Search results for: fully spatial signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8841

Search results for: fully spatial signal processing

7401 Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods

Authors: Mohammad Khosravi, Ali Kiani, Behroz Dastar, Parvin Showrang

Abstract:

Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.

Keywords: antitrypsin, gamma anti-nutritional components, phytic acid, radiation

Procedia PDF Downloads 343
7400 Actually Existing Policy Mobilities in Czechia: Comparing Creative and Smart Cities

Authors: Ondrej Slach, Jan Machacek, Jan Zenka, Lucie Hyllova, Petr Rumpel

Abstract:

The aim of the paper is to identify and asses different trajectories of two fashionable urban policies –creative and smart cities– in specific post-socialistic context. Drawing on the case of Czechia, we employ the concept of policy mobility research. More specifically, we employ a discourse analysis in order to identify the so-called 'infrastructure' of both policies (such as principal actors, journals, conferences, events), with the special focus on 'agents of transfer' in a multiscale perspective. The preliminary results indicate faster and more aggressive spatial penetration of smart cities policy compared to creative cities policy in Czechia. Further, it seems that existed translation and implementation of smart cities policy into the national and urban context resulted in deliberated fragmented policy of smart cities in Czechia (pure technocratic view), which might be a threat for the future development of social sustainability, especially in cities that are facing increasing social polarisation. Last but not least, due to the fast spatial penetration of the concept and policies of smart cities, it seems that creative cities policy has almost been crowded out of the Czech urban agenda.

Keywords: policy mobility, smart cities, creative cities, Czechia

Procedia PDF Downloads 168
7399 Stator Short-Circuits Fault Diagnosis in Induction Motors

Authors: K. Yahia, M. Sahraoui, A. Guettaf

Abstract:

This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental results, show the effectiveness of the used method.

Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), Current Park’s Vector Modulus (CPVM)

Procedia PDF Downloads 457
7398 Operator Optimization Based on Hardware Architecture Alignment Requirements

Authors: Qingqing Gai, Junxing Shen, Yu Luo

Abstract:

Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.

Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator

Procedia PDF Downloads 104
7397 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 154
7396 The Development and Change of Settlement in Tainan County (1904-2015) Using Historical Geographic Information System

Authors: Wei Ting Han, Shiann-Far Kung

Abstract:

In the early time, most of the arable land is dry farming and using rainfall as water sources for irrigation in Tainan county. After the Chia-nan Irrigation System (CIS) was completed in 1930, Chia-nan Plain was more efficient allocation of limited water sources or irrigation, because of the benefit from irrigation systems, drainage systems, and land improvement projects. The problem of long-term drought, flood and salt damage in the past were also improved by CIS. The canal greatly improved the paddy field area and agricultural output, Tainan county has become one of the important agricultural producing areas in Taiwan. With the development of water conservancy facilities, affected by national policies and other factors, many agricultural communities and settlements are formed indirectly, also promoted the change of settlement patterns and internal structures. With the development of historical geographic information system (HGIS), Academia Sinica developed the WebGIS theme with the century old maps of Taiwan which is the most complete historical map of database in Taiwan. It can be used to overlay historical figures of different periods, present the timeline of the settlement change, also grasp the changes in the natural environment or social sciences and humanities, and the changes in the settlements presented by the visualized areas. This study will explore the historical development and spatial characteristics of the settlements in various areas of Tainan County. Using of large-scale areas to explore the settlement changes and spatial patterns of the entire county, through the dynamic time and space evolution from Japanese rule to the present day. Then, digitizing the settlement of different periods to perform overlay analysis by using Taiwan historical topographic maps in 1904, 1921, 1956 and 1989. Moreover, using document analysis to analyze the temporal and spatial changes of regional environment and settlement structure. In addition, the comparison analysis method is used to classify the spatial characteristics and differences between the settlements. Exploring the influence of external environments in different time and space backgrounds, such as government policies, major construction, and industrial development. This paper helps to understand the evolution of the settlement space and the internal structural changes in Tainan County.

