Search results for: mine revegetation
183 The Affective Motivation of Women Miners in Ghana
Authors: Adesuwa Omorede, Rufai Haruna Kilu
Abstract:
Affective motivation (motivation that is emotionally laden usually related to affect, passion, emotions, moods) in the workplace stimulates individuals to reinforce, persist and commit to their task, which leads to the individual and organizational performance. This leads individuals to reach goals especially in situations where task are highly challenging and hostile. In such situations, individuals are more disposed to be more creative, innovative and see new opportunities from the loopholes in their workplace. However, when individuals feel displaced and less important, an adverse reaction may suffice which may be detrimental to the organization and its performance. One sector where affective motivation is eminently present and relevant, is the mining industry. Due to its intense work environment; mostly dominated by men and masculinity cultures; and deliberate exclusion of women in this environment which, makes the women working in these environments to feel marginalized. In Ghana, the mining industry is mostly seen as a very physical environment especially underground and mostly considerd as 'no place for a woman'. Despite the fact that these women feel less 'needed' or 'appreciated' in such environments, they still have to juggle between intense work shifts; face violence and other health risks with their families, which put a strain on their affective motivational reaction. Beyond these challenges, however, several mining companies in Ghana today are working towards providing a fair and equal working situation for both men and women miners, by recognizing them as key stakeholders, as well as including them in the stages of mining projects from the planning and designing phase to the evaluation and implementation stage. Drawing from the psychology and gender literature, this study takes a narrative approach to identify and understand the shifting gender dynamics within the mine works in Ghana, occasioning a change in background disposition of miners, which leads to more women taking up mine jobs in the country. In doing so, a qualitative study was conducted using semi-structured interviews from Ghana. Several women working within the mining industries in Ghana shared their experiences and how they felt and still feel in their workplace. In addition, archival documents were gathered to support the findings. The results suggest a change in enrolment regimes in a mining and technology university in Ghana, making room for a more gender equal enrolments in the university. A renowned university that train and feed mine work professional into the industry. The results further acknowledge gender equal and diversity recruitment policies and initiatives among the mining companies of Ghana. This study contributes to the psychology and gender literature by highlighting the hindrances women face in the mining industry as well as highlighting several of their affective reactions towards gender inequality. The study also provides several suggestions for decision makers in the mining industry of what can be done in the future to reduce the gender inequality gap within the industry.Keywords: affective motivation, gender shape shifting, mining industry, women miners
Procedia PDF Downloads 301182 Effects of Sulphide Mining on AISI 304 Stainless Steel
Authors: Aguasanta Miguel Sarmiento, José Miguel Dávila, María Luisa de la Torre
Abstract:
Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV, and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz), and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyse the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned, and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components, but also because of the implications for human safety.Keywords: acid mine drainage, corrosion, mechanical properties, stainless steel
Procedia PDF Downloads 15181 Bowing of a Pipeline from Longitudinal Compressive Stress Induced by Ground Movement
Authors: Gennaro Marino
Abstract:
This paper concerns a case of a 10.75 inch diameter buried gas transmission line which was exposed to mine subsidence ground movements. The pipeline was buried about 4ft. below the surface with maximum operating pressure of 1440 psi. The mine subsidence movement was the result of long walling ore at a depth of approximately 1600 ft. As ore extraction progressed, the stress in the monitored pipeline worsened and was approaching unacceptable levels. The excessive pipe compression resulted when it was exposed to the compression zone of subsidence basin created by mining. The pipe stress reached a significant compressive level due to the extensive length of the pipe exposed to frictional ground-pipe slip resistance. The backfill ground movement slip resistance depends on normal stress around the pipe, the rate of slip, and the backfill characteristics. Normal stress depends on the burial depth of the backfill density and the lateral subsidence induced stress. The backfill in this site has a soil dry density of approximately 90 PCF. A suite of direct shear tests was conducted a residual friction angle of 36 was determined for the ambient backfill. These tests showed that the residual shearing resistance was reached within a fraction of an inch. The pipe was coated with fusion-bonded epoxy, so friction reduce factory of 0.6 can be considered. To relieve ground movement induced compressive stress, the line was uncovered. As more of the pipeline was exposed, the pipe abruptly bowed in the excavation. An analysis of this pipe formation which was performed is provided in this paper. Also discussed in this paper are ways to mitigate this pipe deformation or upheaval buckling from occurring. Keywords: Pipe Upheaval, Pipe Buckling, Ground subsidence, Buried Pipeline, Pipe Stress Mitigation.Keywords: pipe upheaval, pipe buckling, ground subsidence, buried pipeline, pipe stress mitigation
Procedia PDF Downloads 161180 Stainless Steel Degradation by Sulphide Mining
Authors: Aguasanta M. Sarmiento, Jose Miguel Davila, Juan Carlos Fortes, Maria Luisa de la Torre
Abstract:
Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz) and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyze the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components but also because of the implications for human safety.Keywords: Acid mine drainage, Corrosion, Mechanical properties, Stainless steel
Procedia PDF Downloads 7179 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy
Authors: John Dorrell, Matthew Ambrosia, Abilash
Abstract:
This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.Keywords: bitcoin, mining, economics, energy
Procedia PDF Downloads 33178 Physical Properties of Rice Field Receiving Irrigation Polluted by Gold Mine Tailing: Case Study in Dharmasraya, West Sumatra, Indonesia
Authors: Yulna Yulnafatmawita, Syafrimen Yasin, Lusi Maira
Abstract:
Irrigation source is one of the factors affecting physical properties of rice field. This research was aimed to determine the impact of polluted irrigation wáter on soil physical properties of rice field. The study site was located in Koto Nan IV, Dharmasraya Regency, West Sumatra, Indonesia. The rice field was irrigated with wáter from Momongan river in which people do gold mining. The soil was sampled vertically from the top to 100 cm depth with 20 cm increment of soil profile from 2 year-fallowed rice field, as well as from the top 20 cm of cultivated rice field from the terrace-1 (the highest terrace) to terrace-5 (the lowest terrace) position. Soil samples were analysed in laboratory. For comparison, rice field receiving irrigation wáter from non-polluted source was also sampled at the top 20 cm and anaysed for the physical properties. The result showed that there was a change in soil physical properties of rice field after 9 years of getting irrigation from the river. Based on laboratory analyses, the total suspended solid (TSS) in the tailing reached 10,736 mg/L. The texture of rice field at polluted rice field (PRF) was dominated (>55%) by sand particles at the top 100 cm soil depth, and it tended to linearly decrease (R2=0.65) from the top 20 cm to 100 cm depth. Likewise, the sand particles also linearly decreased (R2=0.83), but clay particles linearly increased (R2=0.74) horizontally as the distance from the wáter input (terrace-1) was fartherst. Compared to nonpolluted rice field (NPRF), percentage of sand was higher, and clay was lower at PRF. This sandy texture of soil in PRF increased soil hydraulic conductivity (up to 19.1 times), soil bulk density (by 38%), and sharply decreased SOM (by 88.5 %), as well as soil total pore (by 22.1%) compared to the NPRF at the top 20 cm soil. The rice field was suggested to be reclaimed before reusing it. Otherwise the soil characteristics requirement, especially soil wáter retention, for rice field could not be fulfilled.Keywords: gold mine tailing, polluted irrigation, rice field, soil physical properties
Procedia PDF Downloads 286177 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction
Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer
Abstract:
Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.Keywords: extraction, MOF, ligand, uranium
Procedia PDF Downloads 160176 Standardization of Propagation Techniques in Selected Native Plants of Kuwait
Authors: Laila Almulla, Narayana Bhat, Majda Suleiman, Sheena Jacob
Abstract:
Biodiversity conservation has become one of the challenging priorities to combat species extinction for many countries, including the state of Kuwait. Since native plants are better adapted to the local environment, can endure long spells of drought, withstand high soil salinity levels and provide a more natural effect to landscape projects, their use will both conserve natural resources and produce sustainable greenery. When native plants are properly blended with naturalized exotic ornamental plants in a landscape, they can improve social and cultural benefits. Screening of exotic and native plants in Kuwait during the past two decades has led to the selection of some very promising plants. Continuation of evaluation of additional native and exotic plants is essential to increase diversity of plant resources for greenery projects. Therefore, an effort was made to evaluate further native plants for their suitability for greenery applications. In the present study, various treatments were used to mass multiply selected plants using seeds to secure maximum germination. Seeds were subjected to nine treatments, and each treatment was replicated five times with ten seeds per treatment unit. After the treatment, the seeds of Zygophyllum qatarense were incubated at 30 °C, three lights for 12 h, at 40% humidity; where as the seeds of Haloxylon salicornicum were incubated at 22 °C with continuous light, at 40% humidity. Soaking in 250-ppm GA3 resulted in highest germination percentage of 20% in Zygophyllum qatarense and, Soaking in 500-ppm GA3 resulted in 6% germination in Haloxylon salicornicum. Germination of the viable seeds is influenced by various external and internal factors, seed must not be in a state of dormancy and the environmental requirements for germination of that seed must be met, before germination can occur.Keywords: landscape, native plants, revegetation, seed germination
Procedia PDF Downloads 526175 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis
Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek
Abstract:
This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert
Procedia PDF Downloads 145174 Implementation of Dozer Push Measurement under Payment Mechanism in Mining Operation
Authors: Anshar Ajatasatru
Abstract:
The decline of coal prices over past years have been significantly increasing the awareness of effective mining operation. A viable step must be undertaken in becoming more cost competitive while striving for best mining practice especially at Melak Coal Mine in East Kalimantan, Indonesia. This paper aims to show how effective dozer push measurement method can be implemented as it is controlled by contract rate on the unit basis of USD ($) per bcm. The method emerges from an idea of daily dozer push activity that continually shifts the overburden until final target design by mine planning. Volume calculation is then performed by calculating volume of each time overburden is removed within determined distance using cut and fill method from a high precision GNSS system which is applied into dozer as a guidance to ensure the optimum result of overburden removal. Accumulation of daily to weekly dozer push volume is found 95 bcm which is multiplied by average sell rate of $ 0,95, thus the amount monthly revenue is $ 90,25. Furthermore, the payment mechanism is then based on push distance and push grade. The push distance interval will determine the rates that vary from $ 0,9 - $ 2,69 per bcm and are influenced by certain push slope grade from -25% until +25%. The amount payable rates for dozer push operation shall be specifically following currency adjustment and is to be added to the monthly overburden volume claim, therefore, the sell rate of overburden volume per bcm may fluctuate depends on the real time exchange rate of Jakarta Interbank Spot Dollar Rate (JISDOR). The result indicates that dozer push measurement can be one of the surface mining alternative since it has enabled to refine method of work, operating cost and productivity improvement apart from exposing risk of low rented equipment performance. In addition, payment mechanism of contract rate by dozer push operation scheduling will ultimately deliver clients by almost 45% cost reduction in the form of low and consistent cost.Keywords: contract rate, cut-fill method, dozer push, overburden volume
Procedia PDF Downloads 316173 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference
Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo
Abstract:
Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference
Procedia PDF Downloads 250172 Investigation of Yard Seam Workings for the Proposed Newcastle Light Rail Project
Authors: David L. Knott, Robert Kingsland, Alistair Hitchon
Abstract:
The proposed Newcastle Light Rail is a key part of the revitalisation of Newcastle, NSW and will provide a frequent and reliable travel option throughout the city centre, running from Newcastle Interchange at Wickham to Pacific Park in Newcastle East, a total of 2.7 kilometers in length. Approximately one-third of the route, along Hunter and Scott Streets, is subject to potential shallow underground mine workings. The extent of mining and seams mined is unclear. Convicts mined the Yard Seam and overlying Dudley (Dirty) Seam in Newcastle sometime between 1800 and 1830. The Australian Agricultural Company mined the Yard Seam from about 1831 to the 1860s in the alignment area. The Yard Seam was about 3 feet (0.9m) thick, and therefore, known as the Yard Seam. Mine maps do not exist for the workings in the area of interest and it was unclear if both or just one seam was mined. Information from 1830s geological mapping and other data showing shaft locations were used along Scott Street and information from the 1908 Royal Commission was used along Hunter Street to develop an investigation program. In addition, mining was encountered for several sites to the south of the alignment at depths of about 7 m to 25 m. Based on the anticipated depths of mining, it was considered prudent to assess the potential for sinkhole development on the proposed alignment and realigned underground utilities