Search results for: RP/SP fusion data
25320 Hardness Analysis of Samples of Friction Stir Welded Joints of (Al-Cu)
Authors: Upamanyu Majumder, Angshuman Das
Abstract:
Friction Stir Welding (FSW) is a Solid-State joining process. Unlike fusion welding techniques it does not involve operation above the melting point temperature of metals, but above the re-crystallization temperature. FSW also does not involve fusion of other material. FSW of ALUMINIUM has been commercialized and recent studies on joining dissimilar metals have been studied. Friction stir welding was introduced and patented in 1991 by The Welding Institute. For this paper, a total of nine samples each of copper and ALUMINIUM(Dissimilar metals) were welded using FSW process and Vickers Hardness were conducted on each of the samples.Keywords: friction stir welding (FSW), recrystallization temperature, dissimilar metals, aluminium-copper, Vickers hardness test
Procedia PDF Downloads 35425319 Simulation and Characterization of Compact Magnetic Proton Recoil Spectrometer for Fast Neutron Spectra Measurements
Authors: Xingyu Peng, Qingyuan Hu, Xuebin Zhu, Xi Yuan
Abstract:
Neutron spectrometry has contributed much to the development of nuclear physics since 1932 and has also become an importance tool in several other fields, notably nuclear technology, fusion plasma diagnostics and radiation protection. Compared with neutron fluxes, neutron spectra can provide more detailed information on the internal physical process of neutron sources, such as fast neutron reactors, fusion plasma, fission-fusion hybrid reactors, and so on. However, high performance neutron spectrometer is not so commonly available as it requires the use of large and complex instrumentation. This work describes the development and characterization of a compact magnetic proton recoil (MPR) spectrometer for high-resolution measurements of fast neutron spectra. The compact MPR spectrometer is featured by its large recoil angle, small size permanent analysis magnet, short beam transport line and dual-purpose detector array for both steady state and pulsed neutron spectra measurement. A 3-dimensional electromagnetic particle transport code is developed to simulate the response function of the spectrometer. Simulation results illustrate that the performance of the spectrometer is mainly determined by n-p recoil foil and proton apertures, and an overall energy resolution of 3% is achieved for 14 MeV neutrons. Dedicated experiments using alpha source and mono-energetic neutron beam are employed to verify the simulated response function of the compact MPR spectrometer. These experimental results show a good agreement with the simulated ones, which indicates that the simulation code possesses good accuracy and reliability. The compact MPR spectrometer described in this work is a valuable tool for fast neutron spectra measurements for the fission or fusion devices.Keywords: neutron spectrometry, magnetic proton recoil spectrometer, neutron spectra, fast neutron
Procedia PDF Downloads 20225318 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured GNSS-Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite systems (GNSS), denied settings such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation, thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.Keywords: autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion
Procedia PDF Downloads 20725317 Research on Intercity Travel Mode Choice Behavior Considering Traveler’s Heterogeneity and Psychological Latent Variables
Authors: Yue Huang, Hongcheng Gan
Abstract:
The new urbanization pattern has led to a rapid growth in demand for short-distance intercity travel, and the emergence of new travel modes has also increased the variety of intercity travel options. In previous studies on intercity travel mode choice behavior, the impact of functional amenities of travel mode and travelers’ long-term personality characteristics has rarely been considered, and empirical results have typically been calibrated using revealed preference (RP) or stated preference (SP) data. This study designed a questionnaire that combines the RP and SP experiment from the perspective of a trip chain combining inner-city and intercity mobility, with consideration for the actual condition of the Huainan-Hefei traffic corridor. On the basis of RP/SP fusion data, a hybrid choice model considering both random taste heterogeneity and psychological characteristics was established to investigate travelers’ mode choice behavior for traditional train, high-speed rail, intercity bus, private car, and intercity online car-hailing. The findings show that intercity time and cost exert the greatest influence on mode choice, with significant heterogeneity across the population. Although inner-city cost does not demonstrate a significant influence, inner-city time plays an important role. Service attributes of travel mode, such as catering and hygiene services, as well as free wireless network supply, only play a minor role in mode selection. Finally, our study demonstrates that safety-seeking tendency, hedonism, and introversion all have differential and significant effects on intercity travel mode choice.Keywords: intercity travel mode choice, stated preference survey, hybrid choice model, RP/SP fusion data, psychological latent variable, heterogeneity