Keywords: historical geographic information system, overlay analysis, settlement change, Tainan County

Procedia PDF Downloads 128
7395 Analyzing the Risk Based Approach in General Data Protection Regulation: Basic Challenges Connected with Adapting the Regulation

Authors: Natalia Kalinowska

Abstract:

The adoption of the General Data Protection Regulation, (GDPR) finished the four-year work of the European Commission in this area in the European Union. Considering far-reaching changes, which will be applied by GDPR, the European legislator envisaged two-year transitional period. Member states and companies have to prepare for a new regulation until 25 of May 2018. The idea, which becomes a new look at an attitude to data protection in the European Union is risk-based approach. So far, as a result of implementation of Directive 95/46/WE, in many European countries (including Poland) there have been adopted very particular regulations, specifying technical and organisational security measures e.g. Polish implementing rules indicate even how long password should be. According to the new approach from May 2018, controllers and processors will be obliged to apply security measures adequate to level of risk associated with specific data processing. The risk in GDPR should be interpreted as the likelihood of a breach of the rights and freedoms of the data subject. According to Recital 76, the likelihood and severity of the risk to the rights and freedoms of the data subject should be determined by reference to the nature, scope, context and purposes of the processing. GDPR does not indicate security measures which should be applied – in recitals there are only examples such as anonymization or encryption. It depends on a controller’s decision what type of security measures controller considered as sufficient and he will be responsible if these measures are not sufficient or if his identification of risk level is incorrect. Data protection regulation indicates few levels of risk. Recital 76 indicates risk and high risk, but some lawyers think, that there is one more category – low risk/now risk. Low risk/now risk data processing is a situation when it is unlikely to result in a risk to the rights and freedoms of natural persons. GDPR mentions types of data processing when a controller does not have to evaluate level of risk because it has been classified as „high risk” processing e.g. processing on a large scale of special categories of data, processing with using new technologies. The methodology will include analysis of legal regulations e.g. GDPR, the Polish Act on the Protection of personal data. Moreover: ICO Guidelines and articles concerning risk based approach in GDPR. The main conclusion is that an appropriate risk assessment is a key to keeping data safe and avoiding financial penalties. On the one hand, this approach seems to be more equitable, not only for controllers or processors but also for data subjects, but on the other hand, it increases controllers’ uncertainties in the assessment which could have a direct impact on incorrect data protection and potential responsibility for infringement of regulation.

Keywords: general data protection regulation, personal data protection, privacy protection, risk based approach

Procedia PDF Downloads 252
7394 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO

Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky

Abstract:

The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.

Keywords: aeronautics, big data, data processing, machine learning, S1000D

Procedia PDF Downloads 157
7393 Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds

Authors: А. V. Panko, Е. V. Ablets, I. G. Kovzun, М. А. Ilyashov

Abstract:

Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nano technological initiatives in improvement of such processes. Considered ideas of role of nano particles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities excelling known methods of direct iron reduction from iron ores and metallurgical slimes.

Keywords: iron ores, solid-phase reduction, nanoparticles in reduction and purification of iron from silicon and phosphorus, wasteless method of ores processing

Procedia PDF Downloads 488
7392 Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia

Authors: Rana Zeina

Abstract:

Objective: The association between Sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a neuropsychological test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Methods: Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/Little Circle (BLC), Simple Reaction Time (SRT), Intra/Extra Dimensional Set Shift (IED), Spatial Recognition Memory (SRM), were administered to 14 ASDs children with sensory problems compared to 13 ASDs without sensory problems aged 3 to 12 with IQ of above 70. Results: ASDs Individuals with sensory problems performed worse than the ASDs group without sensory problems on comprehension, learning, reversal and simple reaction time tasks, and no significant difference between the two groups was recorded in terms of the visual memory and visual comprehension tasks. Conclusion: The findings of this study suggest that ASDs children with sensory problems are facing deficits in learning, comprehension, reversal, and speed of response to stimuli.

Keywords: visual memory, attention, autism spectrum disorders, CANTAB eclipse

Procedia PDF Downloads 451
7391 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality

Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye

Abstract:

When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.

Keywords: word embeddings, k-mer embedding, dimensionality reduction

Procedia PDF Downloads 137
7390 Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features

Authors: Hrishi Rakshit, Pooneh Bagheri Zadeh

Abstract:

This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods.

Keywords: drone classifications, deep convolutional neural network, hyperparameters, drone audio signal

Procedia PDF Downloads 104
7389 An Efficient Separation for Convolutive Mixtures

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Dylan Menzies, Ismail Shahin

Abstract:

This paper describes a new efficient blind source separation method; in this method we use a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence.