and to obtain approval for the work from Subsidence Advisory NSW (SA NSW). The assessment consisted of a desktop study, followed by a subsurface investigation. Four boreholes were drilled along Scott Street and three boreholes were drilled along Hunter Street using HQ coring techniques in the rock. The placement of boreholes was complicated by the presence of utilities in the roadway and traffic constraints. All the boreholes encountered the Yard Seam, with conditions varying from unmined coal to an open void, indicating the presence of mining. The geotechnical information obtained from the boreholes was expanded by using various downhole techniques including; borehole camera, borehole sonar, and downhole geophysical logging. The camera provided views of the rock and helped to explain zones of no recovery. In addition, timber props within the void were observed. Borehole sonar was performed in the void and provided an indication of room size as well as the presence of timber props within the room. Downhole geophysical logging was performed in the boreholes to measure density, natural gamma, and borehole deviation. The data helped confirm that all the mining was in the Yard Seam and that the overlying Dudley Seam had been eroded in the past over much of the alignment. In summary, the assessment allowed the potential for sinkhole subsidence to be assessed and a mitigation approach developed to allow conditional approval by SA NSW. It also confirmed the presence of mining in the Yard Seam, the depth to the seam and mining conditions, and indicated that subsidence did not appear to have occurred in the past.Keywords: downhole investigation techniques, drilling, mine subsidence, yard seam
Procedia PDF Downloads 314171 Characterisation of Extracellular Polymeric Substances from Bacteria Isolated from Acid Mine Decant in Gauteng, South Africa
Authors: Nonhlanhla Nkosi, Kulsum Kondiah
Abstract:
The toxicological manifestation of heavy metals motivates interest towards the development of a reliable, eco-friendly biosorption process. With that being said, the aim of the current study was to characterise the EPS from heavy-metal resistant bacteria isolated from acid mine decant on the West Rand, Gauteng, South Africa. To achieve this, six exopolysaccharide (EPS) producing, metal resistant strains (Pb101, Pb102, Pb103, Pb204, Co101, and Ni101) were identified as Bacillus safensis strain NBRC 100820, Bacillus proteolyticus, Micrococcus luteus, Enterobacter sp. Pb204, Bacillus wiedmannii and Bacillus zhangzhouensis, respectively with 16S rRNA sequencing. Thereafter, EPS was extracted using chemical (formaldehyde/NaOH) and physical (ultrasonification) methods followed by physicochemical characterisation of carbohydrate, DNA, and protein contents using chemical assays and spectroscopy (FTIR- Fourier transformed infrared and 3DEEM- three-dimensional excitation-emission matrix fluorescence spectroscopy). EPS treated with formaldehyde/NaOH showed better recovery of macromolecules than ultrasonification. The results of the present study showed that carbohydrates were more abundant than proteins, with carbohydrate and protein concentrations of 8.00 mg/ml and 0.22 mg/ml using chemical method in contrast to 5.00 mg/ml and 0.77 mg/ml using physical method, respectively. The FTIR spectroscopy results revealed that the extracted EPS contained hydroxyl, amide, acyl, and carboxyl groups that corresponded to the aforementioned chemical analysis results, thus asserting the presence of carbohydrates, DNA, polysaccharides, and proteins in the EPS. These findings suggest that identified functional groups of EPS form surface charges, which serve as the binding sites for suspended particles, thus possibly mediating adsorption of divalent cations and heavy metals. Using the extracted EPS in the development of a cost-effective biosorption solution for industrial wastewater treatment is attainable.Keywords: biosorbent, exopolysaccharides, heavy metals, wastewater treatment
Procedia PDF Downloads 148170 Data Management System for Environmental Remediation
Authors: Elizaveta Petelina, Anton Sizo
Abstract:
Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.Keywords: data management, environmental remediation, geographic information system, GIS, decision making
Procedia PDF Downloads 161169 Response of Subfossile Diatoms, Cladocera, and Chironomidae in Sediments of Small Ponds to Changes in Wastewater Discharges from a Zn–Pb Mine
Authors: Ewa Szarek-Gwiazda, Agata Z. Wojtal, Agnieszka Pociecha, Andrzej Kownacki, Dariusz Ciszewski
Abstract:
Mining of metal ores is one of the largest sources of heavy metals, which deteriorate aquatic systems. The response of organisms to environmental changes can be well recorded in sediments of the affected water bodies and may be reconstructed based on analyses of organisms' remains. The present study aimed at the response of diatoms (Bacillariophyta), Cladocera, and Chironomidae communities to the impact of Zn-Pb mine water discharge recorded in sediment cores of small subsidence ponds on the Chechło River floodplain (Silesia–Krakow Region, southern Poland). We hypothesize various responses of the above groups to high metal concentrations (Cd, Pb, Zn, and Cu). The investigated ponds were formed either during the peak of the ore exploitation (DOWN) or after mining cessation (UP). Currently, the concentrations of dissolved metals (in µg g⁻¹) in water reached up to 0.53 for Cd, 7.3 for Pb, and up to 47.1 for Zn. All the sediment cores from subsidence ponds were heavily polluted with Cd 6.7–612 μg g⁻¹, Pb 0.1–10.2 mg g⁻¹, and Zn 0.5–23.1 mg g⁻¹. Core sediments varied also in respect to pH 5.8-7.1 and concentrations of organic matter (5.7-39.8%). The impact of high metal concentrations was expressed by the occurrence of metal-tolerant taxa like diatoms – Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii; Cladocera – Chydorus sphaericus (dominated in cores from all ponds), and Chironomidae – Chironomus and Cricotopus especially in the DOWN ponds. Statistical analysis exhibited a negative impact of metals on some taxa of diatoms and Cladocera but only on Polypedilum sp. from Chironomidae. The abundance of such diatoms like Gomphonema utae, Staurosirella pinnata, Eunotia bilunaris, and Cladocera like Alona, Chydorus, Graptoleberis, and Pleuroxus decreased with increasing Pb concentration. However, the occurrence or dominance of more sensitive species of diatoms and Cladocera indicates their adaptation to higher metal loads, which was facilitated by neutral pH and slightly alkaline waters. Diatom assemblages were generally resistant to Zn, Pb, Cu, and Cd pollution, as indicated by their large similarity to populations from non-contaminated waters. Comparison with reference objects clearly indicates the dominance of Achnanthidium minutissimum, Staurosira venter, and Fragilaria gracilis in very diverse assemblages of unpolluted waters. The distribution of the Cladocera and Chironomidae taxa depended on the habitat type. The DOWN ponds with stagnant water and overgrown with macrophytes were more suitable for cladocerans (14 taxa, higher diversity) than the UP ponds with river water flowing through their centre and with a small share of macrophytes (8 taxa). The Chironominae, mainly Chironomus and Microspectra, were abundant in cores from the UP ponds with muddy bottoms. Inversely, the density of Orthocladiinae, especially genus Cricotopus, was related to the organic matter content and dominated in cores from the DOWN ponds. The presence of diatoms like Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii, cladocerans: Bosmina longirostris, Chydorus sphaericus, Alona affinis, and A. rectangularis as well as Chironomidae Chironomus sp. (UP ponds) and Psecrotanypus varius (DOWN ponds) indicate the influence of the water trophy on their distribution.Keywords: Chironomidae, Cladocera, diatoms, metals, Zn-Pb mine, sediment cores, subsidence ponds
Procedia PDF Downloads 77168 Neutralization of Sulphurous Waste (AMD) Using Recycled Waste Concrete
Authors: Ercument Koc, Banu Yaylali, Gulsen Tozsin, Haci Deveci
Abstract:
Re-using of concrete waste materials for the neutralization of acid mine drainage (AMD) can protect the environment and contribute the national economy. The aim of this study was to investigate the prevention of AMD formation and heavy metal release using concrete wastes which are alkaline and generated by demolition of buildings within the urban renewal process. Shake flask test was conducted to determine the neutralization effects. Concrete wastes are rich in CaCO3 and they are used as a pH regulator for AMD neutralization. The results showed that pH of the AMD increased from 3.33 to 6.84 with the application of concrete waste materials.Keywords: AMD, neutralization, sulphurous waste, urban renewal
Procedia PDF Downloads 303167 Report of Gangamopteris cyclopteroides from the Rajmahal Basin, India: An Evidence for Coal Forming Vegetation in the Area
Authors: Arun Joshi
Abstract:
The present study deals with the report of Gangamopteriscyclopteroides from the Barakar Formation of Simlong Open Cast Mine, Rajmahal Area, Rajmahal Basin, Jharkhand, India. The genus Gangamopteriscomprises leaves which are simple, entire, symmetrical or asymmetrical, linear, lanceolate, elliptical, obovate in shape, apex broadly rounded, obtuse, acute, acuminate or mucronate, base petiolate or contracted, midrib absent. Median region occupied by subparallel veins with anastomoses of elongate or hexagonal outline. Secondary veins arise from median veins by repeated dichotomy, arched, bifurcating and anasotomosing network. The present work is significant as it represents the presence of Glossopteris flora (250- 290 ma) which is mainly responsible for the formation of coal. Coal is one of the major fuels for power production through thermal power plants. The Glossopteris flora is one of the major floras that occupied the southern continent during Carboniferous- Permian time. This southern continent is also known as Gondwana comprising Australia, South Africa, Antarctica, Madagascar and India. There is a vast geological reserve of coal with favorable stripping ratio available at the Simlong Block but the area comes under the most naxalite prone area and thus the mine has been running in an unplanned manner. It has got the potential of becoming a big project with higher capacity and is well suited for enhancing production which can be helpful in the economic growth of the country. Though, the present record is scanty, it shows the presence of Glossopteris flora responsible for the formation of coal in the Coalmine. However, there are fears of fossils disappearing from this area as the state government of Jharkhand has given out a mining lease in the area to private companies. Therefore, it is very necessary to study such coal forming vegetation and their systematic study from the area to generate a new palaeobotanical database, palaeoenvironmental interpretation, basinal correlation and for the understanding of evolutionary perspectives.Keywords: Barakar formation, coal, Glossopteris flora, Gondwana, India, Naxalite, Rajmahal Basin
