Search results for: nonlinear regression
2461 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method
Authors: Luh Eka Suryani, Purhadi
Abstract:
Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion
Procedia PDF Downloads 1592460 An Optimized Method for Calculating the Linear and Nonlinear Response of SDOF System Subjected to an Arbitrary Base Excitation
Authors: Hossein Kabir, Mojtaba Sadeghi
Abstract:
Finding the linear and nonlinear responses of a typical single-degree-of-freedom system (SDOF) is always being regarded as a time-consuming process. This study attempts to provide modifications in the renowned Newmark method in order to make it more time efficient than it used to be and make it more accurate by modifying the system in its own non-linear state. The efficacy of the presented method is demonstrated by assigning three base excitations such as Tabas 1978, El Centro 1940, and MEXICO CITY/SCT 1985 earthquakes to a SDOF system, that is, SDOF, to compute the strength reduction factor, yield pseudo acceleration, and ductility factor.Keywords: single-degree-of-freedom system (SDOF), linear acceleration method, nonlinear excited system, equivalent displacement method, equivalent energy method
Procedia PDF Downloads 3202459 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction
Authors: Motahar Reza, Rajni Chahal, Neha Sharma
Abstract:
This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation
Procedia PDF Downloads 3992458 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis
Authors: Hyun-Woo Cho
Abstract:
Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques
Procedia PDF Downloads 3872457 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations
Authors: Reza Soleimanpour, Ching Tai Ng
Abstract:
Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves
Procedia PDF Downloads 2042456 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision
Procedia PDF Downloads 4882455 Determining the Causality Variables in Female Genital Mutilation: A Factor Screening Approach
Authors: Ekele Alih, Enejo Jalija
Abstract:
Female Genital Mutilation (FGM) is made up of three types namely: Clitoridectomy, Excision and Infibulation. In this study, we examine the factors responsible for FGM in order to identify the causality variables in a logistic regression approach. From the result of the survey conducted by the Public Health Division, Nigeria Institute of Medical Research, Yaba, Lagos State, the tau statistic, τ was used to screen 9 factors that causes FGM in order to select few of the predictors before multiple regression equation is obtained. The need for this may be that the sample size may not be able to sustain having a regression with all the predictors or to avoid multi-collinearity. A total of 300 respondents, comprising 150 adult males and 150 adult females were selected for the household survey based on the multi-stage sampling procedure. The tau statistic,Keywords: female genital mutilation, logistic regression, tau statistic, African society
Procedia PDF Downloads 2612454 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings
Authors: Amira Amamou, Mnaouar Chouchane
Abstract:
This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations
Procedia PDF Downloads 4092453 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing
Authors: Maor Farid, Oleg Gendelman
Abstract:
Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics
Procedia PDF Downloads 1452452 Nonlinear Waves in Two-Layer Systems with Heat Release/Consumption at the Interface
Authors: Ilya Simanovskii
Abstract:
Nonlinear convective flows developed under the joint action of buoyant and thermo-capillary effects in a two-layer system with periodic boundary conditions on the lateral walls have been investigated. The influence of an interfacial heat release on oscillatory regimes has been studied. The computational regions with different lengths have been considered. It is shown that the development of oscillatory instability can lead to the appearance of different no steady flows.Keywords: interface, instabilities, two-layer systems, bioinformatics, biomedicine
Procedia PDF Downloads 4012451 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems
Authors: N. Kaewpraek, W. Assawinchaichote
Abstract:
This paper considers an H∞ TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an H∞ TS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H∞ performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.Keywords: h-infinity fuzzy control, an LMI approach, Takagi-Sugano (TS) fuzzy system, the photovoltaic systems
Procedia PDF Downloads 3842450 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model
Procedia PDF Downloads 2802449 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition
Procedia PDF Downloads 3322448 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 3672447 Self-Action of Pyroelectric Spatial Soliton in Undoped Lithium Niobate Samples with Pyroelectric Mechanism of Nonlinear Response
Authors: Anton S. Perin, Vladimir M. Shandarov
Abstract:
Compensation for the nonlinear diffraction of narrow laser beams with wavelength of 532 and the formation of photonic waveguides and waveguide circuits due to the contribution of pyroelectric effect to the nonlinear response of lithium niobate crystal have been experimentally demonstrated. Complete compensation for the linear and nonlinear diffraction broadening of light beams is obtained upon uniform heating of an undoped sample from room temperature to 55 degrees Celsius. An analysis of the light-field distribution patterns and the corresponding intensity distribution profiles allowed us to estimate the spacing for the channel waveguides. The observed behavior of bright soliton beams may be caused by their coherent interaction, which manifests itself in repulsion for anti-phase light fields and in attraction for in-phase light fields. The experimental results of this study showed a fundamental possibility of forming optically complex waveguide structures in lithium niobate crystals with pyroelectric mechanism of nonlinear response. The topology of these structures is determined by the light field distribution on the input face of crystalline sample. The optical induction of channel waveguide elements by interacting spatial solitons makes it possible to design optical systems with a more complex topology and a possibility of their dynamic reconfiguration.Keywords: self-action, soliton, lithium niobate, piroliton, photorefractive effect, pyroelectric effect
