Search results for: market crash prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5644

Search results for: market crash prediction

4234 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic

Abstract:

The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).

Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences

Procedia PDF Downloads 319
4233 Prediction For DC-AC PWM Inverters DC Pulsed Current Sharing From Passive Parallel Battery-Supercapacitor Energy Storage Systems

Authors: Andreas Helwig, John Bell, Wangmo

Abstract:

Hybrid energy storage systems (HESS) are gaining popularity for grid energy storage (ESS) driven by the increasingly dynamic nature of energy demands, requiring both high energy and high power density. Particularly the ability of energy storage systems via inverters to respond to increasing fluctuation in energy demands, the combination of lithium Iron Phosphate (LFP) battery and supercapacitor (SC) is a particular example of complex electro-chemical devices that may provide benefit to each other for pulse width modulated DC to AC inverter application. This is due to SC’s ability to respond to instantaneous, high-current demands and batteries' long-term energy delivery. However, there is a knowledge gap on the current sharing mechanism within a HESS supplying a load powered by high-frequency pulse-width modulation (PWM) switching to understand the mechanism of aging in such HESS. This paper investigates the prediction of current utilizing various equivalent circuits for SC to investigate sharing between battery and SC in MATLAB/Simulink simulation environment. The findings predict a significant reduction of battery current when the battery is used in a hybrid combination with a supercapacitor as compared to a battery-only model. The impact of PWM inverter carrier switching frequency on current requirements was analyzed between 500Hz and 31kHz. While no clear trend emerged, models predicted optimal frequencies for minimized current needs.

Keywords: hybrid energy storage, carrier frequency, PWM switching, equivalent circuit models

Procedia PDF Downloads 26
4232 Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.

Keywords: adult, basal metabolic rate, fao/who/unu, obesity, prediction equations

Procedia PDF Downloads 133
4231 Hansen Solubility Parameter from Surface Measurements

Authors: Neveen AlQasas, Daniel Johnson

Abstract:

Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied films

Keywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements

Procedia PDF Downloads 94
4230 First Report of Asiatic Black Bear: Evidence of Illegal Hunting and Trading from Manglawar Mountain, Swat, Pakistan

Authors: Waheed Akhtar

Abstract:

Bears in Asia facing multiple threats and challenges such as hunting, illegal trading, habitat loss, and human conflicts. According to IUCN Red List, the Asiatic black bear (Ursus thibetanus) is listed as Vulnerable since 1990, population declining by 49% during the last 30 years. The present study was conducted in Manglawar (DwaSaro Mountain) from April-August 2021, to collect all the information on Asiatic black bear observation, illegal hunting, and cub poaching. According to the response of the local community, very intensive illegal hunting and cub poaching were observed. Hunters usually installed many traps in the routes of black bears and when they move in the winter season the cubs get trapped and they collect them and kept in a specialized wooden box that is mainly helpful for further transportation. These cubs are then brought to the concerned Market where they sell them to many dealers. One of the potential observers of the illegal trading responds towards the Market price of the cubs, “The average price of the black bear cub is ranging from 45000-50000 Pakistani Rupees”. Apart from cubs' poaching, the black bear is also hunted for its skin, claws, and teeth.

Keywords: first report, illegal hunting, cub poaching, parts trading, Ursus thibetanus

Procedia PDF Downloads 63
4229 The Effectiveness of Intensive Short-Term Dynamic Psychotherapy on Ambiguity Tolerance, Emotional Intelligence and Stress Coping Strategies in Financial Market Traders

Authors: Ahmadreza Jabalameli, Mohammad Ebrahimpour Borujeni

Abstract:

This study aims to evaluate the effectiveness of intensive short-term dynamic psychotherapy (ISTDP) on ambiguity tolerance, emotional intelligence and stress coping strategies in financial market traders. The methodology of this study was quasi-experimental, pre-test and post-test with control group. The statistical population of this study includes all students at Jabalameli Information Technology Academy in 2022. Among them, 30 people were selected by voluntary sampling through interviews, and were randomly divided into two experimental and control groups of 51 people. And the components were measured according to McLain Ambiguity Tolerance Questionnaire, Bar-On Emotional Intelligence and Lazarus Stress Coping Strategies. The data were obtained by SPSS software and were analyzed by using multivariate analysis of covariance. The results indicate that intensive short-term dynamic psychotherapy influences the emotional intelligence as well as the ambiguity tolerance of traders.

Keywords: ISTDP, ambiguity tolerance, trading, emotional intelligence, stress

Procedia PDF Downloads 87
4228 Study on the OTP Authentication Method and Security for User Mobility in the Cloud

Authors: Jong-Won Lee

Abstract:

Since Cloud environment has appeared as the most powerful keyword in the computing industry, the growth in VDI (Virtual Desktop Infrastructure) became remarkable in domestic market. In recent years, with the trend that mobile devices such as smartphones and pads spread so rapidly, the strengths of VDI that allows people to access and perform business on the move along with companies' office needs expedite more rapid spread of VDI. However, although this enhanced accessibility and mobility can bring the enhanced productivity, it sometimes conflicts with the security, so there should be more detailed security solution, which is user authentication. In this paper, mobile OTP (One-Time Password) authentication method is proposed to secure mobile device portability through rapid and secure authentication using mobile devices such as mobile phones or pads, which does not require additional purchase or possession of OTP tokens of users. However, in order to use the service continuously and reliably in the cloud environment, both service provider and user have to prepare for security awareness and security threats, and continuously study the conflicting aspect between the improving user convenience and the security and supplement so that cloud service can provide opportunities to develop as a new growth industry in the future and create a new market in IT industry.

Keywords: cloud, OTP, mobility, security, authentication

Procedia PDF Downloads 350
4227 The Impact of Australia's Skilled Migrant Selection System: A Case Study of Japanese Skilled Migrants and Their Families

Authors: Iori Hamada

Abstract:

Australia's skilled migrant selection system is constantly changing its target skills and criteria according to the labour market demands. The government's intention to employ this highly selective market-driven selection system is to better target the skills needed in the economy, enable skilled migrants to be employed in industries that have the highest need, and consequently boost the economy and population. However, migration scholars have called this intention into question, arguing that the system is not making the best use of skilled migrants. This paper investigates the impact of recent reforms in Australian skilled migration system on skilled migrants' employment and related life conditions. Drawing on semi-structured qualitative interviews with Japanese skilled migrants in Australia, it argues that Australia’s skilled migrant selection system guarantees neither skilled migrants' employment nor successful transfer of their skills to the labour market. The findings show that Japanese skilled migrants are often unemployed or under-employed, although they intend to achieve upward occupational mobility. The interview data also reveal that male unemployment or under-employment status prompts some Japanese men to leave Australia and find a job that better matches their skills and qualifications in a new destination. Further, it finds that Japanese male skilled migrants who experience downward occupational mobility tend to continue to take a primary breadwinner role, which affects the distribution of paid and unpaid work within their families. There is a growing body of research investigating skilled migrants’ downward career mobility. However, little has been written on skilled Japanese migrants. Further, the work-family intersection is a 'hot public policy topic' in Australia and elsewhere. Yet, the existing studies focus almost exclusively on non-migrant families. This calls attention to the urgency of assessing the work-family lives of skilled migrants. This study fills these gaps, presenting additional insight into Japanese skilled migrants’ work and family in and beyond Australia.

Keywords: Australia, employment, family, Japanese skilled migrants

Procedia PDF Downloads 115
4226 Study of the Persian Gulf’s and Oman Sea’s Numerical Tidal Currents

Authors: Fatemeh Sadat Sharifi

Abstract:

In this research, a barotropic model was employed to consider the tidal studies in the Persian Gulf and Oman Sea, where the only sufficient force was the tidal force. To do that, a finite-difference, free-surface model called Regional Ocean Modeling System (ROMS), was employed on the data over the Persian Gulf and Oman Sea. To analyze flow patterns of the region, the results of limited size model of The Finite Volume Community Ocean Model (FVCOM) were appropriated. The two points were determined since both are one of the most critical water body in case of the economy, biology, fishery, Shipping, navigation, and petroleum extraction. The OSU Tidal Prediction Software (OTPS) tide and observation data validated the modeled result. Next, tidal elevation and speed, and tidal analysis were interpreted. Preliminary results determine a significant accuracy in the tidal height compared with observation and OTPS data, declaring that tidal currents are highest in Hormuz Strait and the narrow and shallow region between Iranian coasts and Islands. Furthermore, tidal analysis clarifies that the M_2 component has the most significant value. Finally, the Persian Gulf tidal currents are divided into two branches: the first branch converts from south to Qatar and via United Arab Emirate rotates to Hormuz Strait. The secondary branch, in north and west, extends up to the highest point in the Persian Gulf and in the head of Gulf turns counterclockwise.

Keywords: numerical model, barotropic tide, tidal currents, OSU tidal prediction software, OTPS

Procedia PDF Downloads 131
4225 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 107
4224 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder

Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu

Abstract:

Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.

Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network

Procedia PDF Downloads 150
4223 Design for Sentiment-ancy: Conceptual Framework to Improve User’s Well-being Through Fostering Emotional Attachment in the Use Experience with Their Assistive Devices

Authors: Seba Quqandi

Abstract:

This study investigates the bond that people form using their assistive devices and the tactics applied during the product design process to help improve the user experience leading to a long-term product relationship. The aim is to develop a conceptual framework with which to describe and analyze the bond people form with their assistive devices and to integrate human emotions as a factor during the development of the product design process. The focus will be on the assistive technology market, namely, the Aid-For-Daily-Living market for situational impairments, to increase the quality of wellbeing. Findings will help us better understand the real issues of the product experience concerning people’s interaction throughout the product performance, establish awareness of the emotional effects in the daily interaction that fosters the product attachment, and help product developers and future designers create a connection between users and their assistive devices. The research concludes by discussing the implications of these findings for professionals and academics in the form of experiments in order to identify new areas that can stimulate new /or developed design directions.

Keywords: experience design, interaction design, emotion, design psychology, assistive tools, customization, userentred design

Procedia PDF Downloads 231
4222 Investment Guide in Qatar

Authors: Mohamad Farhad Bakhtiyariyan

Abstract:

One of the manner to earning profit and having a high income, is investing in an acceptable market. Every the thinker brain knows, investing in the business world today, maybe, have a manifold profit or lead to failure. So, before entering in the investment market, we must have a comprehensive and sufficient awareness, know markets, acquainted with the main industrial activities, know the rules and regulation and consider the conditions of society. Qatar, as a one of the richest countries in the world, can be a good destination for investment. The inflation rate, taxes, easiness of the importing, company registration, ease of exporting process, profitable and appropriate markets, simple and applicable rules, all of this has made Qatar, one of the best and gainful investment countries. Above all, Qatar 2022 world cup event, has led of investment in this country efficiently and profitable method. In this paper, first, we have introduced the Qatar and its location, also looked at the countries international markets during the world cup and we have described the impact of the world cup on business, and then the laws and regulations of the Qatar in the field of investment, company registration, ownership by foreigners, obtaining residency by investors, export and import process in second part its examined, and in third part, major investment markets, principal industrial activities in Qatar, markets affected by the world cup and the main needs of this country in various fields during the world cup, have been investigated.

Keywords: investment, Qatar, markets, world cup

Procedia PDF Downloads 194
4221 Analysis of the Effect of Farmers’ Socio-Economic Factors on Net Farm Income of Catfish Farmers in Kwara State, Nigeria

Authors: Olanike A. Ojo, Akindele M. Ojo, Jacob H. Tsado, Ramatu U. Kutigi

Abstract:

The study was carried out on analysis of the effect of farmers’ socio-economic factors on the net farm income of catfish farmers in Kwara State, Nigeria. Primary data were collected from selected catfish farmers with the aid of well-structured questionnaire and a multistage sampling technique was used to select 102 catfish farmers in the area. The analytical techniques involved the use of descriptive statistics and multiple regression analysis. The findings of the analysis of socio-economic characteristics of catfish farmers reveal that 60% of the catfish farmers in the study area were male gender which implied the existence of gender inequality in the area. The mean age of 47 years was an indication that they were at their economically productive age and could contribute positively to increased production of catfish in the area. Also, the mean household size was five while the mean year of experience was five. The latter implied that the farmers were experienced in fishing techniques, breeding and fish culture which would assist in generating more revenue, reduce cost of production and eventual increase in profit levels of the farmers. The result also revealed that stock capacity (X3), accessibility to credit (X7) and labour (X4) were the main determinants of catfish production in the area. In addition, farmer’s sex, household size, no of ponds, distance of the farm from market, access to credit were the main socio-economic factors influencing the net farm income of the catfish farmers in the area. The most serious constraints militating against catfish production in the study area were high mortality rate, insufficient market, inadequate credit facilities/ finance and inadequate skilled labour needed for daily production routine. Based on the findings, it is therefore recommended that, to reduce the mortality rate of catfish extension agents should organize training workshops on improved methods and techniques of raising catfish right from juvenile to market size.

Keywords: credit, income, stock, mortality

Procedia PDF Downloads 332
4220 Authentication and Traceability of Meat Products from South Indian Market by Species-Specific Polymerase Chain Reaction

Authors: J. U. Santhosh Kumar, V. Krishna, Sebin Sebastian, G. S. Seethapathy, G. Ravikanth, R. Uma Shaanker

Abstract:

Food is one of the basic needs of human beings. It requires the normal function of the body part and a healthy growth. Recently, food adulteration increases day by day to increase the quantity and make more benefit. Animal source foods can provide a variety of micronutrients that are difficult to obtain in adequate quantities from plant source foods alone. Particularly in the meat industry, products from animals are susceptible targets for fraudulent labeling due to the economic profit that results from selling cheaper meat as meat from more profitable and desirable species. This work presents an overview of the main PCR-based techniques applied to date to verify the authenticity of beef meat and meat products from beef species. We were analyzed 25 market beef samples in South India. We examined PCR methods based on the sequence of the cytochrome b gene for source species identification. We found all sample were sold as beef meat as Bos Taurus. However, interestingly Male meats are more valuable high price compare to female meat, due to this reason most of the markets samples are susceptible. We were used sex determination gene of cattle like TSPY(Y-encoded, testis-specific protein TSPY is a Y-specific gene). TSPY homologs exist in several mammalian species, including humans, horses, and cattle. This gene is Y coded testis protein genes, which only amplify the male. We used multiple PCR products form species-specific “fingerprints” on gel electrophoresis, which may be useful for meat authentication. Amplicons were obtained only by the Cattle -specific PCR. We found 13 market meat samples sold as female beef samples. These results suggest that the species-specific PCR methods established in this study would be useful for simple and easy detection of adulteration of meat products.

Keywords: authentication, meat products, species-specific, TSPY

Procedia PDF Downloads 375
4219 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 79
4218 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 304
4217 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 155
4216 Basic Business-Forces behind the Surviving and Sustainable Organizations: The Case of Medium Scale Contractors in South Africa

Authors: Iruka C. Anugwo, Winston M. Shakantu

Abstract:

The objective of this study is to uncover the basic business-forces that necessitated the survival and sustainable performance of the medium scale contractors in the South African construction market. This study is essential as it set to contribute towards long-term strategic solutions for combating the incessant failure of start-ups construction organizations within South African. The study used a qualitative research methodology; as the most appropriate approach to elicit and understand, and uncover the phenomena that are basic business-forces for the active contractors in the market. The study also adopted a phenomenological study approach; and in-depth interviews were conducted with 20 medium scale contractors in Port Elizabeth, South Africa, between months of August to October 2015. This allowed for an in-depth understanding of the critical and basic business-forces that influenced their survival and performance beyond the first five years of business operation. Findings of the study showed that for potential contractors (startups), to survival in the competitive business environment such as construction industry, they must possess the basic business-forces. These forces are educational knowledge in construction and business management related disciplines, adequate industrial experiences, competencies and capabilities to delivery excellent services and products as well as embracing the spirit of entrepreneurship. Convincingly, it can be concluded that the strategic approach to minimize the endless failure of startups construction businesses; the potential construction contractors must endeavoring to access and acquire the basic educationally knowledge, training and qualification; need to acquire industrial experiences in collaboration with required competencies, capabilities and entrepreneurship acumen. Without these basic business-forces as been discovered in this study, the majority of the contractors gaining entrance in the market will find it difficult to develop and grow a competitive and sustainable construction organization in South Africa.

Keywords: basic business-forces, medium scale contractors, South Africa, sustainable organisations

Procedia PDF Downloads 292
4215 Earnings Management from Taiwan Gisa Firms

Authors: An-an Chiu, Shaio Yan Huang, Ling-Na Chen, Wei-Hua Lin

Abstract:

Research has primarily focused on listed companies, less is done regarding small and medium-sized enterprises. Under the authorities' support, Taipei Exchange (TPEx) started Go Incubation Board for Startup and Acceleration Firms (GISA) in January 2014. This platform is designed to help small-sized innovative companies grow and to enter the capital market in the future. This research yield insight into earnings management activities around seasoned equity offerings (SEO) based on Taiwan’s GISA firms and the effectiveness of external corporate governance. Data for the study come from the GISA Market Observation Post System from January 2014 to December 2016. The result finds that GISA firms prone to upward accrual-based earnings management during SEO to avoid long-term negative consequences. Especially, firms with paid-in capital more than NT$ 30 million, higher fundraising amounts, or smaller-sized firms, tend to increase discretionary accruals. Finally, consistent with prior literature, CPA firms effectively serve as the role of external corporate governances on mitigating earnings management.

Keywords: GISA, earnings management, CPA, seasoned equity offerings

Procedia PDF Downloads 139
4214 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events

Procedia PDF Downloads 377
4213 In silico Analysis of a Causative Mutation in Cadherin-23 Gene Identified in an Omani Family with Hearing Loss

Authors: Mohammed N. Al Kindi, Mazin Al Khabouri, Khalsa Al Lamki, Tommasso Pappuci, Giovani Romeo, Nadia Al Wardy

Abstract:

Hereditary hearing loss is a heterogeneous group of complex disorders with an overall incidence of one in every five hundred newborns presented as syndromic and non-syndromic forms. Cadherin-related 23 (CDH23) is one of the listed deafness causative genes. CDH23 is found to be expressed in the stereocilia of hair cells and the retina photoreceptor cells. Defective CDH23 has been associated mostly with prelingual severe-to-profound sensorineural hearing loss (SNHL) in either syndromic (USH1D) or non-syndromic SNHL (DFNB12). An Omani family diagnosed clinically with severe-profound sensorineural hearing loss was genetically analysed by whole exome sequencing technique. A novel homozygous missense variant, c.A7451C (p.D2484A), in exon 53 of CDH23 was detected. One hundred and thirty control samples were analysed where all were negative for the detected variant. The variant was analysed in silico for pathogenicity verification using several mutation prediction software. The variant proved to be a pathogenic mutation and is reported for the first time in Oman and worldwide. It is concluded that in silico mutation prediction analysis might be used as a useful molecular diagnostics tool benefiting both genetic counseling and mutation verification. The aspartic acid 2484 alanine missense substitution might be the main disease-causing mutation that damages CDH23 function and could be used as a genetic hearing loss marker for this particular Omani family.

Keywords: Cdh23, d2484a, in silico, Oman

Procedia PDF Downloads 216
4212 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
4211 Analyzing the Commercialization of New Technology

Authors: Wen-Hsiang Lai, Mei-Wen Chen

Abstract:

In the face of developing new technologies, identifying potential new technological product and the suitable market is important. Since laser technology is widely applied in many industries, this study explores the technology commercialization of laser technology. According to the literature review and industry analysis, this study discusses the factors influencing the consumer’s purchase intention and tries to find a new market direction to develop the laser technology. This study adopts a new product adoption model as the research framework and uses three variables of ‘Consumer characteristics’, ‘Perception of product attributes’ and ‘External environment’ to discuss the purchase intention of consumers, who are physicians and owners of the medical cosmetics. This study finds that in the major variable of ‘Consumer characteristics’, the sub-variables of ‘Personality’, ‘Knowledge of product’, ‘Perceived risk’ and ‘Motivation’ are significantly related to consumer’s purchase intention. In the major variable of ‘Perception of product attributes’, the sub-variables of ‘Brand’ and ‘Measure of manufacture country’ are the key factors that affect the willingness of consumer’s purchase intention. Finally, in the major variable of ‘External environment’ variable, the sub-variables of ‘Time’ and ‘Price’ have significant impact on consumer’s purchase intention.

Keywords: technology commercialization, new product adoption, consumer’s purchase intention, laser technology

Procedia PDF Downloads 196
4210 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 124
4209 Development of a Practical Screening Measure for the Prediction of Low Birth Weight and Neonatal Mortality in Upper Egypt

Authors: Prof. Ammal Mokhtar Metwally, Samia M. Sami, Nihad A. Ibrahim, Fatma A. Shaaban, Iman I. Salama

Abstract:

Objectives: Reducing neonatal mortality by 2030 is still a challenging goal in developing countries. low birth weight (LBW) is a significant contributor to this, especially where weighing newborns is not possible routinely. The present study aimed to determine a simple, easy, reliable anthropometric measure(s) that can predict LBW) and neonatal mortality. Methods: A prospective cohort study of 570 babies born in districts of El Menia governorate, Egypt (where most deliveries occurred at home) was examined at birth. Newborn weight, length, head, chest, mid-arm, and thigh circumferences were measured. Follow up of the examined neonates took place during their first four weeks of life to report any mortalities. The most predictable anthropometric measures were determined using the statistical package of SPSS, and multiple Logistic regression analysis was performed.: Results: Head and chest circumferences with cut-off points < 33 cm and ≤ 31.5 cm, respectively, were the significant predictors for LBW. They carried the best combination of having the highest sensitivity (89.8 % & 86.4 %) and least false negative predictive value (1.4 % & 1.7 %). Chest circumference with a cut-off point ≤ 31.5 cm was the significant predictor for neonatal mortality with 83.3 % sensitivity and 0.43 % false negative predictive value. Conclusion: Using chest circumference with a cut-off point ≤ 31.5 cm is recommended as a single simple anthropometric measurement for the prediction of both LBW and neonatal mortality. The predicted measure could act as a substitute for weighting newborns in communities where scales to weigh them are not routinely available.

Keywords: low birth weight, neonatal mortality, anthropometric measures, practical screening

Procedia PDF Downloads 99
4208 Housing Precarity and Pathways: Lived Experiences Among Bangladeshi Migrants in Dublin

Authors: Mohammad Altaf Hossain

Abstract:

A growing body of literature in urban studies has presented that urban precarity has been a lived experience for low-income groups of people in the cities of the Global South. It does not necessarily mean that cities in the Global North, where advanced capitalist economies exist, avoided the adverse realities of urban precarity. As a multifaceted condition, it creates other associated precariousness in lives -for example, economic deprivation, mental stress, and housing precarity. The interrelations between urbanity and precarity have been ubiquitous regardless of the developed and developing countries. People, mainly manual labourers with low incomes, go through uncertainties in every aspect of life. By analysing qualitative data and embracing structure-agency interaction, this paper intends to present how Bangladeshi migrants experience housing precarity in Dublin. Continued population growth and political economy factors such as labour market inequality, financialisation of the private rental sector, and the impact of cuts to government funding for social housing provision are combined to produce a housing supply crisis, affordability, and access in the city. As a result, low-income people practice informality in securing jobs and housing. The macro-structural components of this analysis include the Irish housing policy, the European labour market, the immigration policy, and the financialised housing market. The micro-structural components of South Asian communities’ experiences include social networks and social class. Access to social networks and practices of informality play a significant role in enabling them to negotiate urban precarity, including housing crises and income insecurity. In some cases, the collective agency of ethnic diaspora communities plays a vital role in negotiating with structural constraints.

Keywords: housing precarity, housing pathways, migration, agency, Dublin

Procedia PDF Downloads 26
4207 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea

Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui

Abstract:

It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.

Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution

Procedia PDF Downloads 304
4206 Market Driven Unsustainability: Tragedy of Indigenous Professionals

Authors: Sitaram Dahal

Abstract:

Sustainable Development, a universal need for the present generation and the future generation, is an accepted way to assure intra and inter-generational equity. International movements like Rio Earth Summit 1992, Stockholm Conference 1972, Kyoto Protocol, Sustainable Development Goals (SDGs) proclaim the need of sustainable globe. The socio- economic disparity prevailing in the society shows that the indigenous peoples are living life far below poverty line. These indigenous people, aboriginal social groups sharing common cultural values and with a unique identity, are away from development being merely focused on the growth. Though studies suggest that most of the indigenous practices are often environment-friendly, alert about the plunging trend of the practices. This study explores the trend of intergenerational transmission of indigenous profession of pottery making of Kumal community (Meghauli Village Development Committee of Chitwan district) and factors affecting the trend. The SD indicators - contribution of IP to well-being of pottery makers had been query in the study. The study reveals that the pottery making profession can stand sustainable in terms of environment and socio-economic capital compared to modern technologies. However, the number of practitioners has been decreasing and youths hardly show interest to continue their indigenous profession. The new generations are not in a stage of accepting pottery in complete profession, that challenges the social and cultural sustainability of the profession. Indigenous profession demand people investments over modern technology and innovations. The relative investment of human labour is dramatically high with the indigenous profession. In addition, the fashion and innovations of market rule challenge the sustainability of the pottery making profession. The practice is limited to small cluster as a show piece at present. The study illustrates the market driven unsustainability of indigenous profession of Kumal community.

Keywords: professional unsustainability, pottery making, Kumal Community, Indigenous Professoin

Procedia PDF Downloads 258
4205 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools

Authors: M. Radunovic

Abstract:

Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.

Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management

Procedia PDF Downloads 109