Procedia PDF Downloads 155166 GPU Based Real-Time Floating Object Detection System
Authors: Jie Yang, Jian-Min Meng
Abstract:
A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.Keywords: object detection, GPU, motion estimation, parallel processing
Procedia PDF Downloads 474165 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents
Authors: Amesh P, Suneesh A S, Venkatesan K A
Abstract:
The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment
Procedia PDF Downloads 168164 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health
Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo
Abstract:
The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining
Procedia PDF Downloads 57163 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source
Authors: M. Khaing, A. V. Tkacheva
Abstract:
The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.Keywords: temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli
Procedia PDF Downloads 142162 Modelling for Roof Failure Analysis in an Underground Cave
Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández
Abstract:
Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.Keywords: forensic analysis, hypothesis modelling, roof failure, seismic monitoring
Procedia PDF Downloads 115161 Proposals to Increase the Durability of Concrete Affected by Acid Mine Waters
Authors: Cristian Rodriguez, Jose M. Davila, Aguasanta M. Sarmiento, María L. de la Torre
Abstract:
There are many acidic environments that degrade structural concrete, such as those found in water treatment plants, sports facilities, and more, but one of the most aggressive is undoubtedly the water from acid mine drainage. This phenomenon occurs in all pyrite mining facilities and, to a lesser extent, in coal mines and is characterised by very low pH values and high sulphate, metal, and metalloid contents. This phenomenon causes significant damage to the concrete, mainly attacking the binder. In addition, the process is accentuated by the action of acidophilic bacteria, which accelerate the cracking of the concrete. Due to the damage that concrete experiences in acidic environments, the authors of this study aimed to enhance its performance in various aspects. Thus, two solutions have been proposed to improve the concrete durability, acting both on the mass of the material itself with the incorporation of fibres, and on its surface, proposing treatments with two different paints. The incorporation of polypropylene fibres in the concrete mass aims to improve the tensile strength of concrete, being this parameter the most affected in this type of degradation. The protection of the concrete with surface paint is intended to improve the performance against abrasion while reducing the access of water to the interior of the mass of the material. Sulpho-resistant cement has been used in all the mass concrete mixtures that have been prepared, in addition to complying with the requirements of the current Spanish standard, equivalent to the Eurocodes. For the polypropylene fibres, two alternatives have been used, with 1.7 and 3.4 kg/m³, while as surface treatment, the use of two paints has been analysed, one based on polyurethane and the other on asphalt-type paint. The proposed treatments have been analysed by means of indirect tensile tests and pressure sandblasting, thus analysing the effects of abrasion. The results obtained have confirmed a slight increase in the tensile strength of mass concrete by incorporating polypropylene fibres, being slightly higher for a ratio of 3.4 kg/m³, with an improvement of slightly more than 5% in the tensile strength of concrete. However, the use of fibres in concrete greatly reduces the loss of concrete mass due to abrasion. This improvement against abrasion is even more significant when paint is used as an external protection measure, with a much lower loss of mass with both paints. Acknowledgments: This work has been supported by MICIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: degradation, concrete, tensile strength, abrasion
Procedia PDF Downloads 15160 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis
Authors: Sofia Barbosa, Mariana Pinto, José António Almeida, Edgar Carvalho, Catarina Diamantino
Abstract:
The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps.Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends
Procedia PDF Downloads 235159 Phosphate Tailings in View of a Better Waste Disposal And/or Valorization: Case of Tunisian Phosphates Mines
