Search results for: spatial data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27009

Search results for: spatial data mining

25569 Exploring the Charm of Chongqing City based on the Regional Characteristics of Mountain Walking Space: A Case Study of Yuzhong Peninsula

Authors: Liu Danping

Abstract:

Walking space has very important historical and cultural value in ancient and even modern urban development. As far as the footpath itself is concerned, it reflects the spatial organization mode and traditional architectural construction characteristics of mountain cities. In terms of the spatial nature of streets, traditional streets contain the history of urban development and the most primitive urban life. The slow walking speed allows people to carefully perceive the space and scenery along the way. The real city life in the streets often makes people feel the cultural connotation and unique charm of the city. According to the regional characteristics of pedestrian traffic in the main urban area of Chongqing, the charm of chongqing is discussed. Based on the study of chongqing characteristic walking space elements, this paper summarizes the characteristics of Chongqing urban walking traffic, analyzes the existing problems of mountain city walking traffic, and takes Yuzhong Peninsula as an example to analyze the charm promotion strategy of urban walking traffic.

Keywords: mountain city, walking space, urban charm, urban renewal, regional culture

Procedia PDF Downloads 96
25568 Assessment of Land Suitability for Tea Cultivation Using Geoinformatics in the Mansehra and Abbottabad District, Pakistan

Authors: Nasir Ashraf, Sajid Rahid Ahmad, Adeel Ahmad

Abstract:

Pakistan is a major tea consumer country and ranked as the third largest importer of tea worldwide. Out of all beverage consumed in Pakistan, tea is the one with most demand for which tea import is inevitable. Being an agrarian country, Pakistan should cultivate its own tea and save the millions of dollars cost from tea import. So the need is to identify the most suitable areas with favorable weather condition and suitable soils where tea can be planted. This research is conducted over District Mansehra and District Abbottabad in Khyber Pakhtoonkhwah Province of Pakistan where the most favorable conditions for tea cultivation already exist and National Tea Research Institute has done successful experiments to cultivate high quality tea. High tech approach is adopted to meet the objectives of this research by using the remotely sensed data i.e. Aster DEM, Landsat8 Imagery. The Remote Sensing data was processed in Erdas Imagine, Envi and further analyzed in ESRI ArcGIS spatial analyst for final results and representation of result data in map layouts. Integration of remote sensing data with GIS provided the perfect suitability analysis. The results showed that out of all study area, 13.4% area is highly suitable while 33.44% area is suitable for tea plantation. The result of this research is an impressive GIS based outcome and structured format of data for the agriculture planners and Tea growers. Identification of suitable tea growing areas by using remotely sensed data and GIS techniques is a pressing need for the country. Analysis of this research lets the planners to address variety of action plans in an economical and scientific manner which can lead tea production in Pakistan to meet demand. This geomatics based model and approach may be used to identify more areas for tea cultivation to meet our demand which we can reduce by planting our own tea, and our country can be independent in tea production.

Keywords: agrarian country, GIS, geoinformatics, suitability analysis, remote sensing

Procedia PDF Downloads 391
25567 How to Use Big Data in Logistics Issues

Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy

Abstract:

Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.

Keywords: big data, logistics, operational efficiency, risk management

Procedia PDF Downloads 642
25566 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic

Authors: Chittana Phompila

Abstract:

The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.

Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery

Procedia PDF Downloads 160
25565 Participatory Cartography for Disaster Reduction in Pogreso, Yucatan Mexico

Authors: Gustavo Cruz-Bello

Abstract:

Progreso is a coastal community in Yucatan, Mexico, highly exposed to floods produced by severe storms and tropical cyclones. A participatory cartography approach was conducted to help to reduce floods disasters and assess social vulnerability within the community. The first step was to engage local authorities in risk management to facilitate the process. Two workshop were conducted, in the first, a poster size printed high spatial resolution satellite image of the town was used to gather information from the participants: eight women and seven men, among them construction workers, students, government employees and fishermen, their ages ranged between 23 and 58 years old. For the first task, participants were asked to locate emblematic places and place them in the image to familiarize with it. Then, they were asked to locate areas that get flooded, the buildings that they use as refuges, and to list actions that they usually take to reduce vulnerability, as well as to collectively come up with others that might reduce disasters. The spatial information generated at the workshops was digitized and integrated into a GIS environment. A printed version of the map was reviewed by local risk management experts, who validated feasibility of proposed actions. For the second workshop, we retrieved the information back to the community for feedback. Additionally a survey was applied in one household per block in the community to obtain socioeconomic, prevention and adaptation data. The information generated from the workshops was contrasted, through T and Chi Squared tests, with the survey data in order to probe the hypothesis that poorer or less educated people, are less prepared to face floods (more vulnerable) and live near or among higher presence of floods. Results showed that a great majority of people in the community are aware of the hazard and are prepared to face it. However, there was not a consistent relationship between regularly flooded areas with people’s average years of education, house services, or house modifications against heavy rains to be prepared to hazards. We could say that the participatory cartography intervention made participants aware of their vulnerability and made them collectively reflect about actions that can reduce disasters produced by floods. They also considered that the final map could be used as a communication and negotiation instrument with NGO and government authorities. It was not found that poorer and less educated people are located in areas with higher presence of floods.

Keywords: climate change, floods, Mexico, participatory mapping, social vulnerability

Procedia PDF Downloads 114
25564 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia

Authors: Nguyen-Thanh Son

Abstract:

Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.

Keywords: MODIS, flood, mapping, Cambodia

Procedia PDF Downloads 128
25563 Gis Database Creation for Impacts of Domestic Wastewater Disposal on BIDA Town, Niger State Nigeria

Authors: Ejiobih Hyginus Chidozie

Abstract:

Geographic Information System (GIS) is a configuration of computer hardware and software specifically designed to effectively capture, store, update, manipulate, analyse and display and display all forms of spatially referenced information. GIS database is referred to as the heart of GIS. It has location data, attribute data and spatial relationship between the objects and their attributes. Sewage and wastewater management have assumed increased importance lately as a result of general concern expressed worldwide about the problems of pollution of the environment contamination of the atmosphere, rivers, lakes, oceans and ground water. In this research GIS database was created to study the impacts of domestic wastewater disposal methods on Bida town, Niger State as a model for investigating similar impacts on other cities in Nigeria. Results from GIS database are very useful to decision makers and researchers. Bida Town was subdivided into four regions, eight zones, and 24 sectors based on the prevailing natural morphology of the town. GIS receiver and structured questionnaire were used to collect information and attribute data from 240 households of the study area. Domestic wastewater samples were collected from twenty four sectors of the study area for laboratory analysis. ArcView 3.2a GIS software, was used to create the GIS databases for ecological, health and socioeconomic impacts of domestic wastewater disposal methods in Bida town.

Keywords: environment, GIS, pollution, software, wastewater

Procedia PDF Downloads 421
25562 Assessment of Cafe Design Criteria in a Consumerist Society: An Approach on Place Attachment

Authors: Azadeh Razzagh Shoar, Hassan Sadeghi Naeini

Abstract:

There is little doubt that concepts such as space and place have become more common considering that human beings have grown more apart and more than having contact with each other, they are in contact with objects, spaces, and places. Cafés, as a third place which is neither home nor workplace, have attracted these authors’ interests, who are industrial and interior designers. There has been much research on providing suitable cafés, customer behavior, and criteria for spatial sense. However, little research has been carried out on consumerism, desire for variety, and their relationship with changing places, and specifically cafes in term of interior design. In fact, customer’s sense of place has mostly been overlooked. In this case study, authors conducted to challenge the desire for variety and consumerism as well as investigating the addictive factors in cafés. From the designers’ point of view and by collecting data through observing and interviewing café managers, this study investigates and analyzes the customers in two cafes located in a commercial building in northern Tehran (a part of city with above average economic conditions). Since these two cafés are at the same level in terms of interior and spatial design, the question is raised as to why customers patronize the newly built café despite their loyalty to the older café. This study aims to investigate and find the criteria based on the sense of space (café) in a consumerist society, a world where consumption is a myth. Going to cafés in a larger scale than a product can show a selection and finally who you are, where you go, which brand of coffee you prefer, and what time of the day you would like to have your coffee. The results show that since people spend time in cafés more than any other third place, the interaction they have with their environment is more than anything else, and they are consumers of time and place more than coffee or any other product. Also, if there is a sense of consumerism and variety, it is mostly for the place rather than coffee and other products. To satisfy this sense, individuals go to a new place (the new café). It can be easily observed that this sense overshadows the sense of efficiency, design, facilities and all important factor for a café.

Keywords: place, cafe, consumerist society, consumerism, desire for variety

Procedia PDF Downloads 165
25561 Spatial Accessibility Analysis of Kabul City Public Transport

Authors: Mohammad Idrees Yusofzai, Hirobata Yasuhiro, Matsuo Kojiro

Abstract:

Kabul is the capital of Afghanistan. It is the focal point of educational, industrial, etc. of Afghanistan. Additionally, the population of Kabul has grown recently and will increase because of return of refugees and shifting of people from other province to Kabul city. However, this increase in population, the issues of urban congestion and other related problems of urban transportation in Kabul city arises. One of the problems is public transport (large buses) service and needs to be modified and enhanced especially large bus routes that are operating in each zone of the 22 zone of Kabul City. To achieve the above mentioned goal of improving public transport, Spatial Accessibility Analysis is one of the important attributes to assess the effectiveness of transportation system and urban transport policy of a city, because accessibility indicator as an alternative tool to support public policy that aims the reinforcement of sustainable urban space. The case study of this research compares the present model (present bus route) and the modified model of public transport. Furthermore, present model, the bus routes in most of the zones are active, however, with having low frequency and unpublished schedule, and accessibility result is analyzed in four cases, based on the variables of accessibility. Whereas in modified model all zones in Kabul is taken into consideration with having specified origin and high frequency. Indeed the number of frequencies is kept high; however, this number is based on the number of buses Millie Bus Enterprise Authority (MBEA) owns. The same approach of cases is applied in modified model to figure out the best accessibility for the modified model. Indeed, the modified model is having a positive impact in congestion level in Kabul city. Besides, analyses of person trip and trip distribution have been also analyzed because how people move in the study area by each mode of transportation. So, the general aims of this research are to assess the present movement of people, identify zones in need of public transport and assess equity level of accessibility in Kabul city. The framework of methodology used in this research is based on gravity analysis model of accessibility; besides, generalized cost (time) of travel and travel mode is calculated. The main data come from person trip survey, socio-economic characteristics, demographic data by Japan International Cooperation Agency, 2008, study of Kabul city and also from the previous researches on travel pattern and the remaining data regarding present bus line and routes have been from MBEA. In conclusion, this research explores zones where public transport accessibility level is high and where it is low. It was found that both models the downtown area or central zones of Kabul city is having high level accessibility. Besides, the present model is the most unfavorable compared with the modified model based on the accessibility analysis.

Keywords: accessibility, bus generalized cost, gravity model, public transportation network

Procedia PDF Downloads 196
25560 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association

Authors: Jacky Liu

Abstract:

This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.

Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation

Procedia PDF Downloads 102
25559 Using Closed Frequent Itemsets for Hierarchical Document Clustering

Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu

Abstract:

Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.

Keywords: FIHC, documents clustering, ontology, closed frequent itemset

Procedia PDF Downloads 399
25558 A Qualitative Investigation into Street Art in an Indonesian City

Authors: Michelle Mansfield

Abstract:

Introduction: This paper uses the work of Deleuze and Guattari to consider the street art practice of youth in the Indonesian city of Yogyakarta, a hub of arts and culture in Central Java. Around the world young people have taken to city streets to populate the new informal exhibition spaces outside the galleries of official art institutions. However, rarely is the focus outside the urban metropolis of the ‘Global North.' This paper looks at these practices in a ‘Global South’ Asian context. Space and place are concepts central to understanding youth cultural expression as it emerges on the streets. Deleuze and Guattari’s notion of assemblage enriches understanding of this complex spatial and creative relationship. Yogyakarta street art combines global patterns and motifs with local meanings, symbolism, and language to express local youth voices that convey a unique sense of place on the world stage. Street art has developed as a global urban youth art movement and is theorised as a way in which marginalised young people reclaim urban space for themselves. Methodologies: This study utilised a variety of qualitative methodologies to collect and analyse data. This project took a multi-method approach to data collection, incorporating the qualitative social research methods of ethnography, nongkrong (deep hanging out), participatory action research, online research, in-depth interviews and focus group discussions. Both interviews and focus groups employed photo-elicitation methodology to stimulate rich data gathering. To analyse collected data, rhizoanalytic approaches incorporating discourse analysis and visual analysis were utilised. Street art practice is a fluid and shifting phenomenon, adding to the complexity of inquiry sites. A qualitative approach to data collection and analysis was the most appropriate way to map the components of the street art assemblage and to draw out complexities of this youth cultural practice in Yogyakarta. Major Findings: The rhizoanalytic approach devised for this study proved a useful way of examining in the street art assemblage. It illustrated the ways in which the street art assemblage is constructed. Especially the interaction of inspiration, materials, creative techniques, audiences, and spaces operate in the creations of artworks. The study also exposed the generational tensions between the senior arts practitioners, the established art world, and the young artists. Conclusion: In summary, within the spatial processes of the city, street art is inextricably linked with its audience, its striving artistic community and everyday life in the smooth rather than the striated worlds of the state and the official art world. In this way, the anarchic rhizomatic art practice of nomadic urban street crews can be described not only as ‘becoming-artist’ but as constituting ‘nomos’, a way of arranging elements which are not dependent on a structured, hierarchical organisation practice. The site, streets, crews, neighbourhood and the passers by can all be examined with the concept of assemblage. The assemblage effectively brings into focus the complexity, dynamism, and flows of desire that is a feature of street art practice by young people in Yogyakarta.

Keywords: assemblage, Indonesia, street art, youth

Procedia PDF Downloads 183
25557 Enabling and Ageing-Friendly Neighbourhoods: An Eye-Tracking Study of Multi-Sensory Experience of Senior Citizens in Singapore

Authors: Zdravko Trivic, Kelvin E. Y. Low, Darko Radovic, Raymond Lucas

Abstract:

Our understanding and experience of the built environment are primarily shaped by multi‐sensory, emotional and symbolic modes of exchange with spaces. Associated sensory and cognitive declines that come with ageing substantially affect the overall quality of life of the elderly citizens and the ways they perceive and use urban environment. Reduced mobility and increased risk of falls, problems with spatial orientation and communication, lower confidence and independence levels, decreased willingness to go out and social withdrawal are some of the major consequences of sensory declines that challenge almost all segments of the seniors’ everyday living. However, contemporary urban environments are often either sensory overwhelming or depleting, resulting in physical, mental and emotional stress. Moreover, the design and planning of housing neighbourhoods hardly go beyond the passive 'do-no-harm' and universal design principles, and the limited provision of often non-integrated eldercare and inter-generational facilities. This paper explores and discusses the largely neglected relationships between the 'hard' and 'soft' aspects of housing neighbourhoods and urban experience, focusing on seniors’ perception and multi-sensory experience as vehicles for design and planning of high-density housing neighbourhoods that are inclusive and empathetic yet build senior residents’ physical and mental abilities at different stages of ageing. The paper outlines methods and key findings from research conducted in two high-density housing neighbourhoods in Singapore with aims to capture and evaluate multi-sensorial qualities of two neighbourhoods from the perspective of senior residents. Research methods employed included: on-site sensory recordings of 'objective' quantitative sensory data (air temperature and humidity, sound level and luminance) using multi-function environment meter, spatial mapping of patterns of elderly users’ transient and stationary activity, socio-sensory perception surveys and sensorial journeys with local residents using eye-tracking glasses, and supplemented by walk-along or post-walk interviews. The paper develops a multi-sensory framework to synthetize, cross-reference, and visualise the activity and spatio-sensory rhythms and patterns and distill key issues pertinent to ageing-friendly and health-supportive neighbourhood design. Key findings show senior residents’ concerns with walkability, safety, and wayfinding, overall aesthetic qualities, cleanliness, smell, noise, and crowdedness in their neighbourhoods, as well as the lack of design support for all-day use in the context of Singaporean tropical climate and for inter-generational social interaction. The (ongoing) analysis of eye-tracking data reveals the spatial elements of senior residents’ look at and interact with the most frequently, with the visual range often directed towards the ground. With capacities to meaningfully combine quantitative and qualitative, measured and experienced sensory data, multi-sensory framework shows to be fruitful for distilling key design opportunities based on often ignored aspects of subjective and often taken-for-granted interactions with the familiar outdoor environment. It offers an alternative way of leveraging the potentials of housing neighbourhoods to take a more active role in enabling healthful living at all stages of ageing.

