Search results for: Bernstein polynomial approximation
641 Laban Movement Analysis Using Kinect
Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf
Abstract:
Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning
Procedia PDF Downloads 341640 Efficient Broadcasting in Wireless Sensor Networks
Authors: Min Kyung An, Hyuk Cho
Abstract:
In this paper, we study the Minimum Latency Broadcast Scheduling (MLBS) problem in wireless sensor networks (WSNs). The main issue of the MLBS problem is to compute schedules with the minimum number of timeslots such that a base station can broadcast data to all other sensor nodes with no collisions. Unlike existing works that utilize the traditional omni-directional WSNs, we target the directional WSNs where nodes can collaboratively determine and orientate their antenna directions. We first develop a 7-approximation algorithm, adopting directional WSNs. Our ratio is currently the best, to the best of our knowledge. We then validate the performance of the proposed algorithm through simulation.Keywords: broadcast, collision-free, directional antenna, approximation, wireless sensor networks
Procedia PDF Downloads 346639 Monomial Form Approach to Rectangular Surface Modeling
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications
Procedia PDF Downloads 146638 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 448637 Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type
Authors: Hassan J. Al Salman, Ahmed A. Al Ghafli
Abstract:
In this study, we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed-point theorem to prove existence of the approximations at each time level. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. In addition, we employ Nochetto mathematical framework to prove an optimal error bound in time for d= 1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the obtained theoretical results.Keywords: reaction diffusion system, finite element approximation, stability estimates, error bound
Procedia PDF Downloads 430636 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction
Authors: Alsaidi M. Altaher, Mohd Tahir Ismail
Abstract:
Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.Keywords: boundary correction, median filter, simulation, wavelet thresholding
Procedia PDF Downloads 428635 Optimal Emergency Shipment Policy for a Single-Echelon Periodic Review Inventory System
Authors: Saeed Poormoaied, Zumbul Atan
Abstract:
Emergency shipments provide a powerful mechanism to alleviate the risk of imminent stock-outs and can result in substantial benefits in an inventory system. Customer satisfaction and high service level are immediate consequences of utilizing emergency shipments. In this paper, we consider a single-echelon periodic review inventory system consisting of a single local warehouse, being replenished from a central warehouse with ample capacity in an infinite horizon setting. Since the structure of the optimal policy appears to be complicated, we analyze this problem under an order-up-to-S inventory control policy framework, the (S, T) policy, with the emergency shipment consideration. In each period of the periodic review policy, there is a single opportunity at any point of time for the emergency shipment so that in case of stock-outs, an emergency shipment is requested. The goal is to determine the timing and amount of the emergency shipment during a period (emergency shipment policy) as well as the base stock periodic review policy parameters (replenishment policy). We show that how taking advantage of having an emergency shipment during periods improves the performance of the classical (S, T) policy, especially when fixed and unit emergency shipment costs are small. Investigating the structure of the objective function, we develop an exact algorithm for finding the optimal solution. We also provide a heuristic and an approximation algorithm for the periodic review inventory system problem. The experimental analyses indicate that the heuristic algorithm is computationally more efficient than the approximation algorithm, but in terms of the solution efficiency, the approximation algorithm performs very well. We achieve up to 13% cost savings in the (S, T) policy if we apply the proposed emergency shipment policy. Moreover, our computational results reveal that the approximated solution is often within 0.21% of the globally optimal solution.Keywords: emergency shipment, inventory, periodic review policy, approximation algorithm.