Procedia PDF Downloads 1672446 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 5242445 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet
Authors: Madhu Aneja, Sapna Sharma
Abstract:
Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet
Procedia PDF Downloads 2182444 An Analysis of the Effect of Sharia Financing and Work Relation Founding towards Non-Performing Financing in Islamic Banks in Indonesia
Authors: Muhammad Bahrul Ilmi
Abstract:
The purpose of this research is to analyze the influence of Islamic financing and work relation founding simultaneously and partially towards non-performing financing in Islamic banks. This research was regression quantitative field research, and had been done in Muammalat Indonesia Bank and Islamic Danamon Bank in 3 months. The populations of this research were 15 account officers of Muammalat Indonesia Bank and Islamic Danamon Bank in Surakarta, Indonesia. The techniques of collecting data used in this research were documentation, questionnaire, literary study and interview. Regression analysis result shows that Islamic financing and work relation founding simultaneously has positive and significant effect towards non performing financing of two Islamic Banks. It is obtained with probability value 0.003 which is less than 0.05 and F value 9.584. The analysis result of Islamic financing regression towards non performing financing shows the significant effect. It is supported by double linear regression analysis with probability value 0.001 which is less than 0.05. The regression analysis of work relation founding effect towards non-performing financing shows insignificant effect. This is shown in the double linear regression analysis with probability value 0.161 which is bigger than 0.05.Keywords: Syariah financing, work relation founding, non-performing financing (NPF), Islamic Bank
Procedia PDF Downloads 4312443 A Kolmogorov-Smirnov Type Goodness-Of-Fit Test of Multinomial Logistic Regression Model in Case-Control Studies
Authors: Chen Li-Ching
Abstract:
The multinomial logistic regression model is used popularly for inferring the relationship of risk factors and disease with multiple categories. This study based on the discrepancy between the nonparametric maximum likelihood estimator and semiparametric maximum likelihood estimator of the cumulative distribution function to propose a Kolmogorov-Smirnov type test statistic to assess adequacy of the multinomial logistic regression model for case-control data. A bootstrap procedure is presented to calculate the critical value of the proposed test statistic. Empirical type I error rates and powers of the test are performed by simulation studies. Some examples will be illustrated the implementation of the test.Keywords: case-control studies, goodness-of-fit test, Kolmogorov-Smirnov test, multinomial logistic regression
Procedia PDF Downloads 4562442 A Study on Inference from Distance Variables in Hedonic Regression
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban area, several landmarks may affect housing price and rents, hedonic analysis should employ distance variables corresponding to each landmarks. Unfortunately, the effects of distances to landmarks on housing prices are generally not consistent with the true price. These distance variables may cause magnitude error in regression, pointing a problem of spatial multicollinearity. In this paper, we provided some approaches for getting the samples with less bias and method on locating the specific sampling area to avoid the multicollinerity problem in two specific landmarks case.Keywords: landmarks, hedonic regression, distance variables, collinearity, multicollinerity
Procedia PDF Downloads 4522441 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China
Procedia PDF Downloads 4922440 Estimation of Coefficients of Ridge and Principal Components Regressions with Multicollinear Data
Authors: Rajeshwar Singh
Abstract:
The presence of multicollinearity is common in handling with several explanatory variables simultaneously due to exhibiting a linear relationship among them. A great problem arises in understanding the impact of explanatory variables on the dependent variable. Thus, the method of least squares estimation gives inexact estimates. In this case, it is advised to detect its presence first before proceeding further. Using the ridge regression degree of its occurrence is reduced but principal components regression gives good estimates in this situation. This paper discusses well-known techniques of the ridge and principal components regressions and applies to get the estimates of coefficients by both techniques. In addition to it, this paper also discusses the conflicting claim on the discovery of the method of ridge regression based on available documents.Keywords: conflicting claim on credit of discovery of ridge regression, multicollinearity, principal components and ridge regressions, variance inflation factor
Procedia PDF Downloads 4202439 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique
Authors: Pavana Basavakumar, Devadas Bhat
Abstract:
Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes
Procedia PDF Downloads 3252438 Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads
Authors: Khaled Sandjak, Boualem Tiliouine
Abstract:
Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.Keywords: FWD backcalculations, finite element simulations, Nonlinear resilient behaviour, pavement response and performance, RLT test results, unbound granular materials
Procedia PDF Downloads 2612437 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1202436 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems
Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh
Abstract:
It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property
Procedia PDF Downloads 2052435 Impact of Infrastructural Development on Socio-Economic Growth: An Empirical Investigation in India
