Bond-Graph Approach
Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi
Abstract:
This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR
Procedia PDF Downloads 3057812 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 1347811 Constructing Orthogonal De Bruijn and Kautz Sequences and Applications
Authors: Yaw-Ling Lin
Abstract:
A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences.Keywords: biomolecular sequence synthesis, de Bruijn sequences, Eulerian cycle, Hamiltonian cycle, Kautz sequences, orthogonal sequences
Procedia PDF Downloads 1667810 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 867809 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks
Authors: Jiajun Wang, Xiaoge Li
Abstract:
The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose a new aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.Keywords: aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree
Procedia PDF Downloads 2167808 Robust Diagnosability of PEMFC Based on Bond Graph LFT
Authors: Ould Bouamama, M. Bressel, D. Hissel, M. Hilairet
Abstract:
Fuel cell (FC) is one of the best alternatives of fossil energy. Recently, the research community of fuel cell has shown a considerable interest for diagnosis in view to ensure safety, security, and availability when faults occur in the process. The problematic for model based FC diagnosis consists in that the model is complex because of coupling of several kind of energies and the numerical values of parameters are not always known or are uncertain. The present paper deals with use of one tool: the Linear Fractional Transformation bond graph tool not only for uncertain modelling but also for monitorability (ability to detect and isolate faults) analysis and formal generation of robust fault indicators with respect to parameter uncertainties.The developed theory applied to a nonlinear FC system has proved its efficiency.Keywords: bond graph, fuel cell, fault detection and isolation (FDI), robust diagnosis, structural analysis
Procedia PDF Downloads 3667807 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion
Authors: Andrey Khalov
Abstract:
The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER
Procedia PDF Downloads 157806 Design of a Tool for Generating Test Cases from BPMN
Authors: Prat Yotyawilai, Taratip Suwannasart
Abstract:
Business Process Model and Notation (BPMN) is more important in the business process and creating functional models, and is a standard for OMG, which becomes popular in various organizations and in education. Researches related to software testing based on models are prominent. Although most researches use the UML model in software testing, not many researches use the BPMN Model in creating test cases. Therefore, this research proposes a design of a tool for generating test cases from the BPMN. The model is analyzed and the details of the various components are extracted before creating a flow graph. Both details of components and the flow graph are used in generating test cases.Keywords: software testing, test case, BPMN, flow graph
Procedia PDF Downloads 5557805 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 667804 Gender Effects in EEG-Based Functional Brain Networks
Authors: Mahdi Jalili
Abstract:
Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.Keywords: EEG, brain, functional networks, network science, graph theory
Procedia PDF Downloads 4437803 Spatiotemporal Modeling of Under-Five Mortality and Associated Risk Factors in Ethiopia
Authors: Melkamu A. Zeru, Aweke A. Mitiku, Endashaw Amuka
Abstract:
Background: Under-five mortality is the likelihood that a baby will pass away before turning exactly 5 years old, represented as a percentage per 1,000 live births. Exploring the spatial distribution and identifying the temporal pattern is important to reducing under-five child mortality globally, including in Ethiopia. Thus, this study aimed to identify the risk factors of under-five mortality and the spatiotemporal variation in Ethiopian administrative zones. Method: This study used the 2000-2016 Ethiopian Demographic and Health Survey (EDHS) data, which were collected using a two-stage sampling method. A total of 43,029 (10,873 in 2000, 9,861 in 2005, 11,654 in 2011, and 10,641 in 2016) weighted sample under-five child mortality was used. The space-time dynamic model was employed to account for spatial and time effects in 65 administrative zones in Ethiopia. Results: From the result of a general nesting spatial-temporal dynamic model, there was a significant space-time interaction effect [γ = -0.1444, 95 % CI (-0.6680, -0.1355)] for under-five mortality. The increase in the percentages of mothers illiteracy [𝛽 = 0.4501, 95% CI (0.2442, 0.6559)], not vaccinated[𝛽= 0.7681, 95% CI (0.5683, 0.9678)], unimproved water[𝛽= 0.5801, CI (0.3793, 0.7808)] were increased death rates for under five children while increased percentage of contraceptive use [𝛽= -0.6609, 95% CI (-0.8636, -0.4582)] and ANC visit > 4 times [𝛽= -0.1585, 95% CI(-0.1812, -0.1357)] were contributed to the decreased under-five mortality rate at the zone in Ethiopia. Conclusions: Even though the mortality rate for children under five has decreased over time, still there is still higher in different zones of Ethiopia. There exists spatial and temporal variation in under-five mortality among zones. Therefore, it is very important to consider spatial neighbourhoods and temporal context when aiming to avoid under-five mortality.Keywords: under-five children mortality, space-time dynamic, spatiotemporal, Ethiopia
Procedia PDF Downloads 377802 Development of Graph-Theoretic Model for Ranking Top of Rail Lubricants
Authors: Subhash Chandra Sharma, Mohammad Soleimani
Abstract:
Selection of the correct lubricant for the top of rail application is a complex process. In this paper, the selection of the proper lubricant for a Top-Of-Rail (TOR) lubrication system based on graph theory and matrix approach has been developed. Attributes influencing the selection process and their influence on each other has been represented through a digraph and an equivalent matrix. A matrix function which is called the Permanent Function is derived. By substituting the level of inherent contribution of the influencing parameters and their influence on each other qualitatively, a criterion called Suitability Index is derived. Based on these indices, lubricants can be ranked for their suitability. The proposed model can be useful for maintenance engineers in selecting the best lubricant for a TOR application. The proposed methodology is illustrated step–by-step through an example.Keywords: lubricant selection, top of rail lubrication, graph-theory, Ranking of lubricants
Procedia PDF Downloads 2957801 Deciding Graph Non-Hamiltonicity via a Closure Algorithm
Authors: E. R. Swart, S. J. Gismondi, N. R. Swart, C. E. Bell
Abstract:
We present an heuristic algorithm that decides graph non-Hamiltonicity. All graphs are directed, each undirected edge regarded as a pair of counter directed arcs. Each of the n! Hamilton cycles in a complete graph on n+1 vertices is mapped to an n-permutation matrix P where p(u,i)=1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n+1. We first create exclusion set E by noting all arcs (u, v) not in G, sufficient to code precisely all cycles excluded from G i.e. cycles not in G use at least one arc not in G. Members are pairs of components of P, {p(u,i),p(v,i+1)}, i=1, n-1. A doubly stochastic-like relaxed LP formulation of the Hamilton cycle decision problem is constructed. Each {p(u,i),p(v,i+1)} in E is coded as variable q(u,i,v,i+1)=0 i.e. shrinks the feasible region. We then implement the Weak Closure Algorithm (WCA) that tests necessary conditions of a matching, together with Boolean closure to decide 0/1 variable assignments. Each {p(u,i),p(v,j)} not in E is tested for membership in E, and if possible, added to E (q(u,i,v,j)=0) to iteratively maximize |E|. If the WCA constructs E to be maximal, the set of all {p(u,i),p(v,j)}, then G is decided non-Hamiltonian. Only non-Hamiltonian G share this maximal property. Ten non-Hamiltonian graphs (10 through 104 vertices) and 2000 randomized 31 vertex non-Hamiltonian graphs are tested and correctly decided non-Hamiltonian. For Hamiltonian G, the complement of E covers a matching, perhaps useful in searching for cycles. We also present an example where the WCA fails.Keywords: Hamilton cycle decision problem, computational complexity theory, graph theory, theoretical computer science
Procedia PDF Downloads 3737800 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues
Authors: Ayşe Dilek Maden
Abstract:
For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.Keywords: degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree, simple connected graph
Procedia PDF Downloads 3667799 Knowledge Sharing and Organizational Performance: A System Dynamics Approach
Authors: Shachi Pathak
Abstract:
We are living in knowledge based economy where firms can gain competitive advantage with the help of managing knowledge within the organization. The purpose the study is to develop a conceptual model to explain the relationship between factors affecting knowledge sharing, called as knowledge enablers, in an organization, knowledge sharing activities and organizational performance, using system dynamics approach. This research is important since it will provide better understandings on what are the key knowledge enablers to support knowledge sharing activities, and how knowledge sharing activities will affect the capability of an organization to enhance the performance of the organization.Keywords: knowledge management, knowledge sharing, organizational performance, system dynamics
Procedia PDF Downloads 3747798 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem
Authors: Boumesbah Asma, Chergui Mohamed El-amine
Abstract:
Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search
Procedia PDF Downloads 917797 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 187796 An Integrated Visualization Tool for Heat Map and Gene Ontology Graph
Authors: Somyung Oh, Jeonghyeon Ha, Kyungwon Lee, Sejong Oh
Abstract:
Microarray is a general scheme to find differentially expressed genes for target concept. The output is expressed by heat map, and biologists analyze related terms of gene ontology to find some characteristics of differentially expressed genes. In this paper, we propose integrated visualization tool for heat map and gene ontology graph. Previous two methods are used by static manner and separated way. Proposed visualization tool integrates them and users can interactively manage it. Users may easily find and confirm related terms of gene ontology for given differentially expressed genes. Proposed tool also visualize connections between genes on heat map and gene ontology graph. We expect biologists to find new meaningful topics by proposed tool.Keywords: heat map, gene ontology, microarray, differentially expressed gene
Procedia PDF Downloads 3167795 Cross-Knowledge Graph Relation Completion for Non-Isomorphic Cross-Lingual Entity Alignment
Authors: Yuhong Zhang, Dan Lu, Chenyang Bu, Peipei Li, Kui Yu, Xindong Wu
Abstract:
The Cross-Lingual Entity Alignment (CLEA) task aims to find the aligned entities that refer to the same identity from two knowledge graphs (KGs) in different languages. It is an effective way to enhance the performance of data mining for KGs with scarce resources. In real-world applications, the neighborhood structures of the same entities in different KGs tend to be non-isomorphic, which makes the representation of entities contain diverse semantic information and then poses a great challenge for CLEA. In this paper, we try to address this challenge from two perspectives. On the one hand, the cross-KG relation completion rules are designed with the alignment constraint of entities and relations to improve the topology isomorphism of two KGs. On the other hand, a representation method combining isomorphic weights is designed to include more isomorphic semantics for counterpart entities, which will benefit the CLEA. Experiments show that our model can improve the isomorphism of two KGs and the alignment performance, especially for two non-isomorphic KGs.Keywords: knowledge graphs, cross-lingual entity alignment, non-isomorphic, relation completion
Procedia PDF Downloads 1227794 Software Component Identification from Its Object-Oriented Code: Graph Metrics Based Approach
Authors: Manel Brichni, Abdelhak-Djamel Seriai
Abstract:
Systems are increasingly complex. To reduce their complexity, an abstract view of the system can simplify its development. To overcome this problem, we propose a method to decompose systems into subsystems while reducing their coupling. These subsystems represent components. Consisting of an existing object-oriented systems, the main idea of our approach is based on modelling as graphs all entities of an oriented object source code. Such modelling is easy to handle, so we can apply restructuring algorithms based on graph metrics. The particularity of our approach consists in integrating in addition to standard metrics, such as coupling and cohesion, some graph metrics giving more precision during the components identication. To treat this problem, we relied on the ROMANTIC approach that proposed a component-based software architecture recovery from an object oriented system.Keywords: software reengineering, software component and interfaces, metrics, graphs
Procedia PDF Downloads 5017793 Plotting of an Ideal Logic versus Resource Outflow Graph through Response Analysis on a Strategic Management Case Study Based Questionnaire
Authors: Vinay A. Sharma, Shiva Prasad H. C.
Abstract:
The initial stages of any project are often observed to be in a mixed set of conditions. Setting up the project is a tough task, but taking the initial decisions is rather not complex, as some of the critical factors are yet to be introduced into the scenario. These simple initial decisions potentially shape the timeline and subsequent events that might later be plotted on it. Proceeding towards the solution for a problem is the primary objective in the initial stages. The optimization in the solutions can come later, and hence, the resources deployed towards attaining the solution are higher than what they would have been in the optimized versions. A ‘logic’ that counters the problem is essentially the core of the desired solution. Thus, if the problem is solved, the deployment of resources has led to the required logic being attained. As the project proceeds along, the individuals working on the project face fresh challenges as a team and are better accustomed to their surroundings. The developed, optimized solutions are then considered for implementation, as the individuals are now experienced, and know better of the consequences and causes of possible failure, and thus integrate the adequate tolerances wherever required. Furthermore, as the team graduates in terms of strength, acquires prodigious knowledge, and begins its efficient transfer, the individuals in charge of the project along with the managers focus more on the optimized solutions rather than the traditional ones to minimize the required resources. Hence, as time progresses, the authorities prioritize attainment of the required logic, at a lower amount of dedicated resources. For empirical analysis of the stated theory, leaders and key figures in organizations are surveyed for their ideas on appropriate logic required for tackling a problem. Key-pointers spotted in successfully implemented solutions are noted from the analysis of the responses and a metric for measuring logic is developed. A graph is plotted with the quantifiable logic on the Y-axis, and the dedicated resources for the solutions to various problems on the X-axis. The dedicated resources are plotted over time, and hence the X-axis is also a measure of time. In the initial stages of the project, the graph is rather linear, as the required logic will be attained, but the consumed resources are also high. With time, the authorities begin focusing on optimized solutions, since the logic attained through them is higher, but the resources deployed are comparatively lower. Hence, the difference between consecutive plotted ‘resources’ reduces and as a result, the slope of the graph gradually increases. On an overview, the graph takes a parabolic shape (beginning on the origin), as with each resource investment, ideally, the difference keeps on decreasing, and the logic attained through the solution keeps increasing. Even if the resource investment is higher, the managers and authorities, ideally make sure that the investment is being made on a proportionally high logic for a larger problem, that is, ideally the slope of the graph increases with the plotting of each point.Keywords: decision-making, leadership, logic, strategic management
Procedia PDF Downloads 108