Keywords: ageing-friendly neighbourhoods, eye-tracking, high-density environment, multi-sensory approach, perception

Procedia PDF Downloads 156
25556 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data

Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin

Abstract:

The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.

Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline

Procedia PDF Downloads 310
25555 The Applicability of Western Environmental Criminology Theories to the Arabic Context

Authors: Nawaf Alotaibi, Andy Evans, Alison Heppenstall, Nick Malleson

Abstract:

Throughout the last two decades, motor vehicle theft (MVT) has accounted for the largest proportion of property crime incidents in Saudi Arabia (SA). However, to date, few studies have investigated SA’s MVT problem. Those that have are primarily focused on the characteristics of car thieves, and most have overlooked any spatial-temporal distribution of MVT incidents and the characteristics of victims. This paper represents the first step in understanding this problem by reviewing the existing MVT studies contextualised within the theoretical frameworks developed in environmental criminology theories – originating in the West – and exploring to what extent they are relevant to the SA context. To achieve this, the paper has identified a range of key features in SA that are different from typical Western contexts, that could limit the appropriateness and capability of applying existing environmental criminology theories. Furthermore, despite these Western studies reviewed so far having introduced a number of explanatory variables for MVT rates, a range of significant elements are apparently absent in the current literature and this requires further analysis. For example, almost no attempts have been made to quantify the associations between the locations of vehicle theft, recovery of stolen vehicles, joyriding and traffic volume.

Keywords: environmental criminology theories, motor vehicle theft, Saudi Arabia, spatial analysis

Procedia PDF Downloads 299
25554 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper

Authors: Ahmed S. Afifi, Ahmed Magdy

Abstract:

Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.

Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster

Procedia PDF Downloads 107
25553 Spatial Variation in Urbanization and Slum Development in India: Issues and Challenges in Urban Planning

Authors: Mala Mukherjee

Abstract:

Background: India is urbanizing very fast and urbanisation in India is treated as one of the most crucial components of economic growth. Though the pace of urbanisation (31.6 per cent in 2011) is however slower and lower than the average for Asia but the absolute number of people residing in cities and towns has increased substantially. Rapid urbanization leads to urban poverty and it is well represented in slums. Currently India has four metropolises and 53 million plus cities. All of them have significant slum population but the standard of living and success of slum development programmes varies across regions. Objectives: Objectives of the paper are to show how urbanisation and slum development varies across space; to show spatial variation in the standard of living in Indian slums; to analyse how the implementation of slum development policies like JNNURM, Rajiv Awas Yojana varies across cities and bring different results in different regions and what are the factors responsible for such variation. Data Sources and Methodology: Census 2011 data on urban population and slum households and amenities have been used for analysing the regional variation of urbanisation in 53 million plus cities of India. Special focus has been put on Kolkata Metropolitan Area. Statistical techniques like z-score and PCA have been employed to work out Standard of Living Deprivation score for all the slums of 53 metropolises. ARC-GIS software is used for making maps. Standard of living has been measured in terms of access to basic amenities, infrastructure and assets like drinking water, sanitation, housing condition, bank account, and so on. Findings: 1. The first finding reveals that migration and urbanization is very high in Greater Mumbai, Delhi, Bangaluru, Chennai, Hyderabad and Kolkata; but slum population is high in Greater Mumbai (50% population live in slums), Meerut, Faridabad, Ludhiana, Nagpur, Kolkata etc. Though the rate of urbanization is high in southern and western states but the percentage of slum population is high in northern states (except Greater Mumbai). 2. Standard of Living also varies widely. Slums of Greater Mumbai and North Indian Cities score fairly high in the index indicating the fact that standard of living is high in those slums compare to the slums in eastern India (Dhanbad, Jamshedpur, Kolkata). Therefore, though Kolkata have relatively lesser percentage of slum population compare to north and south Indian cities but the standard of living in Kolkata’s slums is deplorable. 3. It is interesting to note that even within Kolkata Metropolitan Area slums located in the southern and eastern municipal towns like Rajpur-Sonarpur, Pujali, Diamond Harbour, Baduria and Dankuni have lower standard of living compare to the slums located in the Hooghly Industrial belt like Titagarh, Rishrah, Srerampore etc. Slums of the Hooghly Industrial Belt are older than the slums located in eastern and southern part of the urban agglomeration. 4. Therefore, urban development and emergence of slums should not be the only issue of urban governance but standard of living should be the main focus. Slums located in the main cities like Delhi, Mumbai, Kolkata get more attention from the urban planners and similarly, older slums in a city receives greater political attention compare to the slums of smaller cities and newly emerged slums of the peripheral parts.