Procedia PDF Downloads 11125316 The Fusion of Blockchain and AI in Supply Chain Finance: Scalability in Distributed Systems
Authors: Wu You, Burra Venkata Durga Kumar
Abstract:
This study examines the promising potential of integrating Blockchain and Artificial Intelligence (AI) technologies to scalability in Distributed Systems within the field of supply chain finance. The finance industry is continually confronted with scalability challenges in its Distributed Systems, particularly within the supply chain finance sector, impacting efficiency and security. Blockchain, with its inherent attributes of high scalability and secure distributed ledger system, coupled with AI's strengths in optimizing data processing and decision-making, holds the key to innovating the industry's approach to these issues. This study elucidates the synergistic interplay between Blockchain and AI, detailing how their fusion can drive a significant transformation in the supply chain finance sector's Distributed Systems. It offers specific use-cases within this field to illustrate the practical implications and potential benefits of this technological convergence. The study also discusses future possibilities and current challenges in implementing this groundbreaking approach within the context of supply chain finance. It concludes that the intersection of Blockchain and AI could ignite a new epoch of enhanced efficiency, security, and transparency in the Distributed Systems of supply chain finance within the financial industry.Keywords: blockchain, artificial intelligence (AI), scaled distributed systems, supply chain finance, efficiency and security
Procedia PDF Downloads 9325315 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein
Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel
Abstract:
Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome
Procedia PDF Downloads 19925314 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 12325313 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System
Authors: M. L. Anitha, K. A. Radhakrishna Rao
Abstract:
With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.Keywords: biometrics, hand geometry features, inner knuckle print, recognition
Procedia PDF Downloads 22025312 Enterprise Harmonic Fusion as National Sustainability
Authors: L. R. Valencia Pérez, J. M. Peña Aguilar, Valencia Pérez, Héctor Fernando, Lamadrid A. Alberto, Vivanco V. Martín
Abstract:
Cosmology is a discipline commonly linked to philosophy. In this work, we show cosmology, from a perspective that can provide some proposals to help develop SMB in Mexico. We start from the belief that, in a complex world, the solutions to problems must nurture from different approaches. In order to be able to do this, we need to change our point of reference and use theoretical proposals and methodologies that came from other disciplines; in this case, we will try to show that between philosophy and administration exist dialogs that need to be incentivized. The work is structured in three parts. In the first one, we create a description of cosmology and how it could be applied to business. In the second, we show some of the most common problems that the SMB suffer from and in the third, we present a proposal of how cosmology can help improve the development. Finally, we concluded that better understanding of real needs, integration of knowledge at large scale and using information technologies within the cosmology framework presentment could make a difference.Keywords: harmonic fusion, national sustainability, financial management, triple helix
Procedia PDF Downloads 39425311 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 15625310 Microstructural Characterization of Creep Damage Evolution in Welded Inconel 600 Superalloy
Authors: Lourdes Yareth Herrera-Chavez, Alberto Ruiz, Victor H. Lopez
Abstract:
Superalloys are used in components that operate at high temperatures such as pressure vessels and heat exchanger tubing. Design standards for these components must consider creep resistance among other criteria. Fusion welding processes are commonly used in the industry to join such components. Fusion processes commonly generate three distinctive zones, i.e. heat affected zone (HAZ), namely weld metal (WM) and base metal (BM). In nickel-based superalloy, the microstructure developed during fusion welding dictates the mechanical response of the welded component and it is very important to establish these effects in the mechanical response of the component. In this work, two plates of Inconel 600 superalloy were Gas Metal Arc Welded (GMAW). Creep samples were cut and milled to specifications and creep tested at a temperature (650 °C) using stress level of 350, 300, 275, 250 and 200 MPa. Microstructural analysis results showed a progressive creep damage evolution that depends on the stress levels with a preferential accumulation of creep damage at the heat affected zone where the creep rupture preferentially occurs owing to an austenitic matrix with grain boundary precipitated of the type Cr23C6. The fractured surfaces showed dimple patterns of cavity and voids. Results indicated that the damage mechanism is due to cavity growth by the combined effect of the power law and diffusion creep.Keywords: austenitic microstructure, creep damage evolution, heat affected zone, vickers microhardness