Procedia PDF Downloads 141634 Mathematical and Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type
Authors: Hassan Al Salman, Ahmed Al Ghafli
Abstract:
In this study we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed point theorem to prove existence of the approximations. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. Also, we prove an optimal error bound in time for d=1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the theoretical results.Keywords: reaction diffusion system, finite element approximation, fixed point theorem, an optimal error bound
Procedia PDF Downloads 533633 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach
Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi
Abstract:
Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty
Procedia PDF Downloads 231632 Sparse Principal Component Analysis: A Least Squares Approximation Approach
Authors: Giovanni Merola
Abstract:
Sparse Principal Components Analysis aims to find principal components with few non-zero loadings. We derive such sparse solutions by adding a genuine sparsity requirement to the original Principal Components Analysis (PCA) objective function. This approach differs from others because it preserves PCA's original optimality: uncorrelatedness of the components and least squares approximation of the data. To identify the best subset of non-zero loadings we propose a branch-and-bound search and an iterative elimination algorithm. This last algorithm finds sparse solutions with large loadings and can be run without specifying the cardinality of the loadings and the number of components to compute in advance. We give thorough comparisons with the existing sparse PCA methods and several examples on real datasets.Keywords: SPCA, uncorrelated components, branch-and-bound, backward elimination
Procedia PDF Downloads 381631 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis
Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra
Abstract:
This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.Keywords: driver support systems, intelligent transportation systems, fuzzy logic, real time data processing
Procedia PDF Downloads 517630 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption
Authors: Raphael Zanella
Abstract:
This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under the axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit march-in-time. The code is verified by space and time convergence tests using a manufactured solution. The solving of an example problem with an axisymmetric formulation is compared to that with a full-3D formulation. Both formulations lead to the same result, but the code based on the axisymmetric formulation is much faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest in using an axisymmetric formulation when it is possible.Keywords: axisymmetric problem, continuous finite elements, heat equation, weak formulation
Procedia PDF Downloads 202629 Test of Capital Account Monetary Model of Floating Exchange Rate Determination: Further Evidence from Selected African Countries
Authors: Oloyede John Adebayo
Abstract:
This paper tested a variant of the monetary model of exchange rate determination, called Frankel’s Capital Account Monetary Model (CAAM) based on Real Interest Rate Differential, on the floating exchange rate experiences of three developing countries of Africa; viz: Ghana, Nigeria and the Gambia. The study adopted the Auto regressive Instrumental Package (AIV) and Almon Polynomial Lag Procedure of regression analysis based on the assumption that the coefficients follow a third-order Polynomial with zero-end constraint. The results found some support for the CAAM hypothesis that exchange rate responds proportionately to changes in money supply, inversely to income and positively to interest rates and expected inflation differentials. On this basis, the study points the attention of monetary authorities and researchers to the relevance and usefulness of CAAM as appropriate tool and useful benchmark for analyzing the exchange rate behaviour of most developing countries.Keywords: exchange rate, monetary model, interest differentials, capital account
Procedia PDF Downloads 412628 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 156627 Elastic and Thermal Behaviour of LaX (X= Cd, Hg) Intermetallics: A DFT Study
Authors: Gitanjali Pagare, Hansa Devi, S. P. Sanyal
Abstract:
Full-potential linearized augmented plane wave (FLAPW) method has been employed within the generalized gradient approximation (GGA) and local spin density approximation (LSDA) as the exchange correlation potential to investigate elastic properties of LaX (X = Cd and Hg) in their B2-type (CsCl) crystal structure. The calculated ground state properties such as lattice constant (a0), bulk modulus (B) and pressure derivative of bulk modulus (B') agree well with the available experimental results. The second order elastic constants (C11, C12 and C44) have been calculated. The ductility or brittleness of these intermetallic compounds is predicted by using Pugh’s rule B/GH and Cauchy’s pressure (C12-C44). The calculated results indicate that LaHg is the ductile whereas LaCd is brittle in nature.Keywords: ductility/brittleness, elastic constants, equation of states, FP-LAPW method, intermetallics
Procedia PDF Downloads 446626 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets
Authors: Surinder Deswal, Mahesh Pal
Abstract:
The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences
Procedia PDF Downloads 464625 Optimization of Fourth Order Discrete-Approximation Inclusions
Authors: Elimhan N. Mahmudov
Abstract:
The paper concerns the necessary and sufficient conditions of optimality for Cauchy problem of fourth order discrete (PD) and discrete-approximate (PDA) inclusions. The main problem is formulation of the fourth order adjoint discrete and discrete-approximate inclusions and transversality conditions, which are peculiar to problems including fourth order derivatives and approximate derivatives. Thus the necessary and sufficient conditions of optimality are obtained incorporating the Euler-Lagrange and Hamiltonian forms of inclusions. Derivation of optimality conditions are based on the apparatus of locally adjoint mapping (LAM). Moreover in the application of these results we consider the fourth order linear discrete and discrete-approximate inclusions.Keywords: difference, optimization, fourth, approximation, transversality
