Search results for: Grey prediction model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18015

Search results for: Grey prediction model

16605 Bifurcation and Stability Analysis of the Dynamics of Cholera Model with Controls

Authors: C. E. Madubueze, S. C. Madubueze, S. Ajama

Abstract:

Cholera is a disease that is predominately common in developing countries due to poor sanitation and overcrowding population. In this paper, a deterministic model for the dynamics of cholera is developed and control measures such as health educational message, therapeutic treatment, and vaccination are incorporated in the model. The effective reproduction number is computed in terms of the model parameters. The existence and stability of the equilibrium states, disease free and endemic equilibrium states are established and showed to be locally and globally asymptotically stable when R0 < 1 and R0 > 1 respectively. The existence of backward bifurcation of the model is investigated. Furthermore, numerical simulation of the model developed is carried out to show the impact of the control measures and the result indicates that combined control measures will help to reduce the spread of cholera in the population

Keywords: backward bifurcation, cholera, equilibrium, dynamics, stability

Procedia PDF Downloads 432
16604 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
16603 An Inquiry on 2-Mass and Wheeled Mobile Robot Dynamics

Authors: Boguslaw Schreyer

Abstract:

In this paper, a general dynamical model is derived using the Lagrange formalism. The two masses: sprang and unsprang are included in a six-degree of freedom model for a sprung mass. The unsprung mass is included and shown only in a simplified model, although its equations have also been derived by an author. The simplified equations, more suitable for the computer model of robot’s dynamics are also shown.

Keywords: dynamics, mobile, robot, wheeled mobile robots

Procedia PDF Downloads 337
16602 Yaw Angle Effect on the Aerodynamic Performance of Rear-Roof Spoiler of Hatchback Vehicle

Authors: See-Yuan Cheng, Kwang-Yhee Chin, Shuhaimi Mansor

Abstract:

Rear-roof spoiler is commonly used for improving the aerodynamic performance of road vehicles. This study aims to investigate the effect of yaw angle on the effectiveness of strip-type rear-roof spoiler in providing lower drag and lift coefficients of a hatchback model. A computational fluid dynamics (CFD) method was used. The numerically obtained results were compared to the experimental data for validation of the CFD method. At increasing yaw angle, both the drag and lift coefficients of the model were to increase. In addition, the effectiveness of spoiler was deteriorated. These unfavorable effects were due to the formation of longitudinal vortices around the side edges of the model that had caused the surface pressure of the model to drop. Furthermore, there were significant crossflow structures developed behind the model at larger yaw angle, which were associated with the drop in the surface pressure of the rear section of the model and cause the drag coefficient to rise.

Keywords: Ahmed model, aerodynamics, spoiler, yaw angle

Procedia PDF Downloads 359
16601 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness

Procedia PDF Downloads 334
16600 Discovering New Organic Materials through Computational Methods

Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner

Abstract:

Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.

Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings

Procedia PDF Downloads 253
16599 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid

Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu

Abstract:

The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.

Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction

Procedia PDF Downloads 432
16598 Investigated Optimization of Davidson Path Loss Model for Digital Terrestrial Television (DTTV) Propagation in Urban Area

Authors: Pitak Keawbunsong, Sathaporn Promwong

Abstract:

This paper presents an investigation on the efficiency of the optimized Davison path loss model in order to look for a suitable path loss model to design and planning DTTV propagation for small and medium urban areas in southern Thailand. Hadyai City in Songkla Province is chosen as the case study to collect the analytical data on the electric field strength. The optimization is conducted through the least square method while the efficiency index is through the statistical value of relative error (RE). The result of the least square method is the offset and slop of the frequency to be used in the optimized process. The statistical result shows that RE of the old Davidson model is at the least when being compared with the optimized Davison and the Hata models. Thus, the old Davison path loss model is the most accurate that further becomes the most optimized for the plan on the propagation network design.

Keywords: DTTV propagation, path loss model, Davidson model, least square method

Procedia PDF Downloads 340
16597 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model

Authors: Wei Lu

Abstract:

With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.

Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model

Procedia PDF Downloads 153
16596 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 101
16595 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 57
16594 Assessment of the Impacts of Climate Change on Climatic Zones over the Korean Peninsula for Natural Disaster Management Information

Authors: Sejin Jung, Dongho Kang, Byungsik Kim

Abstract:

Assessing the impact of climate change requires the use of a multi-model ensemble (MME) to quantify uncertainties between scenarios and produce downscaled outlines for simulation of climate under the influence of different factors, including topography. This study decreases climate change scenarios from the 13 global climate models (GCMs) to assess the impacts of future climate change. Unlike South Korea, North Korea lacks in studies using climate change scenarios of the CoupledModelIntercomparisonProject (CMIP5), and only recently did the country start the projection of extreme precipitation episodes. One of the main purposes of this study is to predict changes in the average climatic conditions of North Korea in the future. The result of comparing downscaled climate change scenarios with observation data for a reference period indicates high applicability of the Multi-Model Ensemble (MME). Furthermore, the study classifies climatic zones by applying the Köppen-Geiger climate classification system to the MME, which is validated for future precipitation and temperature. The result suggests that the continental climate (D) that covers the inland area for the reference climate is expected to shift into the temperate climate (C). The coefficient of variation (CVs) in the temperature ensemble is particularly low for the southern coast of the Korean peninsula, and accordingly, a high possibility of the shifting climatic zone of the coast is predicted. This research was supported by a grant (MOIS-DP-2015-05) of Disaster Prediction and Mitigation Technology Development Program funded by Ministry of Interior and Safety (MOIS, Korea).

Keywords: MME, North Korea, Koppen–Geiger, climatic zones, coefficient of variation, CV

Procedia PDF Downloads 111
16593 Efficient Layout-Aware Pretraining for Multimodal Form Understanding

Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose

Abstract:

Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.

Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention

Procedia PDF Downloads 151
16592 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk

Authors: Masoud Nasiri Sarvi, Yunhua Luo

Abstract:

Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.

Keywords: bone mineral density, hip fracture risk, impact force, sideways falls

Procedia PDF Downloads 536
16591 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi

Abstract:

The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.

Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks

Procedia PDF Downloads 396
16590 Physical Education Teacher's Interpretation toward Teaching Games for Understanding Model

Authors: Soni Nopembri

Abstract:

The objective of this research is to evaluate the implementation of teaching games for Understanding model by conducting action to physical education teacher who have got long teaching experience. The research applied Participatory Action Research. The subjects of this research were 19 physical education teachers who had got training of Teaching Games for Understanding. Data collection was conducted intensively through a questionnaire, in-depth interview, Focus Group Discussion (FGD), observation, and documentation. The collected data was analysis zed qualitatively and quantitatively. The result showed that physical education teachers had got an appropriate interpretation on TGfU model. Some indicators that were the focus of this research indicated this points; they are: (1) physical education teachers had good understanding toward TGfU model, (2) PE teachers’ competence in applying TGfU model on Physical Education at school were adequate, though some improvement were needed, (3) the influence factors in the implementation of TGfU model, in sequence, were teacher, facilities, environment, and students factors, (4) PE teachers’ perspective toward TGfU model were positively good, although some teachers were less optimistic toward the development of TGfU model in the future.

Keywords: TGfU, physical education teacher, teaching games, FGD

Procedia PDF Downloads 548
16589 Geomechanical Numerical Modeling of Well Wall in Drilling with Finite Difference Method

Authors: Marzieh Zarei

Abstract:

Well instability is one of the most fundamental challenges faced by the oil and gas industry. Well wall stability analysis is a gap to be filled in the oil industry. The collection of static data such as well logging leads to the construction of a geomechanical numerical model, which will help in assessing the probable risks in future drilling. In this paper, geomechanical model was designed, and mechanical properties of the rock was determined at all points of the model. It was found the safe mud window was determined and the minimum and maximum mud pressures were determined in the ranges of 70-60 MPa and 110-100 MPa, respectively.

Keywords: geomechanics, numerical model, well stability, in-situ stress, underbalanced drilling

Procedia PDF Downloads 130
16588 Study of the Protection of Induction Motors

Authors: Bencheikh Abdellah

Abstract:

In this paper, we present a mathematical model dedicated to the simulation breaks bars in a three-phase cage induction motor. This model is based on a mesh circuit representing the rotor cage. The tested simulation allowed us to demonstrate the effectiveness of this model to describe the behavior of the machine in a healthy state, failure.

Keywords: AC motors, squirrel cage, diagnostics, MATLAB, SIMULINK

Procedia PDF Downloads 438
16587 Dynamic Model of Heterogeneous Markets with Imperfect Information for the Optimization of Company's Long-Time Strategy

Authors: Oleg Oborin

Abstract:

This paper is dedicated to the development of the model, which can be used to evaluate the effectiveness of long-term corporate strategies and identify the best strategies. The theoretical model of the relatively homogenous product market (such as iron and steel industry, mobile services or road transport) has been developed. In the model, the market consists of a large number of companies with different internal characteristics and objectives. The companies can perform mergers and acquisitions in order to increase their market share. The model allows the simulation of long-time dynamics of the market (for a period longer than 20 years). Therefore, a large number of simulations on random input data was conducted in the framework of the model. After that, the results of the model were compared with the dynamics of real markets, such as the US steel industry from the beginning of the XX century to the present day, and the market of mobile services in Germany for the period between 1990 and 2015.

Keywords: Economic Modelling, Long-Time Strategy, Mergers and Acquisitions, Simulation

Procedia PDF Downloads 368
16586 Modelling Export Dynamics in the CSEE Countries Using GVAR Model

Authors: S. Jakšić, B. Žmuk

Abstract:

The paper investigates the key factors of export dynamics for a set of Central and Southeast European (CSEE) countries in the context of current economic and financial crisis. In order to model the export dynamics a Global Vector Auto Regressive (GVAR) model is defined. As opposed to models which model each country separately, the GVAR combines all country models in a global model which enables obtaining important information on spill-over effects in the context of globalization and rising international linkages. The results of the study indicate that for most of the CSEE countries, exports are mainly driven by domestic shocks, both in the short run and in the long run. This study is the first application of the GVAR model to studying the export dynamics in the CSEE countries and therefore the results of the study present an important empirical contribution.

Keywords: export, GFEVD, global VAR, international trade, weak exogeneity

Procedia PDF Downloads 301
16585 Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, chemometrics, molecular modeling, molecular descriptors, QSPR

Procedia PDF Downloads 290
16584 Simplified 3R2C Building Thermal Network Model: A Case Study

Authors: S. M. Mahbobur Rahman

Abstract:

Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control.  Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.

Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model

Procedia PDF Downloads 146
16583 Maturity Model for Agro-Industrial Logistics

Authors: Erika Tatiana Ruiz, Wilson Adarme Jaimes

Abstract:

This abstract presents the methodology for improving the logistics processes of agricultural production units belonging to the coffee, cocoa, and fruit sectors, starting from the fundamental concepts and detailing each of the phases to carry out the diagnosis, which will be the basis for the formulation of its action plan and implementation of the maturity model. As a result of this work, the maturity model is formulated to improve logistics processes. This model seeks to: generate a progressive model that is useful for all productive units belonging to these sectors at the national level, regardless of their initial conditions, focus on the improvement of logistics processes as a strategy that contributes to improving the competitiveness of the agricultural sector in Colombia and spread the implementation of good logistics practices in postharvest in all departments of the country through autonomous tools. This model has been built through a series of steps that allow the evaluation and improvement of the logistics dimensions or indicators. The potential improvements for each dimension provide the foundation on which to advance to the next level. Within the maturity model, a methodology is indicated for the design and execution of strategies to improve its logistics processes, taking into account the current state of each production unit.

Keywords: agroindustrial, characterization, logistics, maturity model, processes

Procedia PDF Downloads 137
16582 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device

Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang

Abstract:

This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.

Keywords: CFD modeling, validation, microsphere generation, modified T-junction

Procedia PDF Downloads 707
16581 Modeling User Context Using CEAR Diagram

Authors: Ravindra Dastikop, G. S. Thyagaraju, U. P. Kulkarni

Abstract:

Even though the number of context aware applications is increasing day by day along with the users, till today there is no generic programming paradigm for context aware applications. This situation could be remedied by design and developing the appropriate context modeling and programming paradigm for context aware applications. In this paper, we are proposing the static context model and metrics for validating the expressiveness and understandability of the model. The proposed context modeling is a way of describing a situation of user using context entities , attributes and relationships .The model which is an extended and hybrid version of ER model, ontology model and Graphical model is specifically meant for expressing and understanding the user situation in context aware environment. The model is useful for understanding context aware problems, preparing documentation and designing programs and databases. The model makes use of context entity attributes relationship (CEAR) diagram for representation of association between the context entities and attributes. We have identified a new set of graphical notations for improving the expressiveness and understandability of context from the end user perspective .

Keywords: user context, context entity, context entity attributes, situation, sensors, devices, relationships, actors, expressiveness, understandability

Procedia PDF Downloads 345
16580 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention

Authors: Chia-Jung Li, Kuan-Hao Tsui

Abstract:

As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.

Keywords: multi-omics, nutrients, ferroptosis, ