Search results for: data analysis of Uzbekistan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42036

Search results for: data analysis of Uzbekistan

40596 The Impact of Misogyny on Women's Leadership in the Local Sphere of Government: The Case of Dr. Kenneth Kaunda District Municipality

Authors: Josephine Eghonghon Ahiante, Barry Hanyane

Abstract:

To give effect to the constitutional rights of gender equality, the South African government instituted various legislative policy frameworks and legislations to equalise the public service. Nonetheless, gender inequality in senior management positions remains a rift in government institutions, particularly the local sphere of government. The methodology for gathering and analysing data for this study was based on both primary and secondary data sources, namely literature review, qualitative and quantitative data collection and analysis, triangulation, and inductive and deductive thematic analysis. The study found that misogynist tendencies which are manifest in organisational culture suffocate the good intentions of government in ensuring social justices, leadership diversity, and women equality. It also demonstrates that traditional gender role expectation still informs the ground in which senior management positions are allocated, men perceive women as non-leadership fit and discriminate against them during recruitment, selection, and promotion into high positions. The analyses from the study portray that, while government legislation and framework has been instrumental in the leadership acceleration of women, much more has to be done to deconstruct internalised leadership stereotypes on women's gender roles and leadership requirements. The study recommends that gender bias training intervention is needed to teach public employees on management excellence.

Keywords: gender, leadership, misogyny, orgnisational cultural, patriachy

Procedia PDF Downloads 153
40595 Isolate-Specific Variations among Clinical Isolates of Brucella Identified by Whole-Genome Sequencing, Bioinformatics and Comparative Genomics

Authors: Abu S. Mustafa, Mohammad W. Khan, Faraz Shaheed Khan, Nazima Habibi

Abstract:

Brucellosis is a zoonotic disease of worldwide prevalence. There are at least four species and several strains of Brucella that cause human disease. Brucella genomes have very limited variation across strains, which hinder strain identification using classical molecular techniques, including PCR and 16 S rDNA sequencing. The aim of this study was to perform whole genome sequencing of clinical isolates of Brucella and perform bioinformatics and comparative genomics analyses to determine the existence of genetic differences across the isolates of a single Brucella species and strain. The draft sequence data were generated from 15 clinical isolates of Brucella melitensis (biovar 2 strain 63/9) using MiSeq next generation sequencing platform. The generated reads were used for further assembly and analysis. All the analysis was performed using Bioinformatics work station (8 core i7 processor, 8GB RAM with Bio-Linux operating system). FastQC was used to determine the quality of reads and low quality reads were trimmed or eliminated using Fastx_trimmer. Assembly was done by using Velvet and ABySS softwares. The ordering of assembled contigs was performed by Mauve. An online server RAST was employed to annotate the contigs assembly. Annotated genomes were compared using Mauve and ACT tools. The QC score for DNA sequence data, generated by MiSeq, was higher than 30 for 80% of reads with more than 100x coverage, which suggested that data could be utilized for further analysis. However when analyzed by FastQC, quality of four reads was not good enough for creating a complete genome draft so remaining 11 samples were used for further analysis. The comparative genome analyses showed that despite sharing same gene sets, single nucleotide polymorphisms and insertions/deletions existed across different genomes, which provided a variable extent of diversity to these bacteria. In conclusion, the next generation sequencing, bioinformatics, and comparative genome analysis can be utilized to find variations (point mutations, insertions and deletions) across different genomes of Brucella within a single strain. This information could be useful in surveillance and epidemiological studies supported by Kuwait University Research Sector grants MI04/15 and SRUL02/13.

Keywords: brucella, bioinformatics, comparative genomics, whole genome sequencing

Procedia PDF Downloads 379
40594 Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study

Authors: Sami Ayad, Mengshan Lee

Abstract:

The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management.

Keywords: chemical alternative assessment, LCA, LCAA, CLiCC, CLiCAA, chemical substitution framework, cancer potency data, chemical molecular structure analysis

Procedia PDF Downloads 90
40593 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study

Authors: Zeba Mahmood

Abstract:

The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.

Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining

Procedia PDF Downloads 537
40592 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: linked open data, information integration, digital libraries, data mining

Procedia PDF Downloads 422
40591 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network

Authors: Jui-Chen Huang, Shou-Hsiung Cheng

Abstract:

This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.

Keywords: fall, fuzzy neural network, health belief model, telecare, willingness

Procedia PDF Downloads 198
40590 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes

Authors: H. C. Chang, J. R. Wang, A. L. Ho, S. W. Chen, J. H. Yang, C. Shih, L. C. Wang

Abstract:

To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.

Keywords: advanced boiling water reactor, TRACE, PARCS, SNAP

Procedia PDF Downloads 206
40589 An Occupational Analysis on Chikankari Industry Workers in Lucknow City, India

Authors: Mahvish Anjum

Abstract:

India is a land of craftsmen and a hub of many popular embroidery clusters. Chikankari is the name given to the delicate art of hand embroidery, traditionally practiced in the city of Lucknow and its environs. Chikankari not only provide employment to 250,000 artisans of different crafts but people from non-craft base also earn their livelihood by associating themselves with this craft. People working in this sector are exploited in term of working hours, low and irregular income, unsatisfactory work conditions, no legal protection and exposed to occupational health hazards. The present paper is an attempt to analyse occupational profile of workers engaged in Chikan embroidery industry. Being an empirical study, the entire work is based upon primary sources of data which have collected through field survey. Purposive random sampling has used for selection of data. Total 150 workers have surveyed through questionnaire technique in Lucknow city during October-November, 2017. For analysis of data Z-score, ANOVA, and Pearson correlation techniques are used. The result of present study indicates that artisans are exploited by the middle man and face the problem of late payment and long working hours because they are not directly associated with the manufacturers. Work conditions of the workers are quite poor such as improper ventilation, poor light and unhygienic conditions that adversely affect the health of workers.

Keywords: artisans, socio-economic status, unorganized industry, work condition

Procedia PDF Downloads 161
40588 Data-Driven Simulations Tools for Der and Battery Rich Power Grids

Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili

Abstract:

Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.

Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools

Procedia PDF Downloads 101
40587 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience

Authors: Karen C. Olufokunbi, Odetunji A. Odejobi

Abstract:

The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.

Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics

Procedia PDF Downloads 164
40586 An Examination of the Factors Affecting the Adoption of Cloud Enterprise Resource Planning Systems in Egyptian Companies

Authors: Mayar A. Omar, Ismail Gomaa, Heba Badawy, Hosam Moubarak

Abstract:

Enterprise resource planning (ERP) is an integrated system that helps companies in managing their resources. There are two types of ERP systems, traditional ERP systems and cloud ERP systems. Cloud ERP systems were introduced after the development of cloud computing technology. This research aims to identify the factors that affect the adoption of cloud ERP in Egyptian companies. Moreover, the aim of our study is to provide guidance to Egyptian companies in the cloud ERP adoption decision and to participate in increasing the number of cloud ERP studies that are conducted in the Middle East and in developing countries. There are many factors influencing the adoption of cloud ERP in Egyptian organizations, which are discussed and explained in the research. Those factors are examined by combining the diffusion of innovation theory (DOI) and technology-organization-environment framework (TOE). Data were collected through a survey that was developed using constructs from the existing studies of cloud computing and cloud ERP technologies and was then modified to fit our research. The analysis of the data was based on structural equation modeling (SEM) using Smart PLS software that was used for the empirical analysis of the research model.

Keywords: cloud computing, cloud ERP systems, DOI, Egypt, SEM, TOE

Procedia PDF Downloads 136
40585 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach

Authors: Jerry Q. Cheng

Abstract:

Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.

Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing

Procedia PDF Downloads 163
40584 Strategies to Promote Entrepreneurship Among University Students: A Case Study from Al Akhawayn University

Authors: Sara atibi, Azzeddine Atibi, Salim Ahmed, Khadija El Kababi

Abstract:

The emergence of an entrepreneurial culture within academic institutions is increasingly seen as essential for preparing students for contemporary economic challenges. This study examines the effectiveness of educational programs and interventions aimed at promoting entrepreneurial spirit at Al Akhawayn University. The central issue explores the types of programs most efficient in instilling the necessary entrepreneurial skills and attitudes in students. The primary question about the ‘types of educational programs and interventions that are most effective in cultivating and reinforcing the entrepreneurial spirit among students at Al Akhawayn University' is broken down into sub-questions detailing the characteristics of current programs, factors influencing their success, the evolution of students' entrepreneurial skills, the role of teachers and mentors, best practices from other institutions, and the long-term impacts on graduates' entrepreneurial careers. To address this question, a mixed-methods approach, combining quantitative and qualitative methods, was adopted. Quantitative data collection includes questionnaires and surveys designed to evaluate students' attitudes, skills, and perceptions before and after participating in entrepreneurship programs. Simultaneously, semi-structured interviews, focus groups, and participant observations provide in-depth qualitative data on the experiences of students, teachers, and administrators. Quantitative data analysis employs descriptive and inferential statistical techniques, while qualitative analysis uses a thematic approach to identify key perceptions and experiences. This triangulation of data ensures robust and comprehensive results.

Keywords: student entrepreneurship, pedagogical interventions, Al Akhawayn university, entrepreneurial culture, entrepreneurial skills

Procedia PDF Downloads 28
40583 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador

Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego

Abstract:

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.

Keywords: hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador

Procedia PDF Downloads 267
40582 An Exploratory Factor and Cluster Analysis of the Willingness to Pay for Last Mile Delivery

Authors: Maximilian Engelhardt, Stephan Seeck

Abstract:

The COVID-19 pandemic is accelerating the already growing field of e-commerce. The resulting urban freight transport volume leads to traffic and negative environmental impact. Furthermore, the service level of parcel logistics service provider is lacking far behind the expectations of consumer. These challenges can be solved by radically reorganize the urban last mile distribution structure: parcels could be consolidated in a micro hub within the inner city and delivered within time windows by cargo bike. This approach leads to a significant improvement of consumer satisfaction with their overall delivery experience. However, this approach also leads to significantly increased costs per parcel. While there is a relevant share of online shoppers that are willing to pay for such a delivery service there are no deeper insights about this target group available in the literature. Being aware of the importance of knowing target groups for businesses, the aim of this paper is to elaborate the most important factors that determine the willingness to pay for sustainable and service-oriented parcel delivery (factor analysis) and to derive customer segments (cluster analysis). In order to answer those questions, a data set is analyzed using quantitative methods of multivariate statistics. The data set was generated via an online survey in September and October 2020 within the five largest cities in Germany (n = 1.071). The data set contains socio-demographic, living-related and value-related variables, e.g. age, income, city, living situation and willingness to pay. In a prior work of the author, the data was analyzed applying descriptive and inference statistical methods that only provided limited insights regarding the above-mentioned research questions. The analysis in an exploratory way using factor and cluster analysis promise deeper insights of relevant influencing factors and segments for user behavior of the mentioned parcel delivery concept. The analysis model is built and implemented with help of the statistical software language R. The data analysis is currently performed and will be completed in December 2021. It is expected that the results will show the most relevant factors that are determining user behavior of sustainable and service-oriented parcel deliveries (e.g. age, current service experience, willingness to pay) and give deeper insights in characteristics that describe the segments that are more or less willing to pay for a better parcel delivery service. Based on the expected results, relevant implications and conclusions can be derived for startups that are about to change the way parcels are delivered: more customer-orientated by time window-delivery and parcel consolidation, more environmental-friendly by cargo bike. The results will give detailed insights regarding their target groups of parcel recipients. Further research can be conducted by exploring alternative revenue models (beyond the parcel recipient) that could compensate the additional costs, e.g. online-shops that increase their service-level or municipalities that reduce traffic on their streets.

Keywords: customer segmentation, e-commerce, last mile delivery, parcel service, urban logistics, willingness-to-pay

Procedia PDF Downloads 106
40581 Cd2+ Ions Removal from Aqueous Solutions Using Alginite

Authors: Vladimír Frišták, Martin Pipíška, Juraj Lesný

Abstract:

Alginate has been evaluated as an efficient pollution control material. In this paper, alginate from maar Pinciná (SR) for removal of Cd2+ ions from aqueous solution was studied. The potential sorbent was characterized by X-Ray Fluorescence Analysis (RFA) analysis, Fourier Transform Infrared Spectral Analysis (FT-IR) and Specific Surface Area (SSA) was also determined. The sorption process was optimized from the point of initial cadmium concentration effect and effect of pH value. The Freundlich and Langmuir models were used to interpret the sorption behaviour of Cd2+ ions, and the results showed that experimental data were well fitted by the Langmuir equation. Alginate maximal sorption capacity (QMAX) for Cd2+ ions calculated from Langmuir isotherm was 34 mg/g. Sorption process was significantly affected by initial pH value in the range from 4.0-7.0. Alginate is a comparable sorbent with other materials for toxic metals removal.

Keywords: alginates, Cd2+, sorption, QMAX

Procedia PDF Downloads 355
40580 Comparative Analysis of Change in Vegetation in Four Districts of Punjab through Satellite Imagery, Land Use Statistics and Machine Learning

Authors: Mirza Waseem Abbas, Syed Danish Raza

Abstract:

For many countries agriculture is still the major force driving the economy and a critically important socioeconomic sector, despite exceptional industrial development across the globe. In countries like Pakistan, this sector is considered the backbone of the economy, and most of the economic decision making revolves around agricultural outputs and data. Timely and accurate facts and figures about this vital sector hold immense significance and have serious implications for the long-term development of the economy. Therefore, any significant improvements in the statistics and other forms of data regarding agriculture sector are considered important by all policymakers. This is especially true for decision making for the betterment of crops and the agriculture sector in general. Provincial and federal agricultural departments collect data for all cash and non-cash crops and the sector, in general, every year. Traditional data collection for such a large sector i.e. agriculture, being time-consuming, prone to human error and labor-intensive, is slowly but gradually being replaced by remote sensing techniques. For this study, remotely sensed data were used for change detection (machine learning, supervised & unsupervised classification) to assess the increase or decrease in area under agriculture over the last fifteen years due to urbanization. Detailed Landsat Images for the selected agricultural districts were acquired for the year 2000 and compared to images of the same area acquired for the year 2016. Observed differences validated through detailed analysis of the areas show that there was a considerable decrease in vegetation during the last fifteen years in four major agricultural districts of the Punjab province due to urbanization (housing societies).

Keywords: change detection, area estimation, machine learning, urbanization, remote sensing

Procedia PDF Downloads 248
40579 Analyzing of the Urban Landscape Configurations and Expansion of Dire Dawa City, Ethiopia Using Satellite Data and Landscape Metrics Approaches

Authors: Berhanu Keno Terfa

Abstract:

To realize the consequences of urbanization, accurate, and up-to-date representation of the urban landscape patterns is critical for urban planners and policymakers. Thus, the study quantitatively characterized the spatiotemporal composition and configuration of the urban landscape and urban expansion process in Dire Dawa City, Ethiopia, form the year 2006 to 2018. The integrated approaches of various sensors satellite data, Spot (2006) and Sentinel 2 (2018) combined with landscape metrics analysis was employed to explore the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 62% between 2006 and 2018, at an average annual increment of 3.6%, while the other land covers were lost significantly due to urban expansion. The highest urban expansion has occurred in the northwest direction, whereas the most fragmented landscape pattern was recorded in the west direction. Overall, the analysis showed that Dire Dawa City experienced accelerated urban expansion with a fragmented and complicated spatiotemporal urban landscape patterns, suggesting a strong tendency towards sprawl over the past 12 years. The findings in the study could help planners and policy developers to insight the historical dynamics of the urban region for sustainable development.

Keywords: zonal metrics, multi-temporal, multi-resolution, urban growth, remote sensing data

Procedia PDF Downloads 199
40578 The Role of Self-Confidence, Adversity Quotient, and Self-Efficacy Critical Thinking: Path Model

Authors: Bayu Dwi Cahyo, Ekohariadi, Theodorus Wiyanto Wibowo, I. G. P. Asto Budithahjanto, Eppy Yundra

Abstract:

The objective of this study is to examine the effects of self-confidence, adversity quotient, and self-efficacy variables on critical thinking. This research's participants are 137 cadets of Aviation Polytechnics of Surabaya with the sampling technique that was purposive sampling. In this study, the data collection method used a questionnaire with Linkert-scale and distributed or given to respondents by the specified number of samples. The SPSS AMOS v23 was used to test a number of a priori multivariate growth curve models and examining relationships between the variables via path analysis. The result of path analysis was (χ² = 88.463, df= 71, χ² /df= 1.246, GFI= .914, CFI= .988, P= .079, AGFI= .873, TLI= .985, RMSEA= .043). According to the analysis, there is a positive and significant relationship between self-confidence, adversity quotient, and self-efficacy variables on critical thinking.

Keywords: self-confidence, adversity quotient, self-efficacy variables, critical thinking

Procedia PDF Downloads 142
40577 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods

Authors: Ehsan Sakhaei, Ali Taherabadi

Abstract:

In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.

Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model

Procedia PDF Downloads 502
40576 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes

Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng

Abstract:

To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.

Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation

Procedia PDF Downloads 56
40575 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 271
40574 Retrospective Data Analysis of Penetrating Injuries Admitted to Jigme Dorji Wangchuck National Referral Hospital (JDWNRH), Thimphu, Bhutan, Due to Traditional Sports over a Period of 3 Years

Authors: Sonam Kelzang

Abstract:

Background: Penetrating injuries as a result of traditional sports (Archery and Khuru) are commonly seen in Bhutan. To our knowledge, there is no study carried out looking into the data of penetrating injuries due to traditional sports. Aim: This is a retrospective analysis of cases of penetrating injuries as a result of traditional sports admitted to JDWNRH over the last 3 years to draw an inference on the pattern of injury and associated morbidity and mortality. Method: Data on penetrating injuries related to traditional sports (Archery and Khuru) were collected and reviewed over the period of 3 years. Assault cases were excluded. For each year we analysed age, sex, parts of the body affected, agent of injury and whether admission was required or not. Results: Out of the total 44 victims of penetrating injury by traditional sports (Archery and Khuru) between 2013 and 2015 (average of 15 cases of penetrating injuries per year). Eighty-five percent were male and 15% were female. Their age ranged from 4 yrs to 62 years. Sixty-one percent of the victims were in the working age group of 19-58 years; 30% of the victims were referred from various district hospitals; 38% of the victims needed admission; 42 % of the victims suffered injury to the head; and 54% of the injuries were caused by Khuru. Conclusion: Penetrating injuries due to traditional sports admitted to JDWNRH, Thimphu, remained same over the three years period despite safety regulations in place. Although there were no deaths during the last three years, morbidity still remains high.

Keywords: archery, Bhutan, Khuru, darts

Procedia PDF Downloads 165
40573 Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis

Authors: Mahdieh Jajroudi

Abstract:

Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%.

Keywords: biodistribution modeling, compartmental analysis, 177Lu labeled somatostatin analogues, neuroendocrine tumors

Procedia PDF Downloads 367
40572 Urban Meetings: Graphic Analysis of the Public Space in a Cultural Building from São Paulo

Authors: Thalita Carvalho Martins de Castro, Núbia Bernardi

Abstract:

Currently, studies evidence that our cities are portraits of social relations. In the midst of so many segregations, cultural buildings emerge as a place to assemble collective activities and expressions. Through theater, exhibitions, educational workshops, libraries, the architecture approaches human relations and seeks to propose meeting places. The purpose of this research is to deepen the discussions about the contributions of cultural buildings in the use of the spaces of the contemporary city, based on the data and measure collected in the master's research in progress. The graphic analysis of the insertion of contemporary cultural buildings seeks to highlight the social use of space. The urban insertions of contemporary cultural buildings in the city of São Paulo (Brazil) will be analyzed to understand the relations between the architectural form and its audience. The collected data describe a dynamic of flows and the permanence in the use of these spaces, indicating the contribution of the cultural buildings, associated with artistic production, in the dynamics of urban spaces and the social modifications of their milieu. Among the case studies, the research in development is based on the registration and graphic analysis of the Praça das Artes (2012) building located in the historical central region of the city, which after a long period of great degradation undergoes a current redevelopment. The choice of this building was based on four parameters, both on the architectural scale and on the urban scale: urban insertion, local impact, cultural production and a mix of uses. For the analysis will be applied two methodologies of graphic analysis, one with diagrams accompanied by texts and another with the active analysis for open space projects using complementary graphic methodologies, with maps, plants, info-graphics, perspectives, time-lapse videos and analytical tables. This research aims to reinforce the debates between the methodologies of form-use spaces and visual synthesis applied in cultural buildings, in order that new projects can structure public spaces as catalysts for social use, generating improvements in the daily life of its users and in the cities where they are inserted.

Keywords: cultural buildings, design methodologies, graphic analysis, public spaces

Procedia PDF Downloads 306
40571 Neural Networks Models for Measuring Hotel Users Satisfaction

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.

Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring

Procedia PDF Downloads 136
40570 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 22
40569 Sensitivity Analysis of Oil Spills Modeling with ADIOS II for Iranian Fields in Persian Gulf

Authors: Farzingohar Mehrnaz, Yasemi Mehran, Esmaili Zinat, Baharlouian Maedeh

Abstract:

Aboozar (Ardeshir) and Bahregansar are the two important Iranian oilfields in Persian Gulf waters. The operation activities cause to create spills which impacted on the marine environment. Assumed spills are molded by ADIOS II (Automated Data Inquiry for Oil Spills) which is NOAA’s weathering oil software. Various atmospheric and marine data with different oil types are used for the modeling. Numerous scenarios for 100 bbls with mean daily air temperature and wind speed are input for 5 days. To find the model sensitivity in each setting, one parameter is changed, but the others stayed constant. In both fields, the evaporated and dispersed output values increased hence the remaining rate is reduced. The results clarified that wind speed first, second air temperature and finally oil type respectively were the most effective factors on the oil weathering process. The obtained results can help the emergency systems to predict the floating (dispersed and remained) volume spill in order to find the suitable cleanup tools and methods.

Keywords: ADIOS, modeling, oil spill, sensitivity analysis

Procedia PDF Downloads 298
40568 An Eastern Philosophical Dimension of an English Language Teacher's Professionalism: A Narrative Analysis

Authors: Siddhartha Dhungana

Abstract:

This article primarily explores dimensions in English language teacher's professionalism so that a teacher could reflect and make a strategic professional devotion to implement effective educational programs for the present and the future. The paper substantially incorporates the eastern Hindu practices, especially life values from the Bhagavad Gita, as a basis of teacher’s professional enrichment. Basically, it applies three categorical practices, i.e., Karma Yoga, Jnana Yoga, and Bhakti Yoga, in teachers’ professionality to illustrate, ignite further ahead and sharpen academic journey, professional journey, and professional devotion reflecting common practices. In this journey, a teacher comes to a stage of professional essence as s/he surpasses Karma Yoga, Jnana Yoga, and Bhakti Yoga with their basic quality formation. To illustrate their essence-making process, the three narrative stories for each category mentioned above are analyzed. The data collected from a research participant who has a high level of professional success and who inspires all English Language teachers in Nepal to develop stories for narrative analysis. The narrative analysis is based on eastern themes that are supported by Vygotsky's concept of developmental psychology. Moreover, the structural analysis is based on Gary Barkhuizen's narrative analysis.

Keywords: Karma Yoga, Jnana Yoga, Bhakti Yoga, Vygotsky's concepts, narrative analysis

Procedia PDF Downloads 156
40567 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading

Authors: Michał Rogala, Jakub Gajewski

Abstract:

As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.

Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure

Procedia PDF Downloads 146