Search results for: plasma signal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2624

Search results for: plasma signal

1184 Assessment of Potentially Harmful Elements in Floodplain Soils and Stream Sediments in Ile-Ife Area, South-Western Nigeria: Using Geographic Information System and Multi-Variances Approaches

Authors: I. T. Asowata, A. S. Akinwumiju

Abstract:

The enrichment of potentially harmful elements (PHEs) in stream sediments (SS) and floodplain soils (FS) poses great environmental hazards to water bodies and other parts of the ecosystem. The aim of this research was to assess the distribution pattern of selected PHEs (Cu, Pb, Zn, Co, Mn, As, Cd, V, Cr, Ni, Th, Sr, and La) in SS of selected rivers that drain Ile-Ife area and their adjacent FS, to ascertain the pollution status of these elements in the study area. 60 samples (40 SS and 20 FS) were purposely collected for this study; the samples were air-dried at room temperature, disaggregated, sieved with > 63 µm and digested with modified aqua reqia (1:1:1 HCl:HNO₃:H₂O) and were analysed with ultra-trace inductively coupled plasma mass spectrometry method (ICP-ES). The geochemical results showed decreasing trend of average contents of PHEs studied Mn > Zn > V > Cr > Pb > La > Sr > Cu > Ni > Co > Th > As > Cd for both SS and FS. Floodplain topsoil in ppm, Cu range from 10.0-180.0; mean, 71.1, Pb, 17.1-255.0; 93.5 and Zn, 83.0-3122.2; 826.0. Also, floodplain sub-soils, Cu range from 30.0-203.1; mean of 76.6, Pb, 16.0-214.0; 77.9 and Zn, 59.1-2351.0; 622.3. Similarly, SS results for Cu, 22.1-257.0; 70.3, Pb, 15.0-172.0; 67.3 and Zn, 65.0-1285.0; 357.8, among other PHEs, suggesting significant level of PHEs enrichment in the studied geo media. Elemental association showed positive and/or negative correlation among the PHEs and also showed different sources of metal enrichment to be largely anthropogenic with some geogenic. Geoaccumulation and metal ratio indexes indicated that FS and SS studied have received significant PHEs of between moderately to strongly polluted, which implies significant environmental implications in the study area.

Keywords: aqua regia, enrichment, GIS, Ile-Ife, potentially harmful elements

Procedia PDF Downloads 155
1183 Airway Resistance Evaluation by Respiratory İnductive Plethysmography in Subjects with Airway Obstructions

Authors: Aicha Laouani, Sonia Rouatbi, Saad Saguem, Gila Benchetrit, Pascale calabrese

Abstract:

A new approach based on respiratory inductive plethysmography (RIP) signal analysis has been used for bronchoconstriction changes evaluation in 50 healthy controls and in 44 adults with moderate bronchial obstruction treated with a bronchodilatation protocol. Thoracic and abdominal motions were recorded ( 5 min) by RIP. For each recording the thoracoabdominal signals were analysed and a mean distance (D) was calculated. Airway resistance (Raw) and spirometric data were measured with a body plethysmograph. The results showed that both D and Raw were higher in subjects compared to the healthy group. Significant decreases of D and Raw were also observed after bronchodilatation in the obstructive group. There was also a positive and a significant correlation between D and Raw in subjects before and after bronchodilatation. This D calculated from RIP Signals could be used as a non invasive tool for continuous monitoring of bronchoconstriction changes.

Keywords: airway resistance, bronchoconstriction, thorax, respiratory inductive plethysmography

Procedia PDF Downloads 333
1182 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review

Authors: Ng Liang Shen, Hau Yuan Wen

Abstract:

Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.

Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS

Procedia PDF Downloads 371
1181 The Impact of Alkaline Water Supplemented with Sodium Ascorbate on Glucose and Cortisol Levels in the Blood Serum During Acute Hyperthermic Exposure of White Laboratory Rats

Authors: Valdrina Ajeti, Icko Gjorgoski

Abstract:

Stress can be a reason for some physiological and biological disorders in the body. The antioxidative defense system is necessary for the maintenance of redox homeostasis in organisms. Because of its antioxidant effect, alkaline water (AW) is the focus of scientific interest. Adding AW and co-treatment with sodium ascorbate (SA) is expected for the organism to act preventively to hyperthermic stress. To investigate the effect of AW and SA on glucose and cortisol levels during acute hyperthermic stress, white female Wistar laboratory rats, divided into three groups of 10 individuals, were exposed to heat for 80 min, for 21 days. Acute hyperthermic exposure at 41˚C was a cause for oxidative stress. The first group is the control group, the second group is treated with AW, and the third group with AW and SA. Plasma glucose levels were determined by colorimetric method and cortisol was measured using the enzyme-linked immunosorbent assay method. The comparison of the means was made using the Tukey test. Differences were considered significant at a level of p < 0.05. Our results show that levels of glucose and cortisol have been increased in the group treated with AW on the 21st day after treatment (p < 0.0001), but not on the 7th and 14th day as compared to the control group. Also, co-treatment of animals with AW and SA significantly increased the levels of glucose and cortisol on the 21st day after treatment showing a synergistic effect. The individual action of AW, as well as synergism with SA, caused a high protective effect on oxidative damage.

Keywords: alkaline water, sodium ascorbate, hyperthermic stress, glucose, cortisol

Procedia PDF Downloads 126
1180 Mathematical Based Forecasting of Heart Attack

Authors: Razieh Khalafi

Abstract:

Myocardial infarction (MI) or acute myocardial infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analyzing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behavior of these signals were checked. Results shows this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 536
1179 Innovation and Analysis of Vibrating Fork Level Switch

Authors: Kuen-Ming Shu, Cheng-Yu Chen

Abstract:

A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.

Keywords: vibrating fork, piezoelectric ceramics, sound wave, ANSYS, Taguchi method, modal analysis

Procedia PDF Downloads 245
1178 Assessment of Hemostatic Activity of the Aqueous Extract of Leaves of Marrubium vulgare L.: A Mediterranean Lamiaceae Algeria

Authors: Nabil Ghedadba, Abdessemed Samira, Leila Hambaba, Sidi Mohamed Ould Mokhtar, Nassima Fercha, Houas Bousselsela

Abstract:

The overall objective of this study was to evaluate in vitro the hemostatic activity of secondary metabolites (polyphenols, flavonoids, and tannins) of Marrubium vulgare leaves, aromatic plant widely used in traditional medicine for the treatment of asthma, cough, diabetes (by its effect on the pancreas to secrete insulin), heart disease, fever has a high efficiency as against inflammation. Qualitative analysis of the aqueous extract (AQE) by thin layer chromatography revealed the presence of quercetin, kaempferol and rutin. Quantification of total phenols by Folin Ciocalteu method and flavonoids by AlCl3 method gave high values with AQE: 175±0.80 mg GAE per 100g of the dry matter, 23.86±0.36 mg QE per 100g of dry matter. Moreover, the assay of condensed tannins by the vanillin method showed that AQE contains the highest value: 16.55±0.03 mg e-catechin per 100 g of dry matter. Assessment of hemostatic activity by the plasma recalcification method (time of Howell) has allowed us to discover the surprising dose dependent anticoagulant effect of AQE lyophilized from leaves of M. vulgare. A positive linear correlation between the two parameters studied: the content of condensed tannins and hemostatic activity (r=0.96) were used to highlight a possible role of these compounds that are potent vasoconstrictor activity in hemostatic. From these results we can see that Marrubium vulgre could be used for the treatment of health.

Keywords: Marrubium vulgare L., aqueous extract, phenolic compounds dosing, hemostatic activity, condensed tannins

Procedia PDF Downloads 239
1177 Enhanced Bit Error Rate in Visible Light Communication: A New LED Hexagonal Array Distribution

Authors: Karim Matter, Heba Fayed, Ahmed Abd-Elaziz, Moustafa Hussein

Abstract:

Due to the exponential growth of mobile devices and wireless services, a huge demand for radiofrequency has increased. The presence of several frequencies causes interference between cells, which must be minimized to get the lower Bit Error Rate (BER). For this reason, it is of great interest to use visible light communication (VLC). This paper suggests a VLC system that decreases the BER by applying a new LED distribution with a hexagonal shape using a Frequency Reuse (FR) concept to mitigate the interference between the reused frequencies inside the hexagonal shape. The BER is measured in two scenarios, Line of Sight (LoS) and Non-Line of Sight (Non-LoS), for each technique that we used. The recommended values of BER in the proposed model for Soft Frequency Reuse (SFR) in the case of Los at 4, 8, and 10 dB signal to noise ratio (SNR), are 3.6×10⁻⁶, 6.03×10⁻¹³, and 2.66×10⁻¹⁸, respectively.

Keywords: visible light communication (VLC), field of view (FoV), hexagonal array, frequency reuse

Procedia PDF Downloads 158
1176 Load Characteristics of Improved Howland Current Pump for Bio-Impedance Measurement

Authors: Zhao Weijie, Lin Xinjian, Liu Xiaojuan, Li Lihua

Abstract:

The Howland current pump is widely used in bio-impedance measurement. Much attention has been focused on the output impedance of the Howland circuit. Here we focus on the maximum load of the Howland source and discuss the relationship between the circuit parameters at maximum load. We conclude that the signal input terminal of the feedback resistor should be as large as possible, but that the current-limiting resistor should be smaller. The op-amp saturation voltage should also be high. The bandwidth of the circuit is proportional to the bandwidth of the op-amp. The Howland current pump was simulated using multisim12. When the AD8066AR was selected as the op-amp, the maximum load was 11.5 kΩ, and the Howland current pump had a stable output ipp to 2mAp up to 200 kHz. However, with an OPA847 op-amp and a load of 6.3 kΩ, the output current was also stable, and the frequency was as high as 3 MHz.

Keywords: bio-impedance, improved Howland current pump, load characteristics, bioengineering

Procedia PDF Downloads 511
1175 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network

Authors: Boukari Nassim

Abstract:

This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.

Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network

Procedia PDF Downloads 341
1174 Enhanced Weighted Centroid Localization Algorithm for Indoor Environments

Authors: I. Nižetić Kosović, T. Jagušt

Abstract:

Lately, with the increasing number of location-based applications, demand for highly accurate and reliable indoor localization became urgent. This is a challenging problem, due to the measurement variance which is the consequence of various factors like obstacles, equipment properties and environmental changes in complex nature of indoor environments. In this paper we propose low-cost custom-setup infrastructure solution and localization algorithm based on the Weighted Centroid Localization (WCL) method. Localization accuracy is increased by several enhancements: calibration of RSSI values gained from wireless nodes, repetitive measurements of RSSI to exclude deviating values from the position estimation, and by considering orientation of the device according to the wireless nodes. We conducted several experiments to evaluate the proposed algorithm. High accuracy of ~1m was achieved.

Keywords: indoor environment, received signal strength indicator, weighted centroid localization, wireless localization

Procedia PDF Downloads 230
1173 Sphingosomes: Potential Anti-Cancer Vectors for the Delivery of Doxorubicin

Authors: Brajesh Tiwari, Yuvraj Dangi, Abhishek Jain, Ashok Jain

Abstract:

The purpose of the investigation was to evaluate the potential of sphingosomes as nanoscale drug delivery units for site-specific delivery of anti-cancer agents. Doxorubicin Hydrochloride (DOX) was selected as a model anti-cancer agent. Sphingosomes were prepared and loaded with DOX and optimized for size and drug loading. The formulations were characterized by Malvern zeta-seizer and Transmission Electron Microscopy (TEM) studies. Sphingosomal formulations were further evaluated for in-vitro drug release study under various pH profiles. The in-vitro drug release study showed an initial rapid release of the drug followed by a slow controlled release. In vivo studies of optimized formulations and free drug were performed on albino rats for comparison of drug plasma concentration. The in- vivo study revealed that the prepared system enabled DOX to have had enhanced circulation time, longer half-life and lower elimination rate kinetics as compared to free drug. Further, it can be interpreted that the formulation would selectively enter highly porous mass of tumor cells and at the same time spare normal tissues. To summarize, the use of sphingosomes as carriers of anti-cancer drugs may prove to be a fascinating approach that would selectively localize in the tumor mass, increasing the therapeutic margin of safety while reducing the side effects associated with anti-cancer agents.

Keywords: sphingosomes, anti-cancer, doxorubicin, formulation

Procedia PDF Downloads 300
1172 Comprehensive Analysis of Power Allocation Algorithms for OFDM Based Communication Systems

Authors: Rakesh Dubey, Vaishali Bahl, Dalveer Kaur

Abstract:

The spiralling urge for high rate data transmission over wireless mediums needs intelligent use of electromagnetic resources considering restrictions like power ingestion, spectrum competence, robustness against multipath propagation and implementation intricacy. Orthogonal frequency division multiplexing (OFDM) is a capable technique for next generation wireless communication systems. For such high rate data transfers there is requirement of proper allocation of resources like power and capacity amongst the sub channels. This paper illustrates various available methods of allocating power and the capacity requirement with the constraint of Shannon limit.

Keywords: Additive White Gaussian Noise, Multi-Carrier Modulation, Orthogonal Frequency Division Multiplexing (OFDM), Signal to Noise Ratio (SNR), Water Filling

Procedia PDF Downloads 547
1171 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations

Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh

Abstract:

Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.

Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy

Procedia PDF Downloads 92
1170 Robust Control of a Single-Phase Inverter Using Linear Matrix Inequality Approach

Authors: Chivon Choeung, Heng Tang, Panha Soth, Vichet Huy

Abstract:

This paper presents a robust control strategy for a single-phase DC-AC inverter with an output LC-filter. An all-pass filter is utilized to create an artificial β-signal so that the proposed controller can be simply used in dq-synchronous frame. The proposed robust controller utilizes a state feedback control with integral action in the dq-synchronous frame. A linear matrix inequality-based optimization scheme is used to determine stabilizing gains of the controllers to maximize the convergence rate to steady state in the presence of uncertainties. The uncertainties of the system are described as the potential variation range of the inductance and resistance in the LC-filter.

Keywords: single-phase inverter, linear matrix inequality, robust control, all-pass filter

Procedia PDF Downloads 135
1169 Lipidomic Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Salvador Sanchez Vinces, Caroline F. A. Gatinoni, Vitor P. Iordanu, Carlos A. R. Martinez

Abstract:

Lipidomics methods are widely used in the identification and validation of disease-specific biomarkers and therapy response evaluation. The present study aimed to identify a panel of potential lipid biomarkers to evaluate response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma (RAC). Liquid chromatography–mass spectrometry (LC-MS)-based untargeted lipidomic was used to profile human serum samples from patients with clinical stage T2 or T3 resectable RAC, after and before chemoradiotherapy treatment. A total of 28 blood plasma samples were collected from 14 patients with RAC who recruited at the São Francisco University Hospital (HUSF/USF). The study was approved by the ethics committee (CAAE 14958819.8.0000.5514). Univariate and multivariate statistical analyses were applied to explore dysregulated metabolic pathways using untargeted lipidic profiling and data mining approaches. A total of 36 statistically significant altered lipids were identified and the subsequent partial least-squares discriminant analysis model was both cross validated (R2, Q2) and permutated. Lisophosphatidyl-choline (LPC) plasmalogens containing palmitoleic and oleic acids, with high variable importance in projection score, showed a tendency to be lower after completion of chemoradiotherapy. Chemoradiotherapy seems to change plasmanyl-phospholipids levels, indicating that these lipids play an important role in the RAC pathogenesis.

Keywords: lipidomics, neoadjuvant chemoradiotherapy, plasmalogens, rectal adenocarcinoma

Procedia PDF Downloads 129
1168 Investigating Al₂O₃ Nanofluid Based on Seawater and Effluent Water Mix for Water Injection Application; Sandstone

Authors: Meshal Al-Samhan, Abdullah Al-Marshed

Abstract:

Recently, there has been a tremendous increase in interest in nanotechnology applications and nanomaterials in the oilfield. In the last decade, the global increase in oil production resulted in large amounts of produced water, causing a significant problem for all producing countries and companies. This produced water deserves special attention and a study of its characteristics to understand and determine how it can be treated and later used for suitable applications such as water injection for Enhance Oil Recovery (EOR) without harming the environment. This work aims to investigate the prepared compatible mixed water (seawater and effluent water) response to nanoparticles for EOR water injection. The evaluation of different mix seawater/effluent water ratios (60/40,70/30) for their characteristics prior to nanofluid preparation using Inductive Couple Plasma (ICP) analysis, potential zeta test, and OLI software (the OLI Systems is a recognised leader in aqueous chemistry). This step of the work revealed the suitability of the water mix with a lower effluent-water ratio. Also, OLI predicted that the 60:40 mix needs to be balanced around temperatures of 70 ºC to avoid the mass accumulation of calcium sulfate and strontium sulfate. Later the prepared nanofluid was tested for interfacial tension (IFT) and wettability restoration in the sandstone rock; the Al2O3 nanofluid at 0.06 wt% concentration reduced the IFT by more than 16% with moderate water wet contact angle. The study concluded that the selected nanoparticle Al2O3 had demonstrated excellent performance in decreasing the interfacial tension with respect to the selected water mix type (60/40) at low nanoparticles wt%.

Keywords: nano AL2O3, sanstone, nanofluid, IFT, wettability

Procedia PDF Downloads 99
1167 The Relationship between Trace Elements in Groundwater Linked to a History of Volcanic Activity in La Pampa and Buenos Aires Provinces, Argentina

Authors: Maisarah Jaafar, Neil I. Ward

Abstract:

Volcanic and geothermal activity can result in the release of arsenic (As), manganese (Mn), iron, selenium (Se), molybdenum (Mo) and uranium (U) into natural waters. Several studies have reported high levels of these elements in surface and groundwater in Argentina. The main focus has been on As associated with volcanic ash deposits. This study reports the trace element levels of groundwater from an agricultural region of south-eastern La Pampa and southern Buenos Aires provinces, Argentina which have reported high levels of human health problems (bone/teeth disorders, depression, arthritis, etc). Fifty-eight groundwater samples were collected from wells adjacent to Ruta 35 and an Agilent 7700x inductively coupled plasma mass spectrometer (ICP-MS) were used for total elemental analysis. Physicochemical analysis confirmed pH range of 7.05-8.84 and variable conductivity (988-3880 µS/cm) with total dissolved solid content of 502-1989 mg/l. The majority water samples are in an oxidizing environment (Eh= 45-146 mV). Total As levels ranged from (µg/l): 13.08 – 319.4 for La Pampa (LP) and 39.6 – 189.4 for Buenos Aires (BA); all above the WHO Guideline for Drinking Water, 10 µg/l As. Interestingly, Mo (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;), Se (LP: 1.2 – 16.59 µg/l; BA: 0.3– 6.94 µg/l;) and U (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;) levels are lower than reported values for northern La Pampa. Inter-elemental correlation displayed positive statistically significant between As-Mo, A-Se, As-U while negative statistically significant between As-Mn and As-Fe. This confirms that the source of the trace element is similar to that reported for other region of Argentina, namely volcanic ash deposition.

Keywords: Argentina, groundwater, trace element, volcanic activity

Procedia PDF Downloads 334
1166 Filter for the Measurement of Supraharmonics in Distribution Networks

Authors: Sivaraman Karthikeyan

Abstract:

Due to rapidly developing power electronics devices and technologies such as power line communication or self-commutating converters, voltage and current distortion, as well as interferences, have increased in the frequency range of 2 kHz to 150 kHz; there is an urgent need for regulation of electromagnetic compatibility (EMC) standards in this frequency range. Measuring or testing compliance with emission and immunity limitations necessitates the use of precise, repeatable measuring methods. Appropriate filters to minimize the fundamental component and its harmonics below 2 kHz in the measuring signal would improve the measurement accuracy in this frequency range leading to better analysis. This paper discusses filter suggestions in the current measurement standard and proposes an infinite impulse response (IIR) filter design that is optimized for a low number of poles, strong fundamental damping, and high accuracy above 2 kHz. The new filter’s transfer function is delivered as a result. An analog implementation is derived from the overall design.