Procedia PDF Downloads 20325309 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints
Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig
Abstract:
Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding
Procedia PDF Downloads 7725308 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques
Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han
Abstract:
In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.Keywords: image enhancement, multiscale retinex, image fusion, EGMSR
Procedia PDF Downloads 45825307 Klippel Feil Syndrome: A Case Report and Review of Literature
Authors: Rim Frikha, Nouha Bouayed Abdelmoula, Afifa Sellami, Salima Daoud, Tarek Rebai
Abstract:
Klippel-Feil Syndrome (KFS) is characterized by congenital vertebral fusion of the cervical spine resulting from faulty segmentation along the embryo's developing axis. A wide spectrum of associated anomalies may be present. This heterogeneity has complicated elucidation of the genetic etiology and management of the syndrome. We report a case of an isolated Klippel-Feil Syndrome with C5-C6 fusion on the cervical spine. It‘s the rarest form of congenital fused cervical vertebrae which is predisposed to the risk of spinal cord injury and neurologic problems. The aim of this paper was to review clinical heterogeneity; radiographic abnormalities and genetic etiology in Klippel-Feil Syndrome. We insist in comprehensive evaluation and delineation of diagnostic and prognostic classes.Keywords: Klippel–Feil anomaly, genetic, clinical heterogeneity, radiographic abnormalities
Procedia PDF Downloads 48425306 Fusion of Shape and Texture for Unconstrained Periocular Authentication
Authors: D. R. Ambika, K. R. Radhika, D. Seshachalam
Abstract:
Unconstrained authentication is an important component for personal automated systems and human-computer interfaces. Existing solutions mostly use face as the primary object of analysis. The performance of face-based systems is largely determined by the extent of deformation caused in the facial region and amount of useful information available in occluded face images. Periocular region is a useful portion of face with discriminative ability coupled with resistance to deformation. A reliable portion of periocular area is available for occluded images. The present work demonstrates that joint representation of periocular texture and periocular structure provides an effective expression and poses invariant representation. The proposed methodology provides an effective and compact description of periocular texture and shape. The method is tested over four benchmark datasets exhibiting varied acquisition conditions.Keywords: periocular authentication, Zernike moments, LBP variance, shape and texture fusion
Procedia PDF Downloads 27825305 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps
Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur
Abstract:
The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion
Procedia PDF Downloads 11725304 Comparative Study on Efficacy and Clinical Outcomes in Minimally Invasive Surgery Transforaminal Interbody Fusion vs Minimally Invasive Surgery Lateral Interbody Fusion
Authors: Sundaresan Soundararajan, George Ezekiel Silvananthan, Chor Ngee Tan
Abstract:
Introduction: Transforaminal Interbody Fusion (TLIF) has been adopted for many decades now, however, XLIF, still in relative infancy, has grown to be accepted as a new Minimally Invasive Surgery (MIS) option. There is a paucity of reports directly comparing lateral approach surgery to other MIS options such as TLIF in the treatment of lumbar degenerative disc diseases. Aims/Objectives: The objective of this study was to compare the efficacy and clinical outcomes between Minimally Invasive Transforaminal Interbody Fusion (TLIF) and Minimally Invasive Lateral Interbody Fusion (XLIF) in the treatment of patients with degenerative disc disease of the lumbar spine. Methods: A single center, retrospective cohort study involving a total of 38 patients undergoing surgical intervention between 2010 and 2013 for degenerative disc disease of lumbar spine at single L4/L5 level. 18 patients were treated with MIS TLIF, and 20 patients were treated with XLIF. Results: The XLIF group showed shorter duration of surgery compared to the TLIF group (176 mins vs. 208.3 mins, P = 0.03). Length of hospital stay was also significantly shorter in XLIF group (5.9 days vs. 9 days, p = 0.03). Intraoperative blood loss was favouring XLIF as 85% patients had blood loss less than 100cc compared to 58% in the TLIF group (P = 0.03). Radiologically, disc height was significantly improved post operatively in the XLIF group compared to the TLIF group (0.56mm vs. 0.39mm, P = 0.01). Foraminal height increment was also higher in the XLIF group (0.58mm vs. 0.45mm , P = 0.06). Clinically, back pain and leg pain improved in 85% of patients in the XLIF group and 78% in the TLIF group. Post op hip flexion weakness was more common in the XLIF group (40%) than in the TLIF group (0%). However, this weakness resolved within 6 months post operatively. There was one case of dural tear and surgical site infection in the TLIF group respectively and none in the XLIF group. Visual Analog Scale (VAS) score 6 months post operatively showed comparable reduction in both groups. TLIF group had Owsterty Disability Index (ODI) improvement on 67% while XLIF group showed improvement of 70% of its patients. Conclusions: Lateral approach surgery shows comparable clinical outcomes in resolution of back pain and radiculopathy to conventional MIS techniques such as TLIF. With significantly shorter duration of surgical time, minimal blood loss and shorter hospital stay, XLIF seems to be a reasonable MIS option compared to other MIS techniques in treating degenerative lumbar disc diseases.Keywords: extreme lateral interbody fusion, lateral approach, minimally invasive, XLIF
Procedia PDF Downloads 22025303 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 35825302 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks
Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi
Abstract:
In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks
Procedia PDF Downloads 37825301 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 19425300 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion
Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe
Abstract:
Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.Keywords: SIFT feature, MLBP, PCA, face sketch
Procedia PDF Downloads 33625299 H2/He and H2O/He Separation Experiments with Zeolite Membranes for Nuclear Fusion Applications
Authors: Rodrigo Antunes, Olga Borisevich, David Demange
Abstract:
In future nuclear fusion reactors, tritium self-sufficiency will be ensured by tritium (3H) production via reactions between the fusion neutrons and lithium. To favor tritium breeding, a neutron multiplier must also be used. Both tritium breeder and neutron multiplier will be placed in the so-called Breeding Blanket (BB). For the European Helium-Cooled Pebble Bed (HCPB) BB concept, the tritium production and neutron multiplication will be ensured by neutron bombardment of Li4SiO4 and Be pebbles, respectively. The produced tritium is extracted from the pebbles by purging them with large flows of He (~ 104 Nm3h-1), doped with small amounts of H2 (~ 0.1 vol%) to promote tritium extraction via isotopic exchange (producing HT). Due to the presence of oxygen in the pebbles, production of tritiated water is unavoidable. Therefore, the purging gas downstream of the BB will be composed by Q2/Q2O/He (Q = 1H, 2H, 3H), with Q2/Q2O down to ppm levels, which must be further processed for tritium recovery. A two-stage continuous approach, where zeolite membranes (ZMs) are followed by a catalytic membrane reactor (CMR), has been recently proposed to fulfil this task. The tritium recovery from Q2/Q2O/He is ensured by the CMR, that requires a reduction of the gas flow coming from the BB and a pre-concentration of Q2 and Q2O to be efficient. For this reason, and to keep this stage with reasonable dimensions, ZMs are required upfront to reduce as much as possible the He flows and concentrate the Q2/Q2O species. Therefore, experimental activities have been carried out at the Tritium Laboratory Karlsruhe (TLK) to test the separation performances of different zeolite membranes for H2/H2O/He. First experiments have been performed with binary mixtures of H2/He and H2O/He with commercial MFI-ZSM5 and NaA zeolite-type membranes. Only the MFI-ZSM5 demonstrated selectivity towards H2, with a separation factor around 1.5, and H2 permeances around 0.72 µmolm-2s-1Pa-1, rather independent for feed concentrations in the range 0.1 vol%-10 vol% H2/He. The experiments with H2O/He have demonstrated that the separation factor towards H2O is highly dependent on the feed concentration and temperature. For instance, at 0.2 vol% H2O/He the separation factor with NaA is below 2 and around 1000 at 5 vol% H2O/He, at 30°C. Overall, both membranes demonstrated complementary results at equivalent temperatures. In fact, at low feed concentrations ( ≤ 1 vol% H2O/He) MFI-ZSM5 separates better than NaA, whereas the latter has higher separation factors for higher inlet water content ( ≥ 5 vol% H2O/He). In this contribution, the results obtained with both MFI-ZSM5 and NaA membranes for H2/He and H2O/H2 mixtures at different concentrations and temperatures are compared and discussed.Keywords: nuclear fusion, gas separation, tritium processes, zeolite membranes
Procedia PDF Downloads 28825298 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison
Authors: Laurent Thiry, Michel Hassenforder
Abstract:
This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.Keywords: data transformation, functional programming, information server, optimization
Procedia PDF Downloads 15725297 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data
Authors: Huinan Zhang, Wenjie Jiang
Abstract:
Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.Keywords: Artificial intelligence, deep learning, data mining, remote sensing
Procedia PDF Downloads 6325296 Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks
Authors: Deepa Das, Susmita Das
Abstract:
Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability.Keywords: cognitive radio, spectrum sensing, soft decision fusion, GA, PSO, IWO, hybrid IWO/PSO
Procedia PDF Downloads 46725295 Semi-Autonomous Surgical Robot for Pedicle Screw Insertion on ex vivo Bovine Bone: Improved Workflow and Real-Time Process Monitoring
Authors: Robnier Reyes, Andrew J. P. Marques, Joel Ramjist, Chris R. Pasarikovski, Victor X. D. Yang
Abstract:
Over the past three decades, surgical robotic systems have demonstrated their ability to improve surgical outcomes. The LBR Med is a collaborative robotic arm that is meant to work with a surgeon to streamline surgical workflow. It has 7 degrees of freedom and thus can be easily oriented. Position and torque sensors at each joint allow it to maintain a position accuracy of 150 µm with real-time force and torque feedback, making it ideal for complex surgical procedures. Spinal fusion procedures involve the placement of as many as 20 pedicle screws, requiring a great deal of accuracy due to proximity to the spinal canal and surrounding vessels. Any deviation from intended path can lead to major surgical complications. Assistive surgical robotic systems are meant to serve as collaborative devices easing the workload of the surgeon, thereby improving pedicle screw placement by mitigating fatigue related inaccuracies. Moreover, robotic spinal systems have shown marked improvements over conventional freehanded techniques in both screw placement accuracy and fusion quality and have greatly reduced the need for screw revision, intraoperatively and post-operatively. However, current assistive spinal fusion robots, such as the ROSA Spine, are limited in functionality to positioning surgical instruments. While they offer a small degree of improvement in pedicle screw placement accuracy, they do not alleviate surgeon fatigue, nor do they provide real-time force and torque feedback during screw insertion. We propose a semi-autonomous surgical robot workflow for spinal fusion where the surgeon guides the robot to its initial position and orientation, and the robot drives the pedicle screw accurately into the vertebra. Here, we demonstrate feasibility by inserting pedicle screws into ex-vivo bovine rib bone. The robot monitors position, force and torque with respect to predefined values selected by the surgeon to ensure the highest possible spinal fusion quality. The workflow alleviates the strain on the surgeon by having the robot perform the screw placement while the ability to monitor the process in real-time keeps the surgeon in the system loop. The approach we have taken in terms of level autonomy for the robot reflects its ability to safely collaborate with the surgeon in the operating room without external navigation systems.Keywords: ex vivo bovine bone, pedicle screw, surgical robot, surgical workflow
Procedia PDF Downloads 16825294 Performance Evaluation of GPS/INS Main Integration Approach
Authors: Othman Maklouf, Ahmed Adwaib
Abstract:
This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.Keywords: GPS, INS, Kalman filter, sensor calibration, navigation system
Procedia PDF Downloads 59025293 Geographical Data Visualization Using Video Games Technologies
Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material
Procedia PDF Downloads 24625292 Searching the Stabilizing Effects of Neutron Shell Closure via Fusion Evaporation Residue Studies
Authors: B. R. S. Babu, E. Prasad, P. V. Laveen, A. M. Vinodkumar
Abstract:
Searching the “Island of stability” is a topic of extreme interest in theoretical as well as experimental modern physics today. This “island of stability” is spanned by superheavy elements (SHE's) that are produced in the laboratory. SHE's are believed to exist primarily due to the “magic” stabilizing effects of nuclear shell structure. SHE synthesis is extremely difficult due to their very low production cross section, often of the order of pico barns or less. Stabilizing effects of shell closures at proton number Z=82 and neutron number N=126 are predicted theoretically. Though stabilizing effects of Z=82 have been experimentally verified, no concluding observations have been made with N=126, so far. We measured and analyzed the total evaporation residue (ER) cross sections for a number of systems with neutron number around 126 to explore possible shell closure effects in ER cross sections, in this work.Keywords: super heavy elements, fusion, evaporation residue, compund nucleus
Procedia PDF Downloads 47625291 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification
Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong
Abstract:
It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization
Procedia PDF Downloads 85