Authors: Mouna Ettoumi, Jouini Marouen, Carmen Mihaela Neculita, Salah Bouhlel, Lucie Coudert, Mostafa Benzaazoua, Y. Taha
Abstract:
In the context of sustainable development and circular economy, waste valorization is considered a promising alternative to overcome issues related to their disposal or elimination. The aim of this study is to evaluate the potential use of phosphate sludges (tailings) from the Kef Shfeir mine site (Gafsa, Tunisia) as an alternative material in the production of fired bricks. To do so, representative samples of raw phosphate treatment sludges were collected and characterized for their physical, chemical, mineralogical and environmental characteristics. Then, the raw materials were baked at different temperatures (900°C, 1000°C, and 1100°C) for bricks making. Afterward, fired bricks were characterized for their physical (particle size distribution, density, and plasticity), chemical (XRF and digestion), mineralogical (XRD) and mechanical (flexural strength) properties as well as for their environmental behavior (TCLP, SPLP, and CTEU-9) to ensure whether they meet the required construction standards. Results showed that the raw materials had low density (2.47g/cm 3), were non-plastic and were mainly composed of fluoroapatite (15.6%), calcite (23.1%) and clays (22.2% - mainly as heulandite, vermiculite and palygorskite). With respect to the environmental behavior, all metals (e.g., Pb, Zn, As, Cr, Ba, Cd) complied with the requirements set by the USEPA. In addition, fired bricks had varying porosity (9-13%), firing shrinking (5.2-7.5%), water absorption (12.5-17.2%) and flexural strength (3.86-13.4 MPa). Noteworthy, an improvement in the properties (porosity, firing shrinking, water absorption, and flexural strength) of manufactured fired bricks was observed with the increase of firing temperature from 900 to 1100°C. All the measured properties complied with the construction norms and requirements. Moreover, regardless of the firing temperature, the environmental behavior of metals obeyed the requirements of the USEPA standards. Finally, fired bricks could be produced at high temperatures (1000°C) based on 100% of phosphate sludge without any substitution or addition of either chemical agents or binders. This sustainable brick-making process could be a promising approach for the Phosphate Company to partially manage these wastes, which are considered “non-profitable” for the moment and preserve soils that are exploited presently.Keywords: phosphate treatment sludge, mine waste, backed bricks, waste valorization
Procedia PDF Downloads 206158 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design
Authors: H. K. Esfahani, B. Datta
Abstract:
Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site
Procedia PDF Downloads 231157 Geometallurgy of Niobium Deposits: An Integrated Multi-Disciplined Approach
Authors: Mohamed Nasraoui
Abstract:
Spatial ore distribution, ore heterogeneity and their links with geological processes involved in Niobium concentration are all factors for consideration when bridging field observations to extraction scheme. Indeed, mineralogy changes of Nb-hosting phases, their textural relationships with hydrothermal or secondary minerals, play a key control over mineral processing. This study based both on filed work and ore characterization presents data from several Nb-deposits related to carbonatite complexes. The results obtained by a wide range of analytical techniques, including, XRD, XRF, ICP-MS, SEM, Microprobe, Spectro-CL, FTIR-DTA and Mössbauer spectroscopy, demonstrate how geometallurgical assessment, at all stage of mine development, can greatly assist in the design of a suitable extraction flowsheet and data reconciliation.Keywords: carbonatites, Nb-geometallurgy, Nb-mineralogy, mineral processing.
Procedia PDF Downloads 165156 Study of the Stability of Underground Mines by Numerical Method: The Mine Chaabet El Hamra, Algeria
Authors: Nakache Radouane, M. Boukelloul, M. Fredj
Abstract:
Method room and pillar sizes are key factors for safe mining and their recovery in open-stop mining. This method is advantageous due to its simplicity and requirement of little information to be used. It is probably the most representative method among the total load approach methods although it also remains a safe design method. Using a finite element software (PLAXIS 3D), analyses were carried out with an elasto-plastic model and comparisons were made with methods based on the total load approach. The results were presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.Keywords: room and pillar, mining, total load approach, elasto-plastic
Procedia PDF Downloads 330155 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils
Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen
Abstract:
Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.Keywords: copper, Klara, lime, N100, phytoextraction
Procedia PDF Downloads 146154 Reviewing Privacy Preserving Distributed Data Mining
Authors: Sajjad Baghernezhad, Saeideh Baghernezhad
Abstract:
Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.Keywords: data mining, distributed data mining, privacy protection, privacy preserving
Procedia PDF Downloads 525