Keywords: supraharmonics, 2 kHz, 150 kHz, filter, analog filter

Procedia PDF Downloads 142
1165 Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers

Authors: Wenjuan Du

Abstract:

The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillations. By using linearized equal area criterion, a theoretical proof to the application for the PSS design is presented. Hence PSS design in the paper is an example of stable tending control by localized method.

Keywords: phase compensation method, power system small-signal stability, power system stabilizer

Procedia PDF Downloads 634
1164 A New Floating Point Implementation of Base 2 Logarithm

Authors: Ahmed M. Mansour, Ali M. El-Sawy, Ahmed T. Sayed

Abstract:

Logarithms reduce products to sums and powers to products; they play an important role in signal processing, communication and information theory. They are primarily used for hardware calculations, handling multiplications, divisions, powers, and roots effectively. There are three commonly used bases for logarithms; the logarithm with base-10 is called the common logarithm, the natural logarithm with base-e and the binary logarithm with base-2. This paper demonstrates different methods of calculation for log2 showing the complexity of each and finds out the most accurate and efficient besides giving in- sights to their hardware design. We present a new method called Floor Shift for fast calculation of log2, and then we combine this algorithm with Taylor series to improve the accuracy of the output, we illustrate that by using two examples. We finally compare the algorithms and conclude with our remarks.

Keywords: logarithms, log2, floor, iterative, CORDIC, Taylor series

Procedia PDF Downloads 528
1163 Targeted Delivery of Docetaxel Drug Using Cetuximab Conjugated Vitamin E TPGS Micelles Increases the Anti-Tumor Efficacy and Inhibit Migration of MDA-MB-231 Triple Negative Breast Cancer

Authors: V. K. Rajaletchumy, S. L. Chia, M. I. Setyawati, M. S. Muthu, S. S. Feng, D. T. Leong

Abstract:

Triple negative breast cancers (TNBC) can be classified as one of the most aggressive with a high rate of local recurrences and systematic metastases. TNBCs are insensitive to existing hormonal therapy or targeted therapies such as the use of monoclonal antibodies, due to the lack of oestrogen receptor (ER) and progesterone receptor (PR) and the absence of overexpression of human epidermal growth factor receptor 2 (HER2) compared with other types of breast cancers. The absence of targeted therapies for selective delivery of therapeutic agents into tumours, led to the search for druggable targets in TNBC. In this study, we developed a targeted micellar system of cetuximab-conjugated micelles of D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) for targeted delivery of docetaxel as a model anticancer drug for the treatment of TNBCs. We examined the efficacy of our micellar system in xenograft models of triple negative breast cancers and explored the effect of the micelles on post-treatment tumours in order to elucidate the mechanism underlying the nanomedicine treatment in oncology. The targeting micelles were found preferentially accumulated in tumours immediately after the administration of the micelles compare to normal tissue. The fluorescence signal gradually increased up to 12 h at the tumour site and sustained for up to 24 h, reflecting the increases in targeted micelles (TPFC) micelles in MDA-MB-231/Luc cells. In comparison, for the non-targeting micelles (TPF), the fluorescence signal was evenly distributed all over the body of the mice. Only a slight increase in fluorescence at the chest area was observed after 24 h post-injection, reflecting the moderate uptake of micelles by the tumour. The successful delivery of docetaxel into tumour by the targeted micelles (TPDC) exhibited a greater degree of tumour growth inhibition than Taxotere® after 15 days of treatment. The ex vivo study has demonstrated that tumours treated with targeting micelles exhibit enhanced cell cycle arrest and attenuated proliferation compared with the control and with those treated non-targeting micelles. Furthermore, the ex vivo investigation revealed that both the targeting and non-targeting micellar formulations shows significant inhibition of cell migration with migration indices reduced by 0.098- and 0.28-fold, respectively, relative to the control. Overall, both the in vivo and ex vivo data increased the confidence that our micellar formulations effectively targeted and inhibited EGF-overexpressing MDA-MB-231 tumours.

Keywords: biodegradable polymers, cancer nanotechnology, drug targeting, molecular biomaterials, nanomedicine

Procedia PDF Downloads 278
1162 Study and Analysis of Optical Intersatellite Links

Authors: Boudene Maamar, Xu Mai

Abstract:

Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.

Keywords: optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication

Procedia PDF Downloads 445
1161 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 177
1160 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 360
1159 A Novel Multi-Block Selective Mapping Scheme for PAPR Reduction in FBMC/OQAM Systems

Authors: Laabidi Mounira, Zayani Rafk, Bouallegue Ridha

Abstract:

Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC/OQAM) is presently known as a sustainable alternative to conventional Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission over multi-path fading channels. Like all multicarrier systems, FBMC/OQAM suffers from high Peak to Average Power Ratio (PAPR). Due to the symbol overlap inherent in the FBMC/OQAM system, the direct application of conventional OFDM PAPR reduction scheme is far from being effective. This paper suggests a novel scheme termed Multi-Blocks Selective Mapping (MB-SLM) whose simulation results show that its performance in terms of PAPR reduction is almost identical to that of OFDM system.

Keywords: FBMC/OQAM, multi-blocks, OFDM, PAPR, SLM

Procedia PDF Downloads 461
1158 A New Mathematical Method for Heart Attack Forecasting

Authors: Razi Khalafi

Abstract:

Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 503
1157 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. It was experimentally shown that both modulations could be present in the spectrum, yet each modulation may be associated with different physical mechanisms. AM mechanisms are quite well understood and widely covered in the literature. This paper is a first attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acousto-elastic models.

Keywords: non-destructive testing, nonlinear acoustics, structural health monitoring, acousto-elasticity, local defect resonance

Procedia PDF Downloads 147
1156 IoT Based Smart Car Parking System Using Node Red

Authors: Armel Asongu Nkembi, Ahmad Fawad

Abstract:

In this paper, we design a smart car parking system using the Node-Red interface, which enables the user to find the nearest parking area from his current location and gives the availability of parking slots in that respective parking area. The closest parking area is determined by sending an HTTP request to an API, and the shortest distance is computed using some mathematical formulations based on the coordinates retrieved. There is also the use of IR sensors to signal the availability or lack of available parking lots within any parking area. The aim is to reduce the time and effort needed to find empty parking lots and also avoid unnecessary traveling through filled parking lots in a parking area. Thus, it reduces fuel consumption, which in turn reduces carbon footprints in the atmosphere and, overall, makes the city much smarter.

Keywords: node-red, smart parking system, API, http request, IR sensors, Internet of Things, smart city, parking lots.

Procedia PDF Downloads 38
1155 The Healing Effect of Unrestricted Somatic Stem Cells Loaded in Collagen-Modified Nanofibrous PHBV Scaffold on Full-Thickness Skin Defects

Authors: Hadi Rad

Abstract:

Unrestricted somatic stem cells (USSCs) loaded in nanofibrous PHBV scaffold can be used for skin regeneration when grafted into full-thickness skin defects of rats. Nanofibrous PHBV scaffolds were designed using electrospinning method and then, modified with the immobilized collagen via the plasma method. Afterward, the scaffolds were evaluated using scanning electron microscopy, physical and mechanical assays. In this study; nanofibrous PHBV scaffolds loaded with and without USSCs were grafted into the skin defects. The wounds were subsequently investigated at 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; all study groups excluding the control group exhibited the most pronounced effect on wound closure, with the statistically significant improvement in wound healing being seen on post-operative Day 21. Histological and immunostaining examinations of healed wounds from all groups, especially the groups treated with stem cells, showed a thin epidermis plus recovered skin appendages in the dermal layer. Thus, the graft of collagen-coated nanofibrous PHBV scaffold loaded with USSC showed better results during the healing process of skin defects in rat model.

Keywords: collagen, nanofibrous PHBV scaffold, unrestricted somatic stem cells, wound healing.

Procedia PDF Downloads 358