Search results for: fluid intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3721

Search results for: fluid intelligence

2311 Interdisciplinary Approach for Economic Production of Oil and Gas Reserves: Application of Geothermal Energy for Enhanced Oil Recovery

Authors: Dharmit Viroja, Prerakkumar Shah, Rajanikant Gajera, Ruchit Shah

Abstract:

With present scenario of aging oil and gas fields with high water cuts, volatile oil prices and increasing greenhouse gas emission, the need for alleviating such issues has necessitated for oil and gas industry to make the maximum out of available assets, infrastructure and reserves in mother Earth. Study undertaken emphasizes on utilizing Geothermal Energy under specific reservoir conditions for Enhanced oil Recovery (EOR) to boost up production. Allied benefits of this process include mitigation of electricity problem in remote fields and controlled CO-emission. Utilization of this energy for EOR and increasing economic life of field could surely be rewarding. A new way to value oil lands would be considered if geothermal co-production is integrated in the field development program. Temperature profile of co-produced fluid across its journey is a pivotal issue which has been studied. Geo pressured reservoirs resulting from trapped brine under an impermeable bed is also a frontier for exploitation. Hot geothermal fluid is a by-product of large number of oil and gas wells, historically this hot water has been seen as an inconvenience; however, it can be looked at as a useful resource. The production of hot fluids from abandoned and co-production of hot fluids from producing wells has potential to prolong life of oil and gas fields. The study encompasses various factors which are required for use of this technology and application of this process across various phases of oil and gas value chain. Interdisciplinary approach in oil and gas value chain has shown potential for economic production of estimated oil and gas reserves.

Keywords: enhanced oil recovery, geo-pressured reservoirs, geothermal energy, oil and gas value chain

Procedia PDF Downloads 341
2310 Proteomics Application in Disease Diagnosis and Reproduction İmprovement in Cow

Authors: Abdollah Sobhani, Hossein Vaseghi-Dodaran

Abstract:

Proteomics is defined as the study of the component of a cell, tissue and biological fluid. This technique has the potential to identify protein biomarkers of a disease states. In this study which was performed on bovine ovarian follicular cysts (BOFC), eight proteins are over expressed in BOFC that these proteins could be useful biomarkers for BOFC. The difference between serum proteome pattern cows affected by postpartum endometritis with healthy cows revealed that concentrations orosomucoid was decreased in endometritis. The comparison proteome of brucella abortus between laboratory adapted strains and clinical isolates could be useful to better understand this disease and vaccine development. Proteomics experiments identified new proteins and pathways that may be important in future hypothesis-driven studies of glucocorticoid-induced immunosuppression. Understanding the molecular mechanisms of effective parameters on male fertility is essential for obtaining high reproductive efficiency by decreasing cost and time. The investigations on proteome of high fertility spermatozoa indicated that expression of some proteins such as casein kinase 2 (CKII) prime poly peptide and tyrosine kinase in high fertility spermatozoa was higher compared to low fertility spermatozoa. Also, some evidence has indicated that variation in protein types and amounts in seminal fluid regulates fertility indexes in dairy bull. In conclusion, proteomics is a useful technique for discovering drugs, vaccine development, and diagnosis disease by biomarkers and improvement of reproduction efficiency.

Keywords: proteomics, reproduction, biomarker, immunity

Procedia PDF Downloads 412
2309 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump

Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir

Abstract:

The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.

Keywords: bubble pump, drift flow model, instability, simulation

Procedia PDF Downloads 262
2308 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 98
2307 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method

Authors: Jiahui You, Kyung Jae Lee

Abstract:

Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.

Keywords: reactive-transport , Shale, Kerogen, precipitation

Procedia PDF Downloads 163
2306 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System

Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin

Abstract:

The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.

Keywords: TB smears, automated microscope, artificial intelligence, medical imaging

Procedia PDF Downloads 229
2305 Bovine Sperm Capacitation Promoters: The Comparison between Serum and Non-serum Albumin originated from Fish

Authors: Haris Setiawan, Phongsakorn Chuammitri, Korawan Sringarm, Montira Intanon, Anucha Sathanawongs

Abstract:

Capacitation is a prerequisite to achieving sperm competency to penetrate the oocyte naturally occurring in vivo throughout the female reproductive tract and entangling secretory fluid and epithelial cells. One of the crucial compounds in the oviductal fluid which promotes capacitation is albumin, secreted in major concentrations. However, the difficulties in the collection and the inconsistency of the oviductal fluid composition throughout the estrous cycle have replaced its function with serum-based albumins such as bovine serum albumin (BSA). BSA has been primarily involved and evidenced for their stabilizing effect to maintain the acrosome intact during the capacitation process, modulate hyperactivation, and elevate the number of sperm bound to zona pellucida. Contrary to its benefits, the use of blood-derived products in the culture system is not sustainable and increases the risk of disease transmissions, such as Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE). Moreover, it has been asserted that this substance is an aeroallergen that produces allergies and respiratory problems. In an effort to identify an alternative sustainable and non-toxic albumin source, the present work evaluated sperm reactions to a capacitation medium containing albumin derived from the flesh of the snakehead fish (Channa striata). Before examining the ability of this non-serum albumin to promote capacitation in bovine sperm, the presence of albumin was detected using bromocresol purple (BCP) at the level of 25% from snakehead fish extract. Following the SDS-PAGE and densitometric analysis, two major bands at 40 kDa and 47 kDa consisting of 57% and 16% of total protein loaded were detected as the potential albumin-related bands. Significant differences were observed in all kinematic parameters upon incubation in the capacitation medium. Moreover, consistently higher values were shown for the kinematic parameters related to hyperactivation, such as amplitude lateral head (ALH), velocity curve linear (VCL), and linearity (LIN) when sperm were treated with 3 mg/mL of snakehead fish albumin among other treatments. Likewise, substantial differences of higher acrosome intact presented in sperm upon incubation with various concentrations of snakehead fish albumin for 90 minutes, indicating that this level of snakehead fish albumin can be used to replace the bovine serum albumin. However, further study is highly required to purify the albumin from snakehead fish extract for more reliable findings.

Keywords: capacitation promoter, snakehead fish, non-serum albumin, bovine sperm

Procedia PDF Downloads 112
2304 Computational Fluid Dynamics (CFD) Simulation Approach for Developing New Powder Dispensing Device

Authors: Revanth Rallapalli

Abstract:

Manually dispensing solids and powders can be difficult as it requires gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in development of such devices saving time and money by reducing the number of prototypes and testing. Furthermore, this paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to trocar’s end side is done by rotation of the screw conveyor. Thus, the performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and also at the effective area within a quick turnaround time frame.

Keywords: DDPM-KTGF, gas-solids multiphase flow, screw conveyor, Unsteady

Procedia PDF Downloads 180
2303 Characteristics of Pore Pressure and Effective Stress Changes in Sandstone Reservoir Due to Hydrocarbon Production

Authors: Kurniawan Adha, Wan Ismail Wan Yusoff, Luluan Almanna Lubis

Abstract:

Preventing hazardous events during oil and gas operation is an important contribution of accurate pore pressure data. The availability of pore pressure data also contribute in reducing the operation cost. Suggested methods in pore pressure estimation were mostly complex by the many assumptions and hypothesis used. Basic properties which may have significant impact on estimation model are somehow being neglected. To date, most of pore pressure determinations are estimated by data model analysis and rarely include laboratory analysis, stratigraphy study or core check measurement. Basically, this study developed a model that might be applied to investigate the changes of pore pressure and effective stress due to hydrocarbon production. In general, this paper focused velocity model effect of pore pressure and effective stress changes due to hydrocarbon production with illustrated by changes in saturation. The core samples from Miri field from Sarawak Malaysia ware used in this study, where the formation consists of sandstone reservoir. The study area is divided into sixteen (16) layers and encompassed six facies (A-F) from the outcrop that is used for stratigraphy sequence model. The experimental work was firstly involving data collection through field study and developing stratigraphy sequence model based on outcrop study. Porosity and permeability measurements were then performed after samples were cut into 1.5 inch diameter core samples. Next, velocity was analyzed using SONIC OYO and AutoLab 500. Three (3) scenarios of saturation were also conducted to exhibit the production history of the samples used. Results from this study show the alterations of velocity for different saturation with different actions of effective stress and pore pressure. It was observed that sample with water saturation has the highest velocity while dry sample has the lowest value. In comparison with oil to samples with oil saturation, water saturated sample still leads with the highest value since water has higher fluid density than oil. Furthermore, water saturated sample exhibits velocity derived parameters, such as poisson’s ratio and P-wave velocity over S-wave velocity (Vp/Vs) The result shows that pore pressure value ware reduced due to the decreasing of fluid content. The decreasing of pore pressure result may soften the elastic mineral frame and have tendency to possess high velocity. The alteration of pore pressure by the changes in fluid content or saturation resulted in alteration of velocity value that has proportionate trend with the effective stress.

Keywords: pore pressure, effective stress, production, miri formation

Procedia PDF Downloads 289
2302 From Battles to Balance and Back: Document Analysis of EU Copyright in the Digital Era

Authors: Anette Alén

Abstract:

Intellectual property (IP) regimes have traditionally been designed to integrate various conflicting elements stemming from private entitlement and the public good. In IP laws and regulations, this design takes the form of specific uses of protected subject-matter without the right-holder’s consent, or exhaustion of exclusive rights upon market release, and the like. More recently, the pursuit of ‘balance’ has gained ground in the conceptualization of these conflicting elements both in terms of IP law and related policy. This can be seen, for example, in European Union (EU) copyright regime, where ‘balance’ has become a key element in argumentation, backed up by fundamental rights reasoning. This development also entails an ever-expanding dialogue between the IP regime and the constitutional safeguards for property, free speech, and privacy, among others. This study analyses the concept of ‘balance’ in EU copyright law: the research task is to examine the contents of the concept of ‘balance’ and the way it is operationalized and pursued, thereby producing new knowledge on the role and manifestations of ‘balance’ in recent copyright case law and regulatory instruments in the EU. The study discusses two particular pieces of legislation, the EU Digital Single Market (DSM) Copyright Directive (EU) 2019/790 and the finalized EU Artificial Intelligence (AI) Act, including some of the key preparatory materials, as well as EU Court of Justice (CJEU) case law pertaining to copyright in the digital era. The material is examined by means of document analysis, mapping the ways ‘balance’ is approached and conceptualized in the documents. Similarly, the interaction of fundamental rights as part of the balancing act is also analyzed. Doctrinal study of law is also employed in the analysis of legal sources. This study suggests that the pursuit of balance is, for its part, conducive to new battles, largely due to the advancement of digitalization and more recent developments in artificial intelligence. Indeed, the ‘balancing act’ rather presents itself as a way to bypass or even solidify some of the conflicting interests in a complex global digital economy. Indeed, such a conceptualization, especially when accompanied by non-critical or strategically driven fundamental rights argumentation, runs counter to the genuine acknowledgment of new types of conflicting interests in the copyright regime. Therefore, a more radical approach, including critical analysis of the normative basis and fundamental rights implications of the concept of ‘balance’, is required to readjust copyright law and regulations for the digital era. Notwithstanding the focus on executing the study in the context of the EU copyright regime, the results bear wider significance for the digital economy, especially due to the platform liability regime in the DSM Directive and with the AI Act including objectives of a ‘level playing field’ whereby compliance with EU copyright rules seems to be expected among system providers.

Keywords: balance, copyright, fundamental rights, platform liability, artificial intelligence

Procedia PDF Downloads 31
2301 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 93
2300 Important Factors for Successful Solution of Emotional Situations: Empirical Study on Young People

Authors: R. Lekaviciene, D. Antiniene

Abstract:

Attempts to split the construct of emotional intelligence (EI) into separate components – ability to understand own and others’ emotions and ability to control own and others’ emotions may be meaningful more theoretically than practically. In real life, a personality encounters various emotional situations that require exhibition of complex EI to solve them. Emotional situation solution tests enable measurement of such undivided EI. The object of the present study is to determine sociodemographic and other factors that are important for emotional situation solutions. The study involved 1,430 participants from various regions of Lithuania. The age of participants varied from 17 years to 27 years. Emotional social and interpersonal situation scale EI-DARL-V2 was used. Each situation had two mandatory answering formats: The first format contained assignments associated with hypothetical theoretical knowledge of how the situation should be solved, while the second format included the question of how the participant would personally resolve the given situation in reality. A questionnaire that contained various sociodemographic data of subjects was also presented. Factors, statistically significant for emotional situation solution, have been determined: gender, family structure, the subject’s relation with his or her mother, mother’s occupation, subjectively assessed financial situation of the family, level of education of the subjects and his or her parents, academic achievement, etc. The best solvers of emotional situations are women with high academic achievements. According to their chosen study profile/acquired profession, they are related to the fields in social sciences and humanities. The worst solvers of emotional situations are men raised in foster homes. They are/were bad students and mostly choose blue-collar professions.

Keywords: emotional intelligence, emotional situations, solution of situation, young people

Procedia PDF Downloads 180
2299 Drones, Rebels and Bombs: Explaining the Role of Private Security and Expertise in a Post-piratical Indian Ocean

Authors: Jessica Kate Simonds

Abstract:

The last successful hijacking perpetrated by Somali pirates in 2012 represented a critical turning point for the identity and brand of Indian Ocean (IO) insecurity, coined in this paper as the era of the post-piratical. This paper explores the broadening of the PMSC business model to account and contribute to the design of a new IO security environment that prioritises foreign and insurgency drone activity and Houthi rebel operations as the main threat to merchant shipping in the post-2012 era. This study is situated within a longer history of analysing maritime insecurity and also contributes a bespoke conceptual framework that understands the sea as a space that is produced and reproduced relative to existing and emerging threats to merchant shipping based on bespoke models of information sharing and intelligence acquisition. This paper also makes a prominent empirical contribution by drawing on a post-positivist methodology, data drawn from original semi-structured interviews with senior maritime insurers and active merchant seafarers that is triangulated with industry-produced guidance such as the BMP series as primary data sources. Each set is analysed through qualitative discourse and content analysis and supported by the quantitative data sets provided by the IMB Piracy Reporting center and intelligence networks. This analysis reveals that mechanisms such as the IGP&I Maritime Security Committee and intelligence divisions of PMSC’s have driven the exchanges of knowledge between land and sea and thus the reproduction of the maritime security environment through new regulations and guidance to account dones, rebels and bombs as the key challenges in the IO, beyond piracy. A contribution of this paper is the argument that experts who may not be in the highest-profile jobs are the architects of maritime insecurity based on their detailed knowledge and connections to vessels in transit. This paper shares the original insights of those who have served in critical decision making spaces to demonstrate that the development and refinement of industry produced deterrence guidance that has been accredited to the mitigation of piracy, have shaped new editions such as BMP 5 that now serve to frame a new security environment that prioritises the mitigation of risks from drones and WBEID’s from both state and insurgency risk groups. By highlighting the experiences and perspectives of key players on both land and at sea, the key finding of this paper is outlining that as pirates experienced a financial boom by profiteering from their bespoke business model during the peak of successful hijackings, the private security market encountered a similar level of financial success and guaranteed risk environment in which to prospect business. Thus, the reproduction of the Indian Ocean as a maritime security environment reflects a new found purpose for PMSC’s as part of the broader conglomerate of maritime insurers, regulators, shipowners and managers who continue to redirect the security consciousness and IO brand of insecurity.

Keywords: maritime security, private security, risk intelligence, political geography, international relations, political economy, maritime law, security studies

Procedia PDF Downloads 184
2298 A Thorough Analysis on The Dialog Application Replika

Authors: Weeam Abdulrahman, Gawaher Al-Madwary, Fatima Al-Ammari, Razan Mohammad

Abstract:

This research discusses the AI features in Replika which is a dialog with a customized characters application, interaction and communication with AI in different ways that is provided for the user. spreading a survey with questions on how the AI worked is one approach of exposing the app to others to utilize and also we made an analysis that provides us with the conclusion of our research as a result, individuals will be able to try out the app. In the methodology we explain each page that pops up in the screen while using replika and Specify each part and icon.

Keywords: Replika, AI, artificial intelligence, dialog app

Procedia PDF Downloads 177
2297 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 537
2296 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 104
2295 Artificial Law: Legal AI Systems and the Need to Satisfy Principles of Justice, Equality and the Protection of Human Rights

Authors: Begum Koru, Isik Aybay, Demet Celik Ulusoy

Abstract:

The discipline of law is quite complex and has its own terminology. Apart from written legal rules, there is also living law, which refers to legal practice. Basic legal rules aim at the happiness of individuals in social life and have different characteristics in different branches such as public or private law. On the other hand, law is a national phenomenon. The law of one nation and the legal system applied on the territory of another nation may be completely different. People who are experts in a particular field of law in one country may have insufficient expertise in the law of another country. Today, in addition to the local nature of law, international and even supranational law rules are applied in order to protect basic human values and ensure the protection of human rights around the world. Systems that offer algorithmic solutions to legal problems using artificial intelligence (AI) tools will perhaps serve to produce very meaningful results in terms of human rights. However, algorithms to be used should not be developed by only computer experts, but also need the contribution of people who are familiar with law, values, judicial decisions, and even the social and political culture of the society to which it will provide solutions. Otherwise, even if the algorithm works perfectly, it may not be compatible with the values of the society in which it is applied. The latest developments involving the use of AI techniques in legal systems indicate that artificial law will emerge as a new field in the discipline of law. More AI systems are already being applied in the field of law, with examples such as predicting judicial decisions, text summarization, decision support systems, and classification of documents. Algorithms for legal systems employing AI tools, especially in the field of prediction of judicial decisions and decision support systems, have the capacity to create automatic decisions instead of judges. When the judge is removed from this equation, artificial intelligence-made law created by an intelligent algorithm on its own emerges, whether the domain is national or international law. In this work, the aim is to make a general analysis of this new topic. Such an analysis needs both a literature survey and a perspective from computer experts' and lawyers' point of view. In some societies, the use of prediction or decision support systems may be useful to integrate international human rights safeguards. In this case, artificial law can serve to produce more comprehensive and human rights-protective results than written or living law. In non-democratic countries, it may even be thought that direct decisions and artificial intelligence-made law would be more protective instead of a decision "support" system. Since the values of law are directed towards "human happiness or well-being", it requires that the AI algorithms should always be capable of serving this purpose and based on the rule of law, the principle of justice and equality, and the protection of human rights.

Keywords: AI and law, artificial law, protection of human rights, AI tools for legal systems

Procedia PDF Downloads 74
2294 Artificial Intelligence and Robotics in the Eye of Private Law with Special Regards to Intellectual Property and Liability Issues

Authors: Barna Arnold Keserű

Abstract:

In the last few years (what is called by many scholars the big data era) artificial intelligence (hereinafter AI) get more and more attention from the public and from the different branches of sciences as well. What previously was a mere science-fiction, now starts to become reality. AI and robotics often walk hand in hand, what changes not only the business and industrial life, but also has a serious impact on the legal system. The main research of the author focuses on these impacts in the field of private law, with special regards to liability and intellectual property issues. Many questions arise in these areas connecting to AI and robotics, where the boundaries are not sufficiently clear, and different needs are articulated by the different stakeholders. Recognizing the urgent need of thinking the Committee on Legal Affairs of the European Parliament adopted a Motion for a European Parliament Resolution A8-0005/2017 (of January 27th, 2017) in order to take some recommendations to the Commission on civil law rules on robotics and AI. This document defines some crucial usage of AI and/or robotics, e.g. the field of autonomous vehicles, the human job replacement in the industry or smart applications and machines. It aims to give recommendations to the safe and beneficial use of AI and robotics. However – as the document says – there are no legal provisions that specifically apply to robotics or AI in IP law, but that existing legal regimes and doctrines can be readily applied to robotics, although some aspects appear to call for specific consideration, calls on the Commission to support a horizontal and technologically neutral approach to intellectual property applicable to the various sectors in which robotics could be employed. AI can generate some content what worth copyright protection, but the question came up: who is the author, and the owner of copyright? The AI itself can’t be deemed author because it would mean that it is legally equal with the human persons. But there is the programmer who created the basic code of the AI, or the undertaking who sells the AI as a product, or the user who gives the inputs to the AI in order to create something new. Or AI generated contents are so far from humans, that there isn’t any human author, so these contents belong to public domain. The same questions could be asked connecting to patents. The research aims to answer these questions within the current legal framework and tries to enlighten future possibilities to adapt these frames to the socio-economical needs. In this part, the proper license agreements in the multilevel-chain from the programmer to the end-user become very important, because AI is an intellectual property in itself what creates further intellectual property. This could collide with data-protection and property rules as well. The problems are similar in the field of liability. We can use different existing forms of liability in the case when AI or AI led robotics cause damages, but it is unsure that the result complies with economical and developmental interests.

Keywords: artificial intelligence, intellectual property, liability, robotics

Procedia PDF Downloads 203
2293 Overweight and Neurocognitive Functioning: Unraveling the Antagonistic Relationship in Adolescents

Authors: Swati Bajpai, S. P. K Jena

Abstract:

Background: There is dramatic increase in the prevalence and severity of overweight in adolescents, raising concerns about their psychosocial and cognitive consequences, thereby indicating the immediate need to understand the effects of increased weight on scholastic performance. Although the body of research is currently limited, available results have identified an inverse relationship between obesity and cognition in adolescents. Aim: to examine the association between increased Body Mass Index in adolescents and their neurocognitive functioning. Methods: A case –control study of 28 subjects in the age group of 11-17 years (14 Males and 14 females) was taken on the basis of main inclusion criteria (Body Mass Index). All of them were randomized to (experimental group: overweight) and (control group: normal weighted). A complete neurocognitive assessment was carried out using validated psychological scales namely, Color Progressive Matrices (to assess intelligence); Bender Visual Motor Gestalt Test (Perceptual motor functioning); PGI-Memory Scale for Children (memory functioning) and Malin’s Intelligence Scale Indian Children (verbal and performance ability). Results: statistical analysis of the results depicted that 57% of the experimental group lack in cognitive abilities, especially in general knowledge (99.1±12.0 vs. 102.8±6.7), working memory (91.5±8.4 vs. 93.1±8.7), concrete ability (82.3±11.5 vs. 92.6±1.7) and perceptual motor functioning (1.5±1.0 vs. 0.3±0.9) as compared to control group. Conclusion: Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain. Though, larger sample is needed to make more affirmative claims.

Keywords: adolescents, body mass index, neurocognition, obesity

Procedia PDF Downloads 487
2292 Numerical Simulation of Free Surface Water Wave for the Flow Around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation, a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of the fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRICscheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid

Procedia PDF Downloads 376
2291 The Maps of Meaning (MoM) Consciousness Theory

Authors: Scott Andersen

Abstract:

Perhaps simply and rather unadornedly, consciousness is having multiple goals for action and the continuously adjudication of such goals to implement action, referred to as the Maps of Meaning (MoM) Consciousness Theory. The MoM theory triangulates through three parallel corollaries, action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism’s consciousness contains a fluid, nested goals. These goals are not intentionality, but intersectionality, embodiment meeting the world. i.e., Darwinian inclusive fitness or randomization, then survival of the fittest. These goals form via gradual descent under inclusive fitness, the goals being the abstraction of a ‘match’ between the evolutionary environment and organism. Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience crystallize efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one’s adaptive environment. These efficiencies are objectively arbitrary, but determine the operation and level of one’s consciousness, termed extreme thrownness. Since inclusive fitness drives efficiencies in physiologic mechanism, morphology and behavior (action) and originates one’s goals, embodiment is necessarily entangled to human consciousness as its the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. Perception is the operant process of consciousness and is the consciousness’ de facto goal adjudication process. Goal operationalization is fundamentally efficiency-based via one’s unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception isn’t a ‘frame rate,’ but Bayesian priors of efficiency based on one’s extreme thrownness. Consciousness and human consciousness is a modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as emergent phenomena at various modularities, like stratified factors in factor analysis). The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.

Keywords: consciousness, perception, prospection, embodiment

Procedia PDF Downloads 59
2290 Impact of School Environment on Socio-Affective Development: A Quasi-Experimental Longitudinal Study of Urban and Suburban Gifted and Talented Programs

Authors: Rebekah Granger Ellis, Richard B. Speaker, Pat Austin

Abstract:

This study used two psychological scales to examine the level of social and emotional intelligence and moral judgment of over 500 gifted and talented high school students in various academic and creative arts programs in a large metropolitan area in the southeastern United States. For decades, numerous models and programs purporting to encourage socio-affective characteristics of adolescent development have been explored in curriculum theory and design. Socio-affective merges social, emotional, and moral domains. It encompasses interpersonal relations and social behaviors; development and regulation of emotions; personal and gender identity construction; empathy development; moral development, thinking, and judgment. Examining development in these socio-affective domains can provide insight into why some gifted and talented adolescents are not successful in adulthood despite advanced IQ scores. Particularly whether nonintellectual characteristics of gifted and talented individuals, such as emotional, social and moral capabilities, are as advanced as their intellectual abilities and how these are related to each other. Unique characteristics distinguish gifted and talented individuals; these may appear as strengths, but there is the potential for problems to accompany them. Although many thrive in their school environments, some gifted students struggle rather than flourish. In the socio-affective domain, these adolescents face special intrapersonal, interpersonal, and environmental problems. Gifted individuals’ cognitive, psychological, and emotional development occurs asynchronously, in multidimensional layers at different rates and unevenly across ability levels. Therefore, it is important to examine the long-term effects of participation in various gifted and talented programs on the socio-affective development of gifted and talented adolescents. This quasi-experimental longitudinal study examined students in several gifted and talented education programs (creative arts school, urban charter schools, and suburban public schools) for (1) socio-affective development level and (2) whether a particular gifted and talented program encourages developmental growth. The following research questions guided the study: (1) How do academically and artistically talented gifted 10th and 11th grade students perform on psychometric scales of social and emotional intelligence and moral judgment? Do they differ from their age or grade normative sample? Are their gender differences among gifted students? (2) Does school environment impact 10th and 11th grade gifted and talented students’ socio-affective development? Do gifted adolescents who participate in a particular school gifted program differ in their developmental profiles of social and emotional intelligence and moral judgment? Students’ performances on psychometric instruments were compared over time and by type of program. Participants took pre-, mid-, and post-tests over the course of an academic school year with Defining Issues Test (DIT-2) assessing moral judgment and BarOn EQ-I: YV assessing social and emotional intelligence. Based on these assessments, quantitative differences in growth on psychological scales (individual and school) were examined. Change scores between schools were also compared. If a school showed change, artifacts (culture, curricula, instructional methodology) provided insight as to environmental qualities that produced this difference.

Keywords: gifted and talented education, moral development, socio-affective development, socio-affective education

Procedia PDF Downloads 162
2289 Preliminary Study of the Hydrothermal Polymetallic Ore Deposit at the Karancs Mountain, North-East Hungary

Authors: Eszter Kulcsar, Agnes Takacs, Gabriella B. Kiss, Peter Prakfalvi

Abstract:

The Karancs Mountain is part of the Miocene Inner Carpathian Volcanic Belt and is located in N-NE Hungary, along the Hungarian-Slovakian border. The 14 Ma old andesitic-dacitic units are surrounded by Oligocene sedimentary units (sandstone, siltstone). The host rocks of the mineralisation are siliceous and/or argillaceous volcanic units, quartz veins, hydrothermal breccia, and strongly silicified vuggy rocks, found in the various altered volcanic units. The hydrothermal breccia consists of highly silicified vuggy quartz clasts in quartz matrix. The hydrothermal alteration of the host units shows structural control at the deeper levels. The main ore minerals are galena, pyrite, marcasite, sphalerite, hematite, magnetite, arsenopyrite, anglesite and argentite The mineralisation was first mentioned in 1944 and the first exploration took place between 1961 and 1962 in the area. The first ore geological studies were performed between 1984-1985. The exploration programme was limited only to surface sampling; no drilling programme was performed. Petrographical and preliminary fluid inclusion studies were performed on calcite samples from a galena-bearing vein. Despite the early discovery of the mineralisation, no detailed description is available, thus its size, characteristics, and origin have remained unknown. The aim of this study is to examine the mineralisation, describe the characteristics in detail and to test the possible gold content of the various quartz veins and breccias. Finally, we also investigate the potential relation of the hydrothermal mineralisation to the surrounding similar mineralisations with similar ages (e.g. W-Mátra Mountains in Hungary, Banska Bystrica, Banska Stiavnica in Slovakia) in order to place the mineralisation within the volcanic-hydrothermal evolution of the Miocene Inner Carpathian Belt. As first steps, the study includes field mapping, traditional petrological and ore microscopy; X-ray diffraction analysis; SEM-EDS and EMPA studies on ore minerals, to obtain mineral chemical information. Fluid inclusion petrography and microthermometry and micro-Raman-spectroscopy studies are also planned on quartz-hosted inclusions to investigate the physical and chemical properties of the ore-forming fluid.

Keywords: epithermal, Karancs Mountain, Hungary, Miocene Inner Carpathian volcanic belt, polimetallic ore deposit

Procedia PDF Downloads 132
2288 A Single Stage Rocket Using Solid Fuels in Conventional Propulsion Systems

Authors: John R Evans, Sook-Ying Ho, Rey Chin

Abstract:

This paper describes the research investigations orientated to the starting and propelling of a solid fuel rocket engine which operates as combined cycle propulsion system using three thrust pulses. The vehicle has been designed to minimise the cost of launching small number of Nano/Cube satellites into low earth orbits (LEO). A technology described in this paper is a ground-based launch propulsion system which starts the rocket vertical motion immediately causing air flow to enter the ramjet’s intake. Current technology has a ramjet operation predicted to be able to start high subsonic speed of 280 m/s using a liquid fuel ramjet (LFRJ). The combined cycle engine configuration is in many ways fundamentally different from the LFRJ. A much lower subsonic start speed is highly desirable since the use of a mortar to obtain the latter speed for rocket means a shorter launcher length can be utilized. This paper examines the means and has some performance calculations, including Computational Fluid Dynamics analysis of air-intake at suitable operational conditions, 3-DOF point mass trajectory analysis of multi-pulse propulsion system (where pulse ignition time and thrust magnitude can be controlled), etc. of getting a combined cycle rocket engine use in a single stage vehicle.

Keywords: combine cycle propulsion system, low earth orbit launch vehicle, computational fluid dynamics analysis, 3dof trajectory analysis

Procedia PDF Downloads 191
2287 Performance Evaluation of a Small Microturbine Cogeneration Functional Model

Authors: Jeni A. Popescu, Sorin G. Tomescu, Valeriu A. Vilag

Abstract:

The paper focuses on the potential methods of increasing the performance of a microturbine by combining additional elements available for utilization in a cogeneration plant. The activity is carried out within the framework of a project aiming to develop, manufacture and test a microturbine functional model with high potential in energetic industry utilization. The main goal of the analysis is to determine the parameters of the fluid flow passing through each section of the turbine, based on limited data available in literature for the focus output power range or provided by experimental studies, starting from a reference cycle, and considering different cycle options, including simple, intercooled and recuperated options, in order to optimize a small cogeneration plant operation. The studied configurations operate under the same initial thermodynamic conditions and are based on a series of assumptions, in terms of individual performance of the components, pressure/velocity losses, compression ratios, and efficiencies. The thermodynamic analysis evaluates the expected performance of the microturbine cycle, while providing a series of input data and limitations to be included in the development of the experimental plan. To simplify the calculations and to allow a clear estimation of the effect of heat transfer between fluids, the working fluid for all the thermodynamic evolutions is, initially, air, the combustion being modelled by simple heat addition to the system. The theoretical results, along with preliminary experimental results are presented, aiming for a correlation in terms of microturbine performance.

Keywords: cogeneration, microturbine, performance, thermodynamic analysis

Procedia PDF Downloads 169
2286 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 136
2285 Ethical Artificial Intelligence: An Exploratory Study of Guidelines

Authors: Ahmad Haidar

Abstract:

The rapid adoption of Artificial Intelligence (AI) technology holds unforeseen risks like privacy violation, unemployment, and algorithmic bias, triggering research institutions, governments, and companies to develop principles of AI ethics. The extensive and diverse literature on AI lacks an analysis of the evolution of principles developed in recent years. There are two fundamental purposes of this paper. The first is to provide insights into how the principles of AI ethics have been changed recently, including concepts like risk management and public participation. In doing so, a NOISE (Needs, Opportunities, Improvements, Strengths, & Exceptions) analysis will be presented. Second, offering a framework for building Ethical AI linked to sustainability. This research adopts an explorative approach, more specifically, an inductive approach to address the theoretical gap. Consequently, this paper tracks the different efforts to have “trustworthy AI” and “ethical AI,” concluding a list of 12 documents released from 2017 to 2022. The analysis of this list unifies the different approaches toward trustworthy AI in two steps. First, splitting the principles into two categories, technical and net benefit, and second, testing the frequency of each principle, providing the different technical principles that may be useful for stakeholders considering the lifecycle of AI, or what is known as sustainable AI. Sustainable AI is the third wave of AI ethics and a movement to drive change throughout the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, implementation, and governance) in the direction of greater ecological integrity and social fairness. In this vein, results suggest transparency, privacy, fairness, safety, autonomy, and accountability as recommended technical principles to include in the lifecycle of AI. Another contribution is to capture the different basis that aid the process of AI for sustainability (e.g., towards sustainable development goals). The results indicate data governance, do no harm, human well-being, and risk management as crucial AI for sustainability principles. This study’s last contribution clarifies how the principles evolved. To illustrate, in 2018, the Montreal declaration mentioned eight principles well-being, autonomy, privacy, solidarity, democratic participation, equity, and diversity. In 2021, notions emerged from the European Commission proposal, including public trust, public participation, scientific integrity, risk assessment, flexibility, benefit and cost, and interagency coordination. The study design will strengthen the validity of previous studies. Yet, we advance knowledge in trustworthy AI by considering recent documents, linking principles with sustainable AI and AI for sustainability, and shedding light on the evolution of guidelines over time.

Keywords: artificial intelligence, AI for sustainability, declarations, framework, regulations, risks, sustainable AI

Procedia PDF Downloads 93
2284 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring

Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra

Abstract:

Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.

Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application

Procedia PDF Downloads 100
2283 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers

Authors: L. Achab, F. Iachachene

Abstract:

In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.

Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method

Procedia PDF Downloads 56
2282 Numerical Investigation of a Spiral Bladed Tidal Turbine

Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry

Abstract:

From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.

Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability

Procedia PDF Downloads 122