Search results for: cross-linking density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3551

Search results for: cross-linking density

2141 Pedestrian Safe Bumper Design from Commingled Glass Fiber/Polypropylene Reinforced Sandwich Composites

Authors: L. Onal

Abstract:

The aim of this study is to optimize manufacturing process for thermoplastic sandwich composite structures for the pedestrian safety of automobiles subjected to collision condition. In particular, cost-effective manufacturing techniques for sandwich structures with commingled GF/PP skins and low-density foam cores are being investigated. The performance of these structures under bending load is being studied. Samples are manufactured using compression moulding technique. The relationship of this performance to processing parameters such as mould temperature, moulding time, moulding pressure and sequence of the layers during moulding is being investigated. The results of bending tests are discussed in the light of the moulding conditions and conclusions are given regarding optimum set of processing conditions using the compression moulding route

Keywords: twintex, flexural properties, automobile composites, sandwich structures

Procedia PDF Downloads 431
2140 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field

Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde

Abstract:

The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.

Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients

Procedia PDF Downloads 84
2139 Grassland Development on Evacuated Sites for Wildlife Conservation in Satpura Tiger Reserve, India

Authors: Anjana Rajput, Sandeep Chouksey, Bhaskar Bhandari, Shimpi Chourasia

Abstract:

Ecologically, grassland is any plant community dominated by grasses, whether they exist naturally or because of management practices. Most forest grasslands are anthropogenic and established plant communities planted for forage production, though some are established for soil and water conservation and wildlife habitat. In Satpura Tiger Reserve, Madhya Pradesh, India, most of the grasslands have been established on evacuated village sites. Total of 42 villages evacuated, and study was carried out in 23 sites to evaluate habitat improvement. Grasslands were classified into three categories, i.e., evacuated sites, established sites, and controlled sites. During the present study impact of various management interventions on grassland health was assessed. Grasslands assessment was done for its composition, status of palatable and non-palatable grasses, the status of herbs and legumes, status of weeds species, and carrying capacity of particular grassland. Presence of wild herbivore species in the grasslands with their abundance, availability of water resources was also assessed. Grassland productivity is dependent mainly on the biotic and abiotic components of the area, but management interventions may also play an important role in grassland composition and productivity. Variation in the status of palatable and non-palatable grasses, legumes, and weeds was recorded and found effected by management intervention practices. Overall in all the studied grasslands, the most dominant grasses recorded are Themeda quadrivalvis, Dichanthium annulatum, Ischaemum indicum, Oplismenus burmanii, Setaria pumilla, Cynodon dactylon, Heteropogon contortus, and Eragrostis tenella. Presence of wild herbivores, i.e., Chital, Sambar, Bison, Bluebull, Chinkara, Barking deer in the grassland area has been recorded through the installation of camera traps and estimated their abundance. Assessment of developed grasslands was done in terms of habitat suitability for Chital (Axis axis) and Sambar (Rusa unicolor). The parameters considered for suitability modeling are biotic and abiotic life requisite components existing in the area, i.e., density of grasses, density of legumes, availability of water, site elevation, site distance from human habitation. Findings of the present study would be useful for further grassland management and animal translocation programmes.

Keywords: carrying capacity, dominant grasses, grassland, habitat suitability, management intervention, wild herbivore

Procedia PDF Downloads 127
2138 Factors Affecting the Occurrence of Cracks on Road Surfaces and the Causes of Their Formation

Authors: Ainura Kairanbayeva

Abstract:

Currently, the issue of maintaining the operational condition of highways at the required level is acute in Kazakhstan. The impact of landslides on the state of the road industry in Kazakhstan has been poorly studied. This article presents the classification of natural hazards and examines the influence of atmospheric natural processes on the operational condition of the sections of the highway "Ayusai–Kosmostantsia" passing along the mountain slopes of the Trans-Ili Alatau. According to the results of field studies, multi-turn reflected cracks have been identified, this is also due to the fact that the base of the road is made of a sand-gravel mixture and is not treated with reinforcing additives and the actual density of the asphalt concrete pavement is below regulatory requirements.

Keywords: building materials and products, construction of highways and engineering structures, construction processes, displacements of the earth's surface, geodynamic processes

Procedia PDF Downloads 77
2137 Mathematical Analysis of Matrix and Filler Formulation in Composite Materials

Authors: Olusegun A. Afolabi, Ndivhuwo Ndou

Abstract:

Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed.

Keywords: composite material, density, filler, matrix, percentage weight, volume fraction

Procedia PDF Downloads 67
2136 Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium

Authors: N. F. M. Mokhtar, N. Z. A. Hamid

Abstract:

This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium.

Keywords: anisotropic, Chebyshev tau method, Coriolis force, Magnetic field

Procedia PDF Downloads 214
2135 A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing

Authors: Mahmoud Reza Hosseini

Abstract:

The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times is studied, known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity, which cannot be explained by modern physics, and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe, which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe. According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature can be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing a state of energy called a "neutral state," possessing an energy level that is referred to as the "base energy." The governing principles of base energy are discussed in detail in our second paper in the series "A Conceptual Study for Addressing the Singularity of the Emerging Universe," which is discussed in detail. To establish a complete picture, the origin of the base energy should be identified and studied. In this research paper, the mechanism which led to the emergence of this natural state and its corresponding base energy is proposed. In addition, the effect of the base energy in the space-time fabric is discussed. Finally, the possible role of the base energy in quantization and energy exchange is investigated. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.

Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution

Procedia PDF Downloads 99
2134 Theoretical Prediction of the Structural, Elastic, Electronic, Optical, and Thermal Properties of Cubic Perovskites CsXF3 (X = Ca, Sr, and Hg) under Pressure Effect

Authors: M. A. Ghebouli, A. Bouhemadou, H. Choutri, L. Louaila

Abstract:

Some physical properties of the cubic perovskites CsXF3 (X = Sr, Ca, and Hg) have been investigated using pseudopotential plane–wave (PP-PW) method based on the density functional theory (DFT). The calculated lattice constants within GGA (PBE) and LDA (CA-PZ) agree reasonably with the available experiment data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus, Poisson’s ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr, and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacities CV, CP, and Debye temperature was predicted.

Keywords: perovskite, PP-PW method, elastic constants, electronic band structure

Procedia PDF Downloads 437
2133 An Investigation of New Phase Diagram of Ag2SO4-CaSO4

Authors: Ravi V. Joat, Pravin S. Bodke, Shradha S. Binani, S. S. Wasnik

Abstract:

A phase diagram of the Ag2SO4 - CaSO4 (Silver sulphate – Calcium Sulphate) binaries system using conductivity, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis) data is constructed. The eutectic reaction (liquid -» a-Ag2SO4 + CaSO4) is observed at 10 mole% CaSO4 and 645°C. Room temperature solid solubility limit up to 5.27 mole % of Ca 2+ in Ag2SO4 is set using X-ray powder diffraction and scanning electron microscopy results. All compositions beyond this limit are two-phase mixtures below and above the transition temperature (≈ 416°C). The bulk conductivity, obtained following complex impedance spectroscopy, is found decreasing with increase in CaSO4 content. Amongst other binary compositions, the 80AgSO4-20CaSO4 gave improved sinterability/packing density.

Keywords: phase diagram, Ag2SO4-CaSO4 binaries system, conductivity, XRD, DTA

Procedia PDF Downloads 625
2132 Ternary Content Addressable Memory Cell with a Leakage Reduction Technique

Authors: Gagnesh Kumar, Nitin Gupta

Abstract:

Ternary Content Addressable Memory cells are mainly popular in network routers for packet forwarding and packet classification, but they are also useful in a variety of other applications that require high-speed table look-up. The main TCAM-design challenge is to decrease the power consumption associated with the large amount of parallel active circuitry, without compromising with speed or memory density. Furthermore, when the channel length decreases, leakage power becomes more significant, and it can even dominate dynamic power at lower technologies. In this paper, we propose a TCAM-design technique, called Virtual Power Supply technique that reduces the leakage by a substantial amount.

Keywords: match line (ML), search line (SL), ternary content addressable memory (TCAM), Leakage power (LP)

Procedia PDF Downloads 299
2131 Technological Properties and Characterization of Ceramic Slurries Based on Yttrium Iii Oxide for Shell Moulds Preparation

Authors: D. Jakubowska, M. Malek, P. Wisniewski, J. Mizera, K. J. Kurzydlowski

Abstract:

The goal of this study was to analyze the technological properties of ceramic slurries based on Ytttria (Y2O3) for fabrication “prime coat” in ceramic shell moulds for investment casting process. The Yttria with two different granulation of (200# and 325#) in ratio-65%-35% by weight were used for preparation the ceramic slurries. Solid phase was 77 wt.%. The experiment was carried out for 96h. Main technological properties like: viscosity, pH, plate weight test, and density were measured every 24h. Additionally, dynamic viscosity was performed after 96h of test. For further material characterization SEM observations, Zeta potential, XRD measurements were done. Those research showed that Yttria ceramic slurries had very promising properties and there are perspective for future fabrication.

Keywords: ceramic slurries, mechanizal properties, viscosity, fabrication

Procedia PDF Downloads 543
2130 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow

Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof

Abstract:

A theoretical investigation from the viewpoint of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study. It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing a region with higher total temperature, compared to the distant region, peripheral to the vortex core.

Keywords: energy separation mechanism, theoretical analysis, vortex tube, vortical flow

Procedia PDF Downloads 399
2129 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Authors: Ceren Ince, Berkay Zafer Erdem, Shahram Derogar, Nabi Yuzer

Abstract:

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper first of all investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as capillary absorption, sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total heat of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of capillary absorption and sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower permeability compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Keywords: diatomite, fibre, strength, supplementary cementing material

Procedia PDF Downloads 330
2128 Performance Analysis of IDMA Scheme Using Quasi-Cyclic Low Density Parity Check Codes

Authors: Anurag Saxena, Alkesh Agrawal, Dinesh Kumar

Abstract:

The next generation mobile communication systems i.e. fourth generation (4G) was developed to accommodate the quality of service and required data rate. This project focuses on multiple access technique proposed in 4G communication systems. It is attempted to demonstrate the IDMA (Interleave Division Multiple Access) technology. The basic principle of IDMA is that interleaver is different for each user whereas CDMA employs different signatures. IDMA inherits many advantages of CDMA such as robust against fading, easy cell planning; dynamic channel sharing and IDMA increase the spectral efficiency and reduce the receiver complexity. In this, performance of IDMA is analyzed using QC-LDPC coding scheme further it is compared with LDPC coding and at last BER is calculated and plotted in MATLAB.

Keywords: 4G, QC-LDPC, CDMA, IDMA

Procedia PDF Downloads 323
2127 Prediction of a Nanostructure Called Porphyrin-Like Buckyball, Using Density Functional Theory and Investigating Electro Catalytic Reduction of Co₂ to Co by Cobalt– Porphyrin-Like Buckyball

Authors: Mohammad Asadpour, Maryam Sadeghi, Mahmoud Jafari

Abstract:

The transformation of carbon dioxide into fuels and commodity chemicals is considered one of the most attractive methods to meet energy demands and reduce atmospheric CO₂ levels. Cobalt complexes have previously shown high faradaic efficiency in the reduction of CO₂ to CO. In this study, a nanostructure, referred to as a porphyrin-like buckyball, is simulated and analyzed for its electrical properties. The investigation aims to understand the unique characteristics of this material and its potential applications in electronic devices. Through computational simulations and analysis, the electrocatalytic reduction of CO₂ to CO by Cobalt-porphyrin-like buckyball is explored. The findings of this study offer valuable insights into the electrocatalytic properties of this predicted structure, paving the way for further research and development in the field of nanotechnology.

Keywords: porphyrin-like buckyball, DFT, nanomaterials, CO₂ to CO

Procedia PDF Downloads 50
2126 The Beneficial Effects of Inhibition of Hepatic Adaptor Protein Phosphotyrosine Interacting with PH Domain and Leucine Zipper 2 on Glucose and Cholesterol Homeostasis

Authors: Xi Chen, King-Yip Cheng

Abstract:

Hypercholesterolemia, characterized by high low-density lipoprotein cholesterol (LDL-C), raises cardiovascular events in patients with type 2 diabetes (T2D). Although several drugs, such as statin and PCSK9 inhibitors, are available for the treatment of hypercholesterolemia, they exert detrimental effects on glucose metabolism and hence increase the risk of T2D. On the other hand, the drugs used to treat T2D have minimal effect on improving the lipid profile. Therefore, there is an urgent need to develop treatments that can simultaneously improve glucose and lipid homeostasis. Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 2 (APPL2) causes insulin resistance in the liver and skeletal muscle via inhibiting insulin and adiponectin actions in animal models. Single-nucleotide polymorphisms in the APPL2 gene were associated with LDL-C, non-alcoholic fatty liver disease, and coronary artery disease in humans. The aim of this project is to investigate whether APPL2 antisense oligonucleotide (ASO) can alleviate dietary-induced T2D and hypercholesterolemia. High-fat diet (HFD) was used to induce obesity and insulin resistance in mice. GalNAc-conjugated APPL2 ASO (GalNAc-APPL2-ASO) was used to silence hepatic APPL2 expression in C57/BL6J mice selectively. Glucose, lipid, and energy metabolism were monitored. Immunoblotting and quantitative PCR analysis showed that GalNAc-APPL2-ASO treatment selectively reduced APPL2 expression in the liver instead of other tissues, like adipose tissues, kidneys, muscle, and heart. The glucose tolerance test and insulin sensitivity test revealed that GalNAc-APPL2-ASO improved glucose tolerance and insulin sensitivity progressively. Blood chemistry analysis revealed that the mice treated with GalNAc-APPL2-ASO had significantly lower circulating levels of total cholesterol and LDL cholesterol. However, there was no difference in circulating levels of high-density lipoprotein (HDL) cholesterol, triglyceride, and free fatty acid between the mice treated with GalNac-APPL2-ASO and GalNAc-Control-ASO. No obvious effect on food intake, body weight, and liver injury markers after GalNAc-APPL2-ASO treatment was found, supporting its tolerability and safety. We showed that selectively silencing hepatic APPL2 alleviated insulin resistance and hypercholesterolemia and improved energy metabolism in the dietary-induced obese mouse model, indicating APPL2 as a therapeutic target for metabolic diseases.

Keywords: APPL2, antisense oligonucleotide, hypercholesterolemia, type 2 diabetes

Procedia PDF Downloads 67
2125 Enhancement in the Absorption Efficiency of Gaas/Inas Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, fdtd simulation

Procedia PDF Downloads 72
2124 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures

Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar

Abstract:

In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.

Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization

Procedia PDF Downloads 208
2123 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 107
2122 Correlations between Folate, Homocysteine Levels, and Markers of Brain Atrophy in Elderly Male and Female Rats

Authors: Fatimah A. Alhomaid, Nadia H. Mahmoud, Maha A. Al-Qaraawi

Abstract:

The present study was designed to induce hyperhomocysteinemia (HHcy) in elderly male and female rats. Also,to evaluate, the effect of (HHcy) as a risk factor for cerebrovascular disease and brain atrophy and folate supplementation on serum levels of Hcy, total cholesterol, low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol (HDLc), triglycerides, pyridoxal phosphate , folate also, histopathological examination of brain and cerebrovascular vessels In this work 50 male and 50 female elderly albino rats were used and divided into five groups. The first group served as control, the second and third group received two different dose of L-methionine, the fourth and fifth group received fortified diet with folate powder plus L-methionine. Our results showed that homocysteine levels in male and female rats that received low and high dose of methionine were higher than in the control group, while the levels of folate significantly decreased in male rats only. Induced hyperhomocysteinemia in elderly male and female rats led to significant increase in serum level of cholesterol, LDLc and triglycerides but serum level of HDLc were significantly lower in methionine treated male and female rats than in control. Our results showed that a strong positive correlation between all these parameters and homocysteine except HDLc levels which correlate negatively to Hcy levels. Administration of folate to methionine treated male rats led to insignificant changes in the level of cholesterol when compared to control group but this level was found to be significantly decrease in female rats received small dose of methionine. When the level of cholesterol compared to the same dose of methionine treated group we found a significant decrease in both male and female rats. LDLc and triglycerides level significantly decrease in male rats only versus the control rats, while when compared to low and high dose of methionine a significant decreased occurs. A significant increase in serum level of HDLc in male and female rats when compared to both control and methionine treated groups. In male and female rats supplemented with folate we found an increased serum levels of folate when compared to rats received both dose of methionine. The levels of pyridoxal phosphate significantly decreased in all treated rats compared to the control group and its level were increased with supplementation of folate versus the rats received small and large dose of methionine. It can be concluded that hyperhomocysteinemia may be an additional risk factor for cerebrovascular atherosclesosis and brain atrophy in elderly people and diatery supplementation with folate blocking the activity of homocysteine and may be considered as a therapeutic possibility.

Keywords: hyperhomocysteinemia, brain atrophy, cerebrovascular, L-methionine, pyridoxal phosphate

Procedia PDF Downloads 302
2121 Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion

Authors: Rachid Fermous, Rima Mebrek

Abstract:

Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

Keywords: plasma expansion, quantum degeneracy, weakly relativistic, under-dense plasma

Procedia PDF Downloads 87
2120 Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films

Authors: Bandar Ali Al-Asbahi, Mohammad Hafizuddin Haji Jumali

Abstract:

Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra.

Keywords: energy transfer parameters, forster-type, electroluminescence, organic light emitting diodes

Procedia PDF Downloads 426
2119 Carbon Nanocomposites : Structure, Characterization and Environmental Application

Authors: Bensacia Nabila, Hadj-Ziane Amel, Sefah Karima

Abstract:

Carbon nanocomposites have received more attention in the last years in view of their special properties such as low density, high specific surface area, and thermal and mechanical stability. Taking into account the importance of these materials, many studies aimed at improving the synthesis process have been conducted. However, the presence of impurities could affect significantly the properties of these materials, and the characterization of these compounds is an important challenge to assure the quality of the new carbon nanocomposites. The present study aims to develop a new recyclable decontaminating material for dyes removal. This new material consists of an active element based on carbon nanotubes wrapped in a microcapsule of iron oxide. The adsorbent is characterized by Transmission electron microscopy, X-ray diffraction and the surface area was measured by the BET method.

Keywords: carbon nanocomposite, chitozen, elimination, dyes

Procedia PDF Downloads 321
2118 The Relationship between the Speed of Light and Cosmic Background Potential

Authors: Youping Dai, Xinping Dai, Xiaoyun Li

Abstract:

In this paper, the effect of Cosmic Background Gravitational Potential (CBGP) was discussed. It is helpful to reveal the equivalence of gravitational and inertial mass, and to understand the origin of inertia. The derivation is similar to the classic approach adopted by Landau in the book 'Classical Theory of Fields'.The main differences are that we used CBGP = Lambda^2 instead of c^2, and used CBGP energy E = m*Lambda^2 instead of kinetic energy E = (1/2)m*v^2 as initial assumptions (where Lambda has the same units for measuring velocity). It showed that Lorentz transformation, rest energy and Newtonian mechanics are all affected by $CBGP$, and the square of the speed of light is equal to CBGP too. Finally, the top value of cosmic mass density and cosmic radius were discussed.

Keywords: the origin of inertia, Mach's principle, equivalence principle, cosmic background potential

Procedia PDF Downloads 376
2117 Investigating the Effects of Hydrogen on Wet Cement for Underground Hydrogen Storage Applications in Oil and Gas Wells

Authors: Hamoud Al-Hadrami, Hossein Emadi, Athar Hussain

Abstract:

Green hydrogen is quickly emerging as a new source of renewable energy for the world. Hydrogen production using water electrolysis is deemed as an environmentally friendly and safe source of energy for transportation and other industries. However, storing a high volume of hydrogen seems to be a significant challenge. Abandoned hydrocarbon reservoirs are considered as viable hydrogen storage options because of the availability of the required infrastructure such as wells and surface facilities. However, long-term wellbore integrity in these wells could be a serious challenge. Hydrogen reduces the compressive strength of a set cement if it gets in contact with the cement slurry. Also, mixing hydrogen with cement slurry slightly increases its density and rheological properties, which need to be considered to have a successful primary cementing operation.

Keywords: hydrogen, well bore integrity, clean energy, cementing

Procedia PDF Downloads 214
2116 Comparing Russian and American Students’ Metaphorical Competence

Authors: Svetlana L. Mishlanova, Evgeniia V. Ermakova, Mariia E. Timirkina

Abstract:

The paper is concerned with the study of metaphor production in essays written by Russian and English native speakers in the framework of cognitive metaphor theory. It considers metaphorical competence as individual’s ability to recognize, understand and use metaphors in speech. The work analyzes the influence of visual metaphor on production and density of conventional and novel verbal metaphors. The main methods of research include experiment connected with image interpretation, metaphor identification procedure (MIPVU) and visual conventional metaphors identification procedure proposed by VisMet group. The research findings will be used in the project aimed at comparing metaphorical competence of native and non-native English speakers.

Keywords: metaphor, metaphorical competence, conventional, novel

Procedia PDF Downloads 286
2115 Using the Structural Equation Model to Explain the Effect of Supervisory Practices on Regulatory Density

Authors: Jill Round

Abstract:

In the economic system, the financial sector plays a crucial role as an intermediary between market participants, other financial institutions, and customers. Financial institutions such as banks have to make decisions to satisfy the demands of all the participants by keeping abreast of regulatory change. In recent years, progress has been made regarding frameworks, development of rules, standards, and processes to manage risks in the banking sector. The increasing focus of regulators and policymakers placed on risk management, corporate governance, and the organization’s culture is of special interest as it requires a well-resourced risk controlling function, compliance function, and internal audit function. In the past years, the relevance of these functions that make up the so-called Three Lines of Defense has moved from the backroom to the boardroom. The approach of the model can vary based on the various organizational characteristics. Due to the intense regulatory requirements, organizations operating in the financial sector have more mature models. In less regulated industries there is more cloudiness about what tasks are allocated where. All parties strive to achieve their objectives through the effective management of risks and serve the identical stakeholders. Today, the Three Lines of Defense model is used throughout the world. The research looks at trends and emerging issues in the professions of the Three Lines of Defense within the banking sector. The answers are believed to helping to explain the increasing regulatory requirements for the banking sector. While the number of supervisory practices increases the risk management requirements intensify and demand more regulatory compliance at the same time. The Structural Equation Modeling (SEM) is applied by making use of conducted surveys in the research field. It aims to describe (i) the theoretical model regarding the applicable linearity relationships, (ii) the causal relationship between multiple predictors (exogenous) and multiple dependent variables (endogenous), (iii) taking into consideration the unobservable variables and (iv) the measurement errors. The surveys conducted on the research field suggest that the observable variables are caused by various latent variables. The SEM consists of the 1) measurement model and the 2) structural model. There is a detectable correlation regarding the cause-effect relationship among the performed supervisory practices and the increasing scope of regulation. Supervisory practices reinforce the regulatory density. In the past, controls were placed after supervisory practices were conducted or incidents occurred. In further research, it is of interest to examine, whether risk management is proactive, reactive to incidents and supervisory practices or can be both at the same time.

Keywords: risk management, structural equation model, supervisory practice, three lines of defense

Procedia PDF Downloads 224
2114 First Principle Calculations of Magnetic and Electronic Properties of Double Perovskite Ba2MnMoO6

Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Souidi, A. Abbad, T. Lantri, Z. Aziz, A. Zitouni

Abstract:

The electronic and magnetic structures of double perovskite Ba2MnMoO6 are systematically investigated using the first principle method of the Full Potential Linear Augmented Plane Waves Plus the Local Orbitals (FP-LAPW+LO) within the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA). In order to take into account the strong on-site Coulomb interaction, we included the Hubbard correlation terms: LSDA+U and GGA+U approaches. Whereas half-metallic ferromagnetic character is observed due to dominant Mn spin-up and Mo spin-down contributions insulating ground state is obtained. The LSDA+U and GGA+U calculations yield better agreement with the theoretical and the experimental results than LSDA and GGA do.

Keywords: electronic structure, double perovskite, first principles, Ba2MnMoO6, half-metallic

Procedia PDF Downloads 441
2113 Diagnosis Of Static, Dynamic, And Mixed Eccentricity In Line Start Permanent Magnet Synchronous Motor By Using FEM

Authors: Mohamed Moustafa Mahmoud Sedky

Abstract:

In line start permanent magnet synchronous motor, eccentricity is a common fault that can make it necessary to remove the motor from the production line. However, because the motor may be inaccessible, diagnosing the fault is not easy. This paper presents an FEM that identifies different models, static eccentricity, dynamic eccentricity, and mixed eccentricity, at no load and full load. The method overcomes the difficulty of applying FEMs to transient behavior. It simulates motor speed, torque and flux density distribution along the air gap for SE, DE, and ME. This paper represents the various effects of different eccentricities types on the transient performance.

Keywords: line start permanent magnet, synchronous machine, static eccentricity, dynamic eccentricity, mixed eccentricity

Procedia PDF Downloads 379
2112 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer

Authors: A. Giniatoulline

Abstract:

A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.

Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid

Procedia PDF Downloads 255