Search results for: density estimation
5138 Software Engineering Inspired Cost Estimation for Process Modelling
Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller
Abstract:
Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO
Procedia PDF Downloads 4405137 Reliability Estimation of Bridge Structures with Updated Finite Element Models
Authors: Ekin Ozer
Abstract:
Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring
Procedia PDF Downloads 2235136 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach
Authors: Saowaluck Ukrisdawithid
Abstract:
The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.Keywords: single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material
Procedia PDF Downloads 1535135 Estimation of Break Points of Housing Price Growth Rate for Top MSAs in Texas Area
Abstract:
Applying the structural break estimation method proposed by Perron and Bai (1998) to the housing price growth rate of top 5 MSAs in the Texas area, this paper estimated the structural break date for the growth rate of housing prices index. As shown in the estimation results, the break dates for each region are quite different, which indicates the heterogeneity of the housing market in response to macroeconomic conditions.Keywords: structural break, housing prices index, ADF test, linear model
Procedia PDF Downloads 1505134 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data
Authors: Rana Rimawi, Ayman Baklizi
Abstract:
Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation
Procedia PDF Downloads 1985133 Estimation and Restoration of Ill-Posed Parameters for Underwater Motion Blurred Images
Authors: M. Vimal Raj, S. Sakthivel Murugan
Abstract:
Underwater images degrade their quality due to atmospheric conditions. One of the major problems in an underwater image is motion blur caused by the imaging device or the movement of the object. In order to rectify that in post-imaging, parameters of the blurred image are to be estimated. So, the point spread function is estimated by the properties, using the spectrum of the image. To improve the estimation accuracy of the parameters, Optimized Polynomial Lagrange Interpolation (OPLI) method is implemented after the angle and length measurement of motion-blurred images. Initially, the data were collected from real-time environments in Chennai and processed. The proposed OPLI method shows better accuracy than the existing classical Cepstral, Hough, and Radon transform estimation methods for underwater images.Keywords: image restoration, motion blur, parameter estimation, radon transform, underwater
Procedia PDF Downloads 1765132 Assessing Relationships between Glandularity and Gray Level by Using Breast Phantoms
Authors: Yun-Xuan Tang, Pei-Yuan Liu, Kun-Mu Lu, Min-Tsung Tseng, Liang-Kuang Chen, Yuh-Feng Tsai, Ching-Wen Lee, Jay Wu
Abstract:
Breast cancer is predominant of malignant tumors in females. The increase in the glandular density increases the risk of breast cancer. BI-RADS is a frequently used density indicator in mammography; however, it significantly overestimates the glandularity. Therefore, it is very important to accurately and quantitatively assess the glandularity by mammography. In this study, 20%, 30% and 50% glandularity phantoms were exposed using a mammography machine at 28, 30 and 31 kVp, and 30, 55, 80 and 105 mAs, respectively. The regions of interest (ROIs) were drawn to assess the gray level. The relationship between the glandularity and gray level under various compression thicknesses, kVp, and mAs was established by the multivariable linear regression. A phantom verification was performed with automatic exposure control (AEC). The regression equation was obtained with an R-square value of 0.928. The average gray levels of the verification phantom were 8708, 8660 and 8434 for 0.952, 0.963 and 0.985 g/cm3, respectively. The percent differences of glandularity to the regression equation were 3.24%, 2.75% and 13.7%. We concluded that the proposed method could be clinically applied in mammography to improve the glandularity estimation and further increase the importance of breast cancer screening.Keywords: mammography, glandularity, gray value, BI-RADS
Procedia PDF Downloads 4915131 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment
Authors: Margarita Belousova
Abstract:
The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment
Procedia PDF Downloads 2765130 On Parameter Estimation of Simultaneous Linear Functional Relationship Model for Circular Variables
Authors: N. A. Mokhtar, A. G. Hussin, Y. Z. Zubairi
Abstract:
This paper proposes a new simultaneous simple linear functional relationship model by assuming equal error variances. We derive the maximum likelihood estimate of the parameters in the simultaneous model and the covariance. We show by simulation study the small bias values of the parameters suggest the suitability of the estimation method. As an illustration, the proposed simultaneous model is applied to real data of the wind direction and wave direction measured by two different instruments.Keywords: simultaneous linear functional relationship model, Fisher information matrix, parameter estimation, circular variables
Procedia PDF Downloads 3665129 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration
Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan
Abstract:
The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning
Procedia PDF Downloads 345128 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data
Authors: Arman S. Kussainov, Altynbek K. Beisekov
Abstract:
This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm
Procedia PDF Downloads 4125127 Effect of Adjacent Footings on Elastic Settlement of Shallow Foundations
Authors: Mustafa Aytekin
Abstract:
In this study, impact of adjacent footings is considered on the estimation of elastic settlement of shallow foundations. In the estimation of elastic settlement, the Schmertmann’s method that is a very popular method in the elastic settlement estimation of shallow foundations is employed. In order to consider affect of neighboring footings on elastic settlement of main footing in different configurations, a MATLAB script has been generated. Elastic settlements of the various configurations are estimated by the script and several conclusions have been reached.Keywords: elastic (immediate) settlement, Schmertman Method, adjacent footings, shallow foundations
Procedia PDF Downloads 4675126 Kalman Filter Gain Elimination in Linear Estimation
Authors: Nicholas D. Assimakis
Abstract:
In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.Keywords: discrete time, estimation, Kalman filter, Kalman filter gain
Procedia PDF Downloads 1955125 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network
Authors: Leila Keshavarz Afshar, Hedieh Sajedi
Abstract:
Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter
Procedia PDF Downloads 1475124 Age Estimation Using Atlas Method with Orthopantomogram and Digital Tracing on Lateral Cephalogram
Authors: Astika Swastirani
Abstract:
Chronological age estimation can be done by looking at the stage of growth and development of teeth from orthopantomogram and mandibular remodeling from lateral cephalogram. Mandibular morphological changes associated with the size and remodeling during growth is a strong indicator of age estimation. These changes can be observed with lateral cephalogram. Objective: To prove the difference between chronological age and age estimation using orthopantomogram (dental age) and lateral cephalogram (skeletal age). Methods: Sample consisted of 100 medical records, 100 orthopantomograms digital and 100 lateral cephalograms digital belongs to 50 male and 50 female of Airlangga University hospital of dentistry. Orthopantomogram were matched with London atlas and lateral cephalograms were observed by digital tracing. The difference of dental age and skeletal age was analyzed by pair t –test. Result: Result of the pair t-test between chronological age and dental age in male (p-value 0.002, p<0.05), in female (p-value 0.605, p>0.05). Result of pair t-test between the chronological age and skeletal age (variable length Condylion-Gonion, Gonion-Gnathion, Condylion-Gnathion in male (p-value 0.000, p<0.05) in female (variable Condylion-Gonion length (p-value 0.000, Condylion-Gnathion length (p-value 0,040) and Gonion-Gnathion length (p-value 0.493). Conclusion: Orthopantomogram with London atlas and lateral cephalograms with Gonion- Gnathion variable can be used for age estimation in female. Orthopantomogram with London atlas and lateral cephalograms with Condylion-Gonion variable, Gonion-Gnathion variable and Condylion-Gnathion can not be used for age estimation in male.Keywords: age estimation, chronological age, dental age, skeletal age
Procedia PDF Downloads 1695123 Estimation and Comparison of Delay at Signalized Intersections Based on Existing Methods
Authors: Arpita Saha, Satish Chandra, Indrajit Ghosh
Abstract:
Delay implicates the time loss of a traveler while crossing an intersection. Efficiency of traffic operation at signalized intersections is assessed in terms of delay caused to an individual vehicle. Highway Capacity Manual (HCM) method and Webster’s method are the most widely used in India for delay estimation purpose. However, in India, traffic is highly heterogeneous in nature with extremely poor lane discipline. Therefore, to explore best delay estimation technique for Indian condition, a comparison was made. In this study, seven signalized intersections from three different cities where chosen. Data was collected for both during morning and evening peak hours. Only under saturated cycles were considered for this study. Delay was estimated based on the field data. With the help of Simpson’s 1/3 rd rule, delay of under saturated cycles was estimated by measuring the area under the curve of queue length and cycle time. Moreover, the field observed delay was compared with the delay estimated using HCM, Webster, Probabilistic, Taylor’s expansion and Regression methods. The drawbacks of the existing delay estimation methods to be use in Indian heterogeneous traffic conditions were figured out, and best method was proposed. It was observed that direct estimation of delay using field measured data is more accurate than existing conventional and modified methods.Keywords: delay estimation technique, field delay, heterogeneous traffic, signalised intersection
Procedia PDF Downloads 3015122 Study of Harmonics Estimation on Analog kWh Meter Using Fast Fourier Transform Method
Authors: Amien Rahardjo, Faiz Husnayain, Iwa Garniwa
Abstract:
PLN used the kWh meter to determine the amount of energy consumed by the household customers. High precision of kWh meter is needed in order to give accuracy results as the accuracy can be decreased due to the presence of harmonic. In this study, an estimation of active power consumed was developed. Based on the first year study results, the largest deviation due to harmonics can reach up to 9.8% in 2200VA and 12.29% in 3500VA with kWh meter analog. In the second year of study, deviation of digital customer meter reaches 2.01% and analog meter up to 9.45% for 3500VA household customers. The aim of this research is to produce an estimation system to calculate the total energy consumed by household customer using analog meter so the losses due to irregularities PLN recording of energy consumption based on the measurement used Analog kWh-meter installed is avoided.Keywords: harmonics estimation, harmonic distortion, kWh meters analog and digital, THD, household customers
Procedia PDF Downloads 4835121 Parametric Estimation of U-Turn Vehicles
Authors: Yonas Masresha Aymeku
Abstract:
The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity.Keywords: geometric, guiddelines, median, vehicles
Procedia PDF Downloads 675120 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm
Authors: Linyu Wang, Furui Huo, Jianhong Xiang
Abstract:
The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.Keywords: OFDM, doubly selective, channel estimation, compressed sensing
Procedia PDF Downloads 955119 Mobile Platform’s Attitude Determination Based on Smoothed GPS Code Data and Carrier-Phase Measurements
Authors: Mohamed Ramdani, Hassen Abdellaoui, Abdenour Boudrassen
Abstract:
Mobile platform’s attitude estimation approaches mainly based on combined positioning techniques and developed algorithms; which aim to reach a fast and accurate solution. In this work, we describe the design and the implementation of an attitude determination (AD) process, using only measurements from GPS sensors. The major issue is based on smoothed GPS code data using Hatch filter and raw carrier-phase measurements integrated into attitude algorithm based on vectors measurement using least squares (LSQ) estimation method. GPS dataset from a static experiment is used to investigate the effectiveness of the presented approach and consequently to check the accuracy of the attitude estimation algorithm. Attitude results from GPS multi-antenna over short baselines are introduced and analyzed. The 3D accuracy of estimated attitude parameters using smoothed measurements is over 0.27°.Keywords: attitude determination, GPS code data smoothing, hatch filter, carrier-phase measurements, least-squares attitude estimation
Procedia PDF Downloads 1555118 Estimation of Emanation Properties of Kimberlites and Host Rocks of Lomonosov Diamond Deposit in Russia
Authors: E. Yu. Yakovlev, A. V. Puchkov
Abstract:
The study is devoted to experimental work on the assessment of emanation properties of kimberlites and host rocks of the Lomonosov diamond deposit of the Arkhangelsk diamondiferous province. The aim of the study is estimation the factors influencing on formation of the radon field over kimberlite pipes. For various types of rocks composing the kimberlite pipe and near-pipe space, the following parameters were measured: porosity, density, radium-226 activity, activity of free radon and emanation coefficient. The research results showed that the largest amount of free radon is produced by rocks of near-pipe space, which are the Vendian host deposits and are characterized by high values of the emanation coefficient, radium activity and porosity. The lowest values of these parameters are characteristic of vent-facies kimberlites, which limit the formation of activity of free radon in body of the pipe. The results of experimental work confirm the prospects of using emanation methods for prospecting of kimberlite pipes.Keywords: emanation coefficient, kimberlites, porosity, radon volumetric activity
Procedia PDF Downloads 1395117 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 4475116 The Effect of Ingredients Mixing Sequence in Rubber Compounding on the Formation of Bound Rubber and Cross-Link Density of Natural Rubber
Authors: Abu Hasan, Rochmadi, Hary Sulistyo, Suharto Honggokusumo
Abstract:
This research purpose is to study the effect of Ingredients mixing sequence in rubber compounding onto the formation of bound rubber and cross link density of natural rubber and also the relationship of bound rubber and cross link density. Analysis of bound rubber formation of rubber compound and cross link density of rubber vulcanizates were carried out on a natural rubber formula having masticated and mixing, followed by curing. There were four methods of mixing and each mixing process was followed by four mixing sequence methods of carbon black into the rubber. In the first method of mixing sequence, rubber was masticated for 5 min and then rubber chemicals and carbon black N 330 were added simultaneously. In the second one, rubber was masticated for 1 min and followed by addition of rubber chemicals and carbon black N 330 simultaneously using the different method of mixing then the first one. In the third one, carbon black N 660 was used for the same mixing procedure of the second one, and in the last one, rubber was masticated for 3 min, carbon black N 330 and rubber chemicals were added subsequently. The addition of rubber chemicals and carbon black into masticated rubber was distinguished by the sequence and time allocated for each mixing process. Carbon black was added into two stages. In the first stage, 10 phr was added first and the remaining 40 phr was added later along with oil. In the second one to the fourth one, the addition of carbon black in the first and the second stage was added in the phr ratio 20:30, 30:20, and 40:10. The results showed that the ingredients mixing process influenced bound rubber formation and cross link density. In the three methods of mixing, the bound rubber formation was proportional with crosslink density. In contrast in the fourth one, bound rubber formation and cross link density had contradictive relation. Regardless of the mixing method operated, bound rubber had non linear relationship with cross link density. The high cross link density was formed when low bound rubber formation. The cross link density became constant at high bound rubber content.Keywords: bound-rubber, cross-link density, natural rubber, rubber mixing process