Procedia PDF Downloads 374624 An Approximate Formula for Calculating the Fundamental Mode Period of Vibration of Practical Building
Authors: Abdul Hakim Chikho
Abstract:
Most international codes allow the use of an equivalent lateral load method for designing practical buildings to withstand earthquake actions. This method requires calculating an approximation to the fundamental mode period of vibrations of these buildings. Several empirical equations have been suggested to calculate approximations to the fundamental periods of different types of structures. Most of these equations are knowing to provide an only crude approximation to the required fundamental periods and repeating the calculation utilizing a more accurate formula is usually required. In this paper, a new formula to calculate a satisfactory approximation of the fundamental period of a practical building is proposed. This formula takes into account the mass and the stiffness of the building therefore, it is more logical than the conventional empirical equations. In order to verify the accuracy of the proposed formula, several examples have been solved. In these examples, calculating the fundamental mode periods of several farmed buildings utilizing the proposed formula and the conventional empirical equations has been accomplished. Comparing the obtained results with those obtained from a dynamic computer has shown that the proposed formula provides a more accurate estimation of the fundamental periods of practical buildings. Since the proposed method is still simple to use and requires only a minimum computing effort, it is believed to be ideally suited for design purposes.Keywords: earthquake, fundamental mode period, design, building
Procedia PDF Downloads 284623 Closed Forms of Trigonometric Series Interms of Riemann’s ζ Function and Dirichlet η, λ, β Functions or the Hurwitz Zeta Function and Harmonic Numbers
Authors: Slobodan B. Tričković
Abstract:
We present the results concerned with trigonometric series that include sine and cosine functions with a parameter appearing in the denominator. We derive two types of closed-form formulas for trigonometric series. At first, for some integer values, as we know that Riemann’s ζ function and Dirichlet η, λ equal zero at negative even integers, whereas Dirichlet’s β function equals zero at negative odd integers, after a certain number of members, the rest of the series vanishes. Thus, a trigonometric series becomes a polynomial with coefficients involving Riemann’s ζ function and Dirichlet η, λ, β functions. On the other hand, in some cases, one cannot immediately replace the parameter with any positive integer because we shall encounter singularities. So it is necessary to take a limit, so in the process, we apply L’Hospital’s rule and, after a series of rearrangements, we bring a trigonometric series to a form suitable for the application of Choi-Srivastava’s theorem dealing with Hurwitz’s zeta function and Harmonic numbers. In this way, we express a trigonometric series as a polynomial over Hurwitz’s zeta function derivative.Keywords: Dirichlet eta lambda beta functions, Riemann's zeta function, Hurwitz zeta function, Harmonic numbers
Procedia PDF Downloads 103622 Numerical Investigation of Multiphase Flow in Pipelines
Authors: Gozel Judakova, Markus Bause
Abstract:
We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.Keywords: discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, twophase flow
Procedia PDF Downloads 329621 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm
Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri
Abstract:
This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction
Procedia PDF Downloads 31620 The Analysis of a Reactive Hydromagnetic Internal Heat Generating Poiseuille Fluid Flow through a Channel
Authors: Anthony R. Hassan, Jacob A. Gbadeyan
Abstract:
In this paper, the analysis of a reactive hydromagnetic Poiseuille fluid flow under each of sensitized, Arrhenius and bimolecular chemical kinetics through a channel in the presence of heat source is carried out. An exothermic reaction is assumed while the concentration of the material is neglected. Adomian Decomposition Method (ADM) together with Pade Approximation is used to obtain the solutions of the governing nonlinear non – dimensional differential equations. Effects of various physical parameters on the velocity and temperature fields of the fluid flow are investigated. The entropy generation analysis and the conditions for thermal criticality are also presented.Keywords: chemical kinetics, entropy generation, thermal criticality, adomian decomposition method (ADM) and pade approximation
Procedia PDF Downloads 464619 First Principle Calculations of Magnetic and Electronic Properties of Double Perovskite Ba2MnMoO6
Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Souidi, A. Abbad, T. Lantri, Z. Aziz, A. Zitouni
Abstract:
The electronic and magnetic structures of double perovskite Ba2MnMoO6 are systematically investigated using the first principle method of the Full Potential Linear Augmented Plane Waves Plus the Local Orbitals (FP-LAPW+LO) within the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA). In order to take into account the strong on-site Coulomb interaction, we included the Hubbard correlation terms: LSDA+U and GGA+U approaches. Whereas half-metallic ferromagnetic character is observed due to dominant Mn spin-up and Mo spin-down contributions insulating ground state is obtained. The LSDA+U and GGA+U calculations yield better agreement with the theoretical and the experimental results than LSDA and GGA do.Keywords: electronic structure, double perovskite, first principles, Ba2MnMoO6, half-metallic
Procedia PDF Downloads 441618 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems
Authors: Adamu S. Salawu, Ibrahim O. Isah
Abstract:
Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation
Procedia PDF Downloads 122617 Extension and Closure of a Field for Engineering Purpose
Authors: Shouji Yujiro, Memei Dukovic, Mist Yakubu
Abstract:
Fields are important objects of study in algebra since they provide a useful generalization of many number systems, such as the rational numbers, real numbers, and complex numbers. In particular, the usual rules of associativity, commutativity and distributivity hold. Fields also appear in many other areas of mathematics; see the examples below. When abstract algebra was first being developed, the definition of a field usually did not include commutativity of multiplication, and what we today call a field would have been called either a commutative field or a rational domain. In contemporary usage, a field is always commutative. A structure which satisfies all the properties of a field except possibly for commutativity, is today called a division ring ordivision algebra or sometimes a skew field. Also non-commutative field is still widely used. In French, fields are called corps (literally, body), generally regardless of their commutativity. When necessary, a (commutative) field is called corps commutative and a skew field-corps gauche. The German word for body is Körper and this word is used to denote fields; hence the use of the blackboard bold to denote a field. The concept of fields was first (implicitly) used to prove that there is no general formula expressing in terms of radicals the roots of a polynomial with rational coefficients of degree 5 or higher. An extension of a field k is just a field K containing k as a subfield. One distinguishes between extensions having various qualities. For example, an extension K of a field k is called algebraic, if every element of K is a root of some polynomial with coefficients in k. Otherwise, the extension is called transcendental. The aim of Galois Theory is the study of algebraic extensions of a field. Given a field k, various kinds of closures of k may be introduced. For example, the algebraic closure, the separable closure, the cyclic closure et cetera. The idea is always the same: If P is a property of fields, then a P-closure of k is a field K containing k, having property, and which is minimal in the sense that no proper subfield of K that contains k has property P. For example if we take P (K) to be the property ‘every non-constant polynomial f in K[t] has a root in K’, then a P-closure of k is just an algebraic closure of k. In general, if P-closures exist for some property P and field k, they are all isomorphic. However, there is in general no preferable isomorphism between two closures.Keywords: field theory, mechanic maths, supertech, rolltech
Procedia PDF Downloads 373616 A Characterization of Skew Cyclic Code with Complementary Dual
Authors: Eusebio Jr. Lina, Ederlina Nocon
Abstract:
Cyclic codes are a fundamental subclass of linear codes that enjoy a very interesting algebraic structure. The class of skew cyclic codes (or θ-cyclic codes) is a generalization of the notion of cyclic codes. This a very large class of linear codes which can be used to systematically search for codes with good properties. A linear code with complementary dual (LCD code) is a linear code C satisfying C ∩ C^⊥ = {0}. This subclass of linear codes provides an optimum linear coding solution for a two-user binary adder channel and plays an important role in countermeasures to passive and active side-channel analyses on embedded cryptosystems. This paper aims to identify LCD codes from the class of skew cyclic codes. Let F_q be a finite field of order q, and θ be an automorphism of F_q. Some conditions for a skew cyclic code to be LCD were given. To this end, the properties of a noncommutative skew polynomial ring F_q[x, θ] of automorphism type were revisited, and the algebraic structure of skew cyclic code using its skew polynomial representation was examined. Using the result that skew cyclic codes are left ideals of the ring F_q[x, θ]/〈x^n-1〉, a characterization of a skew cyclic LCD code of length n was derived. A necessary condition for a skew cyclic code to be LCD was also given.Keywords: LCD cyclic codes, skew cyclic LCD codes, skew cyclic complementary dual codes, theta-cyclic codes with complementary duals
Procedia PDF Downloads 345615 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity
Authors: M. O. Durojaye, J. T. Agee
Abstract:
This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines
Procedia PDF Downloads 322614 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System
Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal
Abstract:
The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.Keywords: microgravity effect, response surface, terminal speed, unmanned system
Procedia PDF Downloads 173613 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia
Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling
Procedia PDF Downloads 46612 A Polynomial Time Clustering Algorithm for Solving the Assignment Problem in the Vehicle Routing Problem
Authors: Lydia Wahid, Mona F. Ahmed, Nevin Darwish
Abstract:
The vehicle routing problem (VRP) consists of a group of customers that needs to be served. Each customer has a certain demand of goods. A central depot having a fleet of vehicles is responsible for supplying the customers with their demands. The problem is composed of two subproblems: The first subproblem is an assignment problem where the number of vehicles that will be used as well as the customers assigned to each vehicle are determined. The second subproblem is the routing problem in which for each vehicle having a number of customers assigned to it, the order of visits of the customers is determined. Optimal number of vehicles, as well as optimal total distance, should be achieved. In this paper, an approach for solving the first subproblem (the assignment problem) is presented. In the approach, a clustering algorithm is proposed for finding the optimal number of vehicles by grouping the customers into clusters where each cluster is visited by one vehicle. Finding the optimal number of clusters is NP-hard. This work presents a polynomial time clustering algorithm for finding the optimal number of clusters and solving the assignment problem.Keywords: vehicle routing problems, clustering algorithms, Clarke and Wright Saving Method, agglomerative hierarchical clustering
Procedia PDF Downloads 393