Authors: Jonardan Koner
Abstract:
The study attempts to find out the impact of infrastructural investment on state economic growth in India. It further tries to determine the magnitude of the impact of infrastructural investment on economic indicator, i.e., per-capita income (PCI) in Indian States. The study uses panel regression technique to measure the impact of infrastructural investment on per-capita income (PCI) in Indian States. Panel regression technique helps incorporate both the cross-section and time-series aspects of the dataset. In order to analyze the difference in impact of the explanatory variables on the explained variables across states, the study uses Fixed Effect Panel Regression Model. The conclusions of the study are that infrastructural investment has a desirable impact on economic development and that the impact is different for different states in India. We analyze time series data (annual frequency) ranging from 1991 to 2010. The study reveals that the infrastructural investment significantly explains the variation of economic indicators.Keywords: infrastructural investment, multiple regression, panel regression techniques, economic development, fixed effect dummy variable model
Procedia PDF Downloads 3712434 A Quadratic Model to Early Predict the Blastocyst Stage with a Time Lapse Incubator
Authors: Cecile Edel, Sandrine Giscard D'Estaing, Elsa Labrune, Jacqueline Lornage, Mehdi Benchaib
Abstract:
Introduction: The use of incubator equipped with time-lapse technology in Artificial Reproductive Technology (ART) allows a continuous surveillance. With morphocinetic parameters, algorithms are available to predict the potential outcome of an embryo. However, the different proposed time-lapse algorithms do not take account the missing data, and then some embryos could not be classified. The aim of this work is to construct a predictive model even in the case of missing data. Materials and methods: Patients: A retrospective study was performed, in biology laboratory of reproduction at the hospital ‘Femme Mère Enfant’ (Lyon, France) between 1 May 2013 and 30 April 2015. Embryos (n= 557) obtained from couples (n=108) were cultured in a time-lapse incubator (Embryoscope®, Vitrolife, Goteborg, Sweden). Time-lapse incubator: The morphocinetic parameters obtained during the three first days of embryo life were used to build the predictive model. Predictive model: A quadratic regression was performed between the number of cells and time. N = a. T² + b. T + c. N: number of cells at T time (T in hours). The regression coefficients were calculated with Excel software (Microsoft, Redmond, WA, USA), a program with Visual Basic for Application (VBA) (Microsoft) was written for this purpose. The quadratic equation was used to find a value that allows to predict the blastocyst formation: the synthetize value. The area under the curve (AUC) obtained from the ROC curve was used to appreciate the performance of the regression coefficients and the synthetize value. A cut-off value has been calculated for each regression coefficient and for the synthetize value to obtain two groups where the difference of blastocyst formation rate according to the cut-off values was maximal. The data were analyzed with SPSS (IBM, Il, Chicago, USA). Results: Among the 557 embryos, 79.7% had reached the blastocyst stage. The synthetize value corresponds to the value calculated with time value equal to 99, the highest AUC was then obtained. The AUC for regression coefficient ‘a’ was 0.648 (p < 0.001), 0.363 (p < 0.001) for the regression coefficient ‘b’, 0.633 (p < 0.001) for the regression coefficient ‘c’, and 0.659 (p < 0.001) for the synthetize value. The results are presented as follow: blastocyst formation rate under cut-off value versus blastocyst rate formation above cut-off value. For the regression coefficient ‘a’ the optimum cut-off value was -1.14.10-3 (61.3% versus 84.3%, p < 0.001), 0.26 for the regression coefficient ‘b’ (83.9% versus 63.1%, p < 0.001), -4.4 for the regression coefficient ‘c’ (62.2% versus 83.1%, p < 0.001) and 8.89 for the synthetize value (58.6% versus 85.0%, p < 0.001). Conclusion: This quadratic regression allows to predict the outcome of an embryo even in case of missing data. Three regression coefficients and a synthetize value could represent the identity card of an embryo. ‘a’ regression coefficient represents the acceleration of cells division, ‘b’ regression coefficient represents the speed of cell division. We could hypothesize that ‘c’ regression coefficient could represent the intrinsic potential of an embryo. This intrinsic potential could be dependent from oocyte originating the embryo. These hypotheses should be confirmed by studies analyzing relationship between regression coefficients and ART parameters.Keywords: ART procedure, blastocyst formation, time-lapse incubator, quadratic model
Procedia PDF Downloads 3062433 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach
Authors: Ju-Young Hwang, Hyo-Gyoung Kwak
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis
Procedia PDF Downloads 4142432 A Quick Method for Seismic Vulnerability Evaluation of Offshore Structures by Static and Dynamic Nonlinear Analyses
Authors: Somayyeh Karimiyan
Abstract:
To evaluate the seismic vulnerability of vital offshore structures with the highest possible precision, Nonlinear Time History Analyses (NLTHA), is the most reliable method. However, since it is very time-consuming, a quick procedure is greatly desired. This paper presents a quick method by combining the Push Over Analysis (POA) and the NLTHA. The POA is preformed first to recognize the more critical members, and then the NLTHA is performed to evaluate more precisely the critical members’ vulnerability. The proposed method has been applied to jacket type structure. Results show that combining POA and NLTHA is a reliable seismic evaluation method, and also that none of the earthquake characteristics alone, can be a dominant factor in vulnerability evaluation.Keywords: jacket structure, seismic evaluation, push-over and nonlinear time history analyses, critical members
Procedia PDF Downloads 280