Keywords: Blind source separation, estimates, full-band, mixtures, sub-band

Procedia PDF Downloads 445
7388 Demographic Determinants of Spatial Patterns of Urban Crime

Authors: Natalia Sypion-Dutkowska

Abstract:

Abstract — The main research objective of the paper is to discover the relationship between the age groups of residents and crime in particular districts of a large city. The basic analytical tool is specific crime rates, calculated not in relation to the total population, but for age groups in a different social situation - property, housing, work, and representing different generations with different behavior patterns. They are the communities from which criminals and victims of crimes come. The analysis of literature and national police reports gives rise to hypotheses about the ability of a given age group to generate crime as a source of offenders and as a group of victims. These specific indicators are spatially differentiated, which makes it possible to detect socio-demographic determinants of spatial patterns of urban crime. A multi-feature classification of districts was also carried out, in which specific crime rates are the diagnostic features. In this way, areas with a similar structure of socio-demographic determinants of spatial patterns on urban crime were designated. The case study is the city of Szczecin in Poland. It has about 400,000 inhabitants and its area is about 300 sq km. Szczecin is located in the immediate vicinity of Germany and is the economic, academic and cultural capital of the region. It also has a seaport and an airport. Moreover, according to ESPON 2007, Szczecin is the Transnational and National Functional Urban Area. Szczecin is divided into 37 districts - auxiliary administrative units of the municipal government. The population of each of them in 2015-17 was divided into 8 age groups: babes (0-2 yrs.), children (3-11 yrs.), teens (12-17 yrs.), younger adults (18-30 yrs.), middle-age adults (31-45 yrs.), older adults (46-65 yrs.), early older (66-80) and late older (from 81 yrs.). The crimes reported in 2015-17 in each of the districts were divided into 10 groups: fights and beatings, other theft, car theft, robbery offenses, burglary into an apartment, break-in into a commercial facility, car break-in, break-in into other facilities, drug offenses, property damage. In total, 80 specific crime rates have been calculated for each of the districts. The analysis was carried out on an intra-city scale, this is a novel approach as this type of analysis is usually carried out at the national or regional level. Another innovative research approach is the use of specific crime rates in relation to age groups instead of standard crime rates. Acknowledgments: This research was funded by the National Science Centre, Poland, registration number 2019/35/D/HS4/02942.

Keywords: age groups, determinants of crime, spatial crime pattern, urban crime

Procedia PDF Downloads 171
7387 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 173
7386 Chinese Acupuncture: A Potential Treatment for Autism Rat Model via Improving Synaptic Function

Authors: Sijie Chen, Xiaofang Chen, Juan Wang, Yingying Zhang, Yu Hong, Wanyu Zhuang, Xinxin Huang, Ping Ou, Longsheng Huang

Abstract:

Purpose: Autistic symptom improvement can be observed in children treated with acupuncture, but the mechanism is still being explored. In the present study, we used scalp acupuncture to treat autism rat model, and then their improvement in the abnormal behaviors and specific mechanisms behind were revealed by detecting animal behaviors, analyzing the RNA sequencing of the prefrontal cortex(PFC), and observing the ultrastructure of PFC neurons under the transmission electron microscope. Methods: On gestational day 12.5, Wistar rats were given valproic acid (VPA) by intraperitoneal injection, and their offspring were considered to be reliable rat models of autism. They were randomized to VPA or VPA-acupuncture group (n=8). Offspring of Wistar pregnant rats that were simultaneously injected with saline were randomly selected as the wild-type group (WT). VPA_acupuncture group rats received acupuncture intervention at 23 days of age for 4 weeks, and the other two groups followed without intervention. After the intervention, all experimental rats underwent behavioral tests. Immediately afterward, they were euthanized by cervical dislocation, and their prefrontal cortex was isolated for RNA sequencing and transmission electron microscopy. Results: The main results are as follows: 1. Animal behavioural tests: VPA group rats showed more anxiety-like behaviour and repetitive, stereotyped behaviour than WT group rats. While VPA group rats showed less spatial exploration ability, activity level, social interaction, and social novelty preference than WT group rats. It was gratifying to observe that acupuncture indeed improved these abnormal behaviors of autism rat model. 2. RNA-sequencing: The three groups of rats differed in the expression and enrichment pathways of multiple genes related to synaptic function, neural signal transduction, and circadian rhythm regulation. Our experiments indicated that acupuncture can alleviate the major symptoms of ASD by improving these neurological abnormalities. 3. Under the transmission electron microscopy, several lysosomes and mitochondrial structural abnormalities were observed in the prefrontal neurons of VPA group rats, which were manifested as atrophy of the mitochondrial membran, blurring or disappearance of the mitochondrial cristae, and even vacuolization. Moreover, the number of synapses and synaptic vesicles was relatively small. Conversely, the mitochondrial structure of rats in the WT group and VPA_acupuncture was normal, and the number of synapses and synaptic vesicles was relatively large. Conclusion: Acupuncture effectively improved the abnormal behaviors of autism rat model and the ultrastructure of the PFC neurons, which might worked by improving their abnormal synaptic function, synaptic plasticity and promoting neuronal signal transduction.

Keywords: autism spectrum disorder, acupuncture, animal behavior, RNA sequencing, transmission electron microscope

Procedia PDF Downloads 45
7385 Green Technologies Developed by JSC “NIUIF”

Authors: Andrey Norov

Abstract:

In the recent years, Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF”, the oldest (established in September 1919) industry-oriented institute in Russia, has developed a range of sustainable, environment-friendly, zero-waste technologies that ensure minimal consumption of materials and energy resources and fully consistent with the principles of Green Chemistry that include: - Ecofriendly energy and resource saving technology of sulfuric acid from sulfur according to DC-DA scheme (double conversion - double absorption); - Improved zero-waste technology of wet phosphoric acid (WPA) by dihydrate-hemihydrate process applicable to various types of phosphate raw materials; - Flexible, efficient, zero-waste, universal technology of NP / NPS / NPK / NPKS fertilizers with maximum heat recovery from chemical processes; - Novel, zero-waste, no-analogue technology of granular PK / PKS / NPKS fertilizers with controlled dissolution rate and nutrient supply into the soil, which allows to process a number of wastes and by-products; - Innovative resource-saving joint processing of wastes from the production of phosphogypsum and fluorosilicic acid (FSA) into ammonium sulfate with simultaneous neutralization of fluoride compounds with no lime used. - New fertilizer technology of increased environmental and agrochemical efficiency (currently under development). All listed green technologies are patented with Russian and Eurasian patents. The development of ecofriendly, safe, green technologies is ongoing in JSC “NIUIF”.

Keywords: NPKS fertilizers, FSA, sulfuric acid, WPA

Procedia PDF Downloads 94
7384 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 148
7383 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance

Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar

Abstract:

The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.

Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth

Procedia PDF Downloads 332
7382 Weak Electric Fields Enhance Growth and Nutritional Quality of Kale

Authors: So-Ra Lee, Myung-Min Oh

Abstract:

Generally, plants growing on the earth are under the influence of natural electric fields and may even require exposure of the electric field to survive. Electric signals have been observed within plants and seem to play an important role on various metabolic processes, but their role is not fully understood. In this study, we attempted to explore the response of plants under external electric fields in kale (Brassica oleracea var. acephala). The plants were hydroponically grown for 28 days in a plant factory. Electric currents at 10, 50 and 100 mA were supplied to nutrient solution for 3 weeks. Additionally, some of the plants were cultivated in a Faraday cage to remove the natural electric field. Kale plants exposed to electric fields had higher fresh weight than the control and plants in Faraday cage. Absence of electric field caused a significant decrease in shoot dry weight and root growth. Leaf area also showed a similar response with shoot fresh weight. Supplying weak electric stimulation enhanced nutritional quality including total phenolic content and antioxidant capacity. This work provides basic information on the effects of electric fields on plants and is a meaningful attempt for developing a new economical technology to increase crop productivity and quality by applying an electric field. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (717001-07-02-HD240).

Keywords: electroculture, electric signal, faraday cage, electric field

Procedia PDF Downloads 290
7381 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing

Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall

Abstract:

Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.

Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear

Procedia PDF Downloads 298
7380 General Time-Dependent Sequenced Route Queries in Road Networks

Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost

Abstract:

Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.

Keywords: trip planning, time dependent, sequenced route query, road networks

Procedia PDF Downloads 321
7379 Optimizing Machine Learning Through Python Based Image Processing Techniques

Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash

Abstract:

This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.

Keywords: image processing, machine learning applications, template matching, emotion detection

Procedia PDF Downloads 15
7378 The Role of Dynamic Ankle Foot Orthosis on Temporo-Spatial Parameters of Gait and Balance in Patients with Hereditary Spastic Paraparesis: Six-Months Follow Up

Authors: Suat Erel, Gozde Gur

Abstract:

Background: Recently a supramalleolar type of dynamic ankle foot orthosis (DAFO) has been increasingly used to support all of the dynamic arches of the foot and redistribute the pressure under the plantar surface of the foot to reduce the muscle tone. DAFO helps to maintain balance and postural control by providing stability and proprioceptive feedback in children with disease like Cerebral Palsy, Muscular Dystrophies, Down syndrome, and congenital hypotonia. Aim: The aim of this study was to investigate the role of Dynamic ankle foot orthosis (DAFO) on temporo-spatial parameters of gait and balance in three children with hereditary spastic paraparesis (HSP). Material Method: 13, 14, and 8 years old three children with HSP were included in the study. To provide correction on weight bearing and to improve gait, DAFO was made. Lower extremity spasticity (including gastocnemius, hamstrings and hip adductor muscles) using modified Ashworth Scale (MAS) (0-5), The temporo-spatial gait parameters (walking speed, cadence, base of support, step length) and Timed Up & Go test (TUG) were evaluated. All of the assessments about gait were compared with (with DAFO and shoes) and without DAFO (with shoes only) situations. Also after six months follow up period, assessments were repeated by the same physical therapist. Results: MAS scores for lower extremity were between “2-3” for the first child, “0-2” for the second child and “1-2” for the third child. TUG scores (sec) decreased from 20.2 to 18 for case one, from 9.4 to 9 for case two and from 12,4 to 12 for case three in the condition with shoes only and also from 15,2 to 14 for case one, from 7,2 to 7,1 for case two and from 10 to 7,3 for case three in the condition with DAFO and shoes. Gait speed (m/sec) while wearing shoes only was similar but while wearing DAFO and shoes increased from 0,4 to 0,5 for case one, from 1,5 to 1,6 for case two and from 1,0 to 1,2 for case three. Base of support scores (cm) wearing shoes only decreased from 18,5 to 14 for case one, from 13 to 12 for case three and were similar as 11 for case two. While wearing DAFO and shoes, base of support decreased from 10 to 9 for case one, from 11,5 to 10 for case three and was similar as 8 for case two. Conclusion: The use of a DAFO in a patient with HSP normalized the temporo-spatial gait parameters and improved balance. Walking speed is a gold standard for evaluating gait quality. With the use of DAFO, walking speed increased in this three children with HSP. With DAFO, better TUG scores shows that functional ambulation improved. Reduction in base of support and more symmetrical step lengths with DAFO indicated better balance. These encouraging results warrant further study on wider series.

Keywords: dynamic ankle foot orthosis, gait, hereditary spastic paraparesis, balance in patient

Procedia PDF Downloads 354
7377 High-Temperature Behavior of Boiler Steel by Friction Stir Processing

Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar

Abstract:

High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.

Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing

Procedia PDF Downloads 238
7376 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 283
7375 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 58
7374 Understanding the Heart of the Matter: A Pedagogical Framework for Apprehending Successful Second Language Development

Authors: Cinthya Olivares Garita

Abstract:

Untangling language processing in second language development has been either a taken-for-granted and overlooked task for some English language teaching (ELT) instructors or a considerable feat for others. From the most traditional language instruction to the most communicative methodologies, how to assist L2 learners in processing language in the classroom has become a challenging matter in second language teaching. Amidst an ample array of methods, strategies, and techniques to teach a target language, finding a suitable model to lead learners to process, interpret, and negotiate meaning to communicate in a second language has imposed a great responsibility on language teachers; committed teachers are those who are aware of their role in equipping learners with the appropriate tools to communicate in the target language in a 21stcentury society. Unfortunately, one might find some English language teachers convinced that their job is only to lecture students; others are advocates of textbook-based instruction that might hinder second language processing, and just a few might courageously struggle to facilitate second language learning effectively. Grounded on the most representative empirical studies on comprehensible input, processing instruction, and focus on form, this analysis aims to facilitate the understanding of how second language learners process and automatize input and propose a pedagogical framework for the successful development of a second language. In light of this, this paper is structured to tackle noticing and attention and structured input as the heart of processing instruction, comprehensible input as the missing link in second language learning, and form-meaning connections as opposed to traditional grammar approaches to language teaching. The author finishes by suggesting a pedagogical framework involving noticing-attention-comprehensible-input-form (NACIF based on their acronym) to support ELT instructors, teachers, and scholars on the challenging task of facilitating the understanding of effective second language development.

Keywords: second language development, pedagogical framework, noticing, attention, comprehensible input, form

Procedia PDF Downloads 29
7373 New Efficient Method for Coding Color Images

Authors: Walaa M.Abd-Elhafiez, Wajeb Gharibi

Abstract:

In this paper a novel color image compression technique for efficient storage and delivery of data is proposed. The proposed compression technique started by RGB to YCbCr color transformation process. Secondly, the canny edge detection method is used to classify the blocks into edge and non-edge blocks. Each color component Y, Cb, and Cr compressed by discrete cosine transform (DCT) process, quantizing and coding step by step using adaptive arithmetic coding. Our technique is concerned with the compression ratio, bits per pixel and peak signal to noise ratio, and produce better results than JPEG and more recent published schemes (like, CBDCT-CABS and MHC). The provided experimental results illustrate the proposed technique which is efficient and feasible in terms of compression ratio, bits per pixel and peak signal to noise ratio.

Keywords: image compression, color image, q-coder, quantization, edge-detection

Procedia PDF Downloads 329
7372 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 199