Procedia PDF Downloads 4115115 UV Enhanced Hydrophilicity of the Anodized Films Formed at Low Current Density and Low Voltage
Authors: Phanawan Whangdee, Tomoaki Watanabe, Viritpon Srimaneepong, Dujreutai Pongkao Kashima
Abstract:
The anodized films formed at high current density or high voltage have been widely prepared for dental implant because it can improve the hydrophilicity to the film. Our attempt is exploring whether low current density and low voltage could enhance the good hydrophilicity to the anodized films or not. Furthermore, UV irradiation would be one of the key factor to enhance their hydrophilicity. The anodized films were performed at low current density of 2 mA/cm2 in 1M H3PO4, 1 mA/cm2 in 1M MCPM and low voltage of 6 V in either 1M H3PO4 or 1M MCPM. All samples were treated with UV for various times up to 24 h. After UV irradiation, the contact angle decreased, the chemical species changed. The Ti 2p and O 1s peaks increased, while the C 1s peak decreased which might be due to removal of hydrocarbon. The functional groups of the films shown as the change of OH groups appeared at wave number 3700 cm-1 and 2900-3000 cm-1, however, the peak of H2O at 1630 cm-1disappeared. It is indicated that UV irradiation might change the stretching modes of OH groups coordinated to surface Ti4+ cation but UV did not affect to the changes in surface morphologies. The surface energies increased after UV irradiation resulting in improving of the hydrophilicity. The anodized films formed at low current density or low voltage after UV irradiation showed a low contact angle as well as the film formed at high current density or high voltage.Keywords: hydrophilicity, low current density, low voltage, UV irradiation
Procedia PDF Downloads 4995114 Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation
Authors: Pushpendra Kumar, Sanjeev Kumar, R. Balasubramanian
Abstract:
Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving.Keywords: optical flow, variational methods, computer vision, anisotropic operator
Procedia PDF Downloads 8735113 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems
Authors: Nermin Sökmen
Abstract:
An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis
Procedia PDF Downloads 2935112 Optical Flow Direction Determination for Railway Crossing Occupancy Monitoring
Authors: Zdenek Silar, Martin Dobrovolny
Abstract:
This article deals with the obstacle detection on a railway crossing (clearance detection). Detection is based on the optical flow estimation and classification of the flow vectors by K-means clustering algorithm. For classification of passing vehicles is used optical flow direction determination. The optical flow estimation is based on a modified Lucas-Kanade method.Keywords: background estimation, direction of optical flow, K-means clustering, objects detection, railway crossing monitoring, velocity vectors
Procedia PDF Downloads 5185111 The Effect of Different Composition of Dairy Cattle Feces Briquette on Moisture and Briquette Density
Authors: Dita Aviana Dewi, Heri Muji, Dian Nur Amalia, Nanung Agus Fitriyanto
Abstract:
Utilization of cow feces as a source of alternative energy can be done with turn it as briquettes. Cow feces generate heat around 4000 Cal/g and the methane gas (CH4) are quite high. Methane gas is one of the essential elements in briquettes which serve as the ignition, so that is resulting briquettes combustible. This study aims to know the difference of the composition of the constituents of briquette moisture content and density. Dairy cattle feces used as the main ingredient with additional material from the waste of the agricultural industry in the form of husk. This study was conducted with three treatments, namely T0= feces 1: husk 1, T1= feces 2: husk 1, and T2= feces 3: husk 1. Each treatment was replicated three times. The experimental design used was Complete Random Design Pattern in line with testing of Dunnet. The observed variables are moisture content and density of the briquettes. Results of this study showed an average moisture content of T0 is 31,17%, T1 is 28,14%, and T2 is 49.95%. The average density of briquettes at T0 is 1,0787 g/cm3, T1 is 1,1448 g/cm3, and T2 is 1,1133 g/cm3. Summary of the study is to take the difference of the composition of the feces and the husk do not have significant effects on moisture content and density of briquettes (p < 0.05).Keywords: dairy cattle feces, briquette, moisture, density
Procedia PDF Downloads 7385110 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare
Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl
Abstract:
Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.Keywords: average run length (ARL), bernoulli cusum (BC) chart, beta binomial posterior predictive (BBPP) distribution, clinical indicator (CI), healthcare organization (HCO), highest posterior density (HPD) interval
Procedia PDF Downloads 2015109 Indoor Temperature Estimation with FIR Filter Using R-C Network Model
Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn
Abstract:
In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter
Procedia PDF Downloads 447