Keywords: urbanisation, slum, spatial variation, India

Procedia PDF Downloads 360
25552 Landscape Genetic and Species Distribution Modeling of Date Palm (Phoenix dactylifera L.)

Authors: Masoud Sheidaei, Fahimeh Koohdar

Abstract:

Date palms are economically important tree plants with high nutrition and medicinal values. More than 400 date palm cultivars are cultivated in many regions of Iran, but no report is available on landscape genetics and species distribution modeling of these trees from the country. Therefore, the present study provides a detailed insight into the genetic diversity and structure of date palm populations in Iran and investigates the effects of geographical and climatic variables on the structuring of genetic diversity in them. We used different computational methods in the study like, spatial principal components analysis (sPCA), redundancy analysis (RDA), latent factor mixed model (LFMM), and Maxent and Dismo models of species distribution modeling. We used a combination of different molecular markers for this study. The results showed that both global and local spatial features play an important role in the genetic structuring of date palms, and the genetic regions associated with local adaptation and climatic variables were identified. The effects of climatic change on the distribution of these taxa and the genetic regions adaptive to these changes will be discussed.

Keywords: adaptive genetic regions, genetic diversity, isolation by distance, populations divergence

Procedia PDF Downloads 111
25551 Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio

Authors: Tamal Roy, Anuradha Bhat

Abstract:

Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations.

Keywords: algorithm, associative cue, habitat complexity, population, spatial learning

Procedia PDF Downloads 290
25550 Analyzing Factors Impacting COVID-19 Vaccination Rates

Authors: Dongseok Cho, Mitchell Driedger, Sera Han, Noman Khan, Mohammed Elmorsy, Mohamad El-Hajj

Abstract:

Since the approval of the COVID-19 vaccine in late 2020, vaccination rates have varied around the globe. Access to a vaccine supply, mandated vaccination policy, and vaccine hesitancy contribute to these rates. This study used COVID-19 vaccination data from Our World in Data and the Multilateral Leaders Task Force on COVID-19 to create two COVID-19 vaccination indices. The first index is the Vaccine Utilization Index (VUI), which measures how effectively each country has utilized its vaccine supply to doubly vaccinate its population. The second index is the Vaccination Acceleration Index (VAI), which evaluates how efficiently each country vaccinated its population within its first 150 days. Pearson correlations were created between these indices and country indicators obtained from the World Bank. The results of these correlations identify countries with stronger health indicators, such as lower mortality rates, lower age dependency ratios, and higher rates of immunization to other diseases, displaying higher VUI and VAI scores than countries with lesser values. VAI scores are also positively correlated to Governance and Economic indicators, such as regulatory quality, control of corruption, and GDP per capita. As represented by the VUI, proper utilization of the COVID-19 vaccine supply by country is observed in countries that display excellence in health practices. A country’s motivation to accelerate its vaccination rates within the first 150 days of vaccinating, as represented by the VAI, was largely a product of the governing body’s effectiveness and economic status, as well as overall excellence in health practises.

Keywords: data mining, Pearson correlation, COVID-19, vaccination rates and hesitancy

Procedia PDF Downloads 115
25549 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study

Authors: Ghaleb Y. Abbasi, Israa Abu Rumman

Abstract:

This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.

Keywords: ARIMA models, sales demand forecasting, time series, R code

Procedia PDF Downloads 386
25548 Macroinvertebrate Variation of Endorheic Depression Wetlands within North West and Mpumalanga Provinces, South Africa

Authors: Lee-Ann Foster, Wynand Malherbe, Martin Ferriera, Johan Van Vuren

Abstract:

Aquatic macroinvertebrates are rarely used in wetland assessments due to their variability. However, in terms of biodiversity, these invertebrates form an important component of wetlands. The objective of this study was to compare the spatial and temporal variation of macroinvertebrate assemblages within endorheic depressions in Mpumalanga and North West Provinces of South Africa. Sampling was conducted over a period of two seasons during 2012 and 2013 at all sampling points to account for a wet and dry season. The identification of macroinvertebrate community samples resulted in 24 taxa for both provinces. Results showed similarities in the structure of communities in perennial endorheic depressions in both provinces with the exception of one or two species. Macroinvertebrates sampled in Mpumalanga depressions (locally called pans) were similar to those reported in previous studies completed in the area and most of the macroinvertebrates sampled in Mpumalanga and the North West are known to be commonly found in temporary habitats. The knowledge acquired can now be utilised to enhance the available literature on these systems. Long-term studies have to be implemented to better understand the ecological functioning of the pans in the North West Province.

Keywords: aquatic, macroinvertebrate assemblages, pans, spatial variation

Procedia PDF Downloads 286
25547 Digitally Mapping Aboriginal Journey Ways

Authors: Paul Longley Arthur

Abstract:

This paper reports on an Australian Research Council-funded project utilising the Australian digital research infrastructure the ‘Time-Layered Cultural Map of Australia’ (TLCMap) (https://www.tlcmap.org/) [1]. This resource has been developed to help researchers create digital maps from cultural, textual, and historical data, layered with datasets registered on the platform. TLCMap is a set of online tools that allows humanities researchers to compile humanities data using spatio-temporal coordinates – to upload, gather, analyse and visualise data. It is the only purpose-designed, Australian-developed research tool for humanities and social science researchers to identify geographical clusters and parallel journeys by sight. This presentation discusses a series of Aboriginal mapping and visualisation experiments using TLCMap to show how Indigenous knowledge can reconfigure contemporary understandings of space including the urbanised landscape [2, 3]. The research data being generated – investigating the historical movements of Aboriginal people, the distribution of networks, and their relation to land – lends itself to mapping and geo-spatial visualisation and analysis. TLCMap allows researchers to create layers on a 3D map which pinpoint locations with accompanying information, and this has enabled our research team to plot out traditional historical journeys undertaken by Aboriginal people as well as to compile a gazetteer of Aboriginal place names, many of which have largely been undocumented until now [4]. The documented journeys intersect with and overlay many of today’s urban formations including main roads, municipal boundaries, and state borders. The paper questions how such data can be incorporated into a more culturally and ethically responsive understanding of contemporary urban spaces and as well as natural environments [5].

Keywords: spatio-temporal mapping, visualisation, Indigenous knowledge, mobility and migration, research infrastructure

Procedia PDF Downloads 21
25546 Villages and Their City: Bridging the Rural-Urban Dichotomy Through Spatial Development

Authors: Ishan Kumar Garg

Abstract:

Urban Fringes have been witnessing unforeseeable, haphazard, and ineffective spatial planning systems for many decades. It invades peripheral villages in the zest of the land as an abundant resource. The process, popularly known as "Urban Sprawl", is commonly seen in many fast-growing cities, especially in developing countries like India. The research for this paper reveals significant neglect in rural development policies, which are not recognized as crucial in current town and country planning regulations. This promotes urban-centric development in the fringe areas that are subjected to real-estate speculation. Therefore, being surrounded by arbitrary urban functions, these villages compromise with necessary strategies to retain the rural cultural identities, traditional ways of living, and villages’ interconnections while remaining deprived of urban amenities such as adequate water supply, education, sanitation, etc. Such socio-spatial separation makes us wonder about their right to development. The possibilities of a sustainable and socially inclusive city expansion are also explored through direct consumer–manufacturer media to bring positive socio-financial transformation. The paper aims to identify a rational playground for both the rural and urban population, which creates possibilities for economic and knowledge transactions beyond their local boundaries. This is achieved by empowering the intact community of villages with economic sufficiency and developing skills to pass on to future generations. In the above context, revolving around unregulated urban sprawl, the northeast region of Bareilly city in the Indian state of Uttar Pradesh is also discussed, i.e., currently under the influence of such development pressures. As we see, exclusive developments like residential, hospitality, industries, etc., over the unplanned landscapes are emerging with the development aligned to only urban means, not the rural. The paper ultimately re-envisions urban-rural associations through appropriate design combinations with economic growth. It integrates broken linkages by revising methodologies and encourages local entrepreneurship that taps the possibility of a gradual social transformation. Concurrently, the addition of required urban amenities leads to rural life strengthening and fulfilling aspirations. Since the proposed thesis carries through an inclusive fringe development, the study caters to cities of similar scales and situations that bolster such coexistence.

Keywords: smart growth framework, empowering rural economy, socio spatial separation, urban fringe development, urban sprawl consequences

Procedia PDF Downloads 149
25545 The Agency of Award Systems in Architecture: The Case of Cyprus

Authors: Christakis Chatzichristou, Elias Kranos

Abstract:

Architectural awards, especially if they are given by the state, recognize excellence in the field and, at the same time, strongly contribute to the making of the architectural culture of a place. The present research looks at the houses that have been awarded through such a system in Cyprus in order to discuss the values promoted, directly or not, by such a setup which is quite similar to other prestigious award systems such as the Mies van de Rohe Prize in Europe. In fact, many of the projects signed out through the state award system end up being selected to represent the country for the European awards. The residential architecture encouraged by such systems is quite interesting in that the most public of institutions influence how the most private unit of society is architecturally accommodated. The methodology uses both qualitative as well as quantitative research tools in order to analyze: the official state call for entries to the competition; the final report of the evaluation committee; the spatial characteristics of the houses through the Space Syntax methodology; the statements of the architects regarding their intentions and the final outcome; the feelings of the owners and users of the houses regarding the design process as well as the degree of satisfaction regarding the final product. The above-mentioned analyses allow for a more thorough discussion regarding not only the values promoted explicitly by the system through the brief that describes what the evaluation committee is looking for but also the values that are actually being promoted indirectly through the results of the actual evaluation itself. The findings suggest that: the strong emphasis in brief on bioclimatic design and issues of sustainability weakens significantly, if at all present, in the actual selection process; continuous improvement seems to be fuzzily used as a concept; most of the houses tend to have a similar spatial genotype; most of the houses have similar aesthetic qualities; discrepancies between the proposed lifestyle through the design and the actual use of the spaces do not seem to be acknowledged in the evaluation as an issue; the temporal factor seems to be ignored as the projects are required to be ‘finished projects’ as though the users and their needs do not change through time. The research suggests that, rather than preserving a critical attitude regarding the role of the architect in society, the state award system tends, like any other non-reflective social organism, to simply promote its own unexamined values as well as prejudices. This is perhaps more evident in the shared aesthetic character of the awarded houses and less so in the hidden spatial genotype to which they belong. If the design of houses is indeed a great opportunity for architecture to contribute in a more deliberate manner to the evolution of society, then what the present study shows is that this opportunity seems to be largely missed. The findings may serve better less as a verdict and more as a chance for introspection and discussion.

Keywords: award systems, houses, spatial genotype, aesthetic qualities

Procedia PDF Downloads 71
25544 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 202
25543 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 89
25542 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt

Authors: Shereif. H. Mahmoud

Abstract:

Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.

Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)

Procedia PDF Downloads 361
25541 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera

Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl

Abstract:

Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The RMSE between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.

Keywords: neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition

Procedia PDF Downloads 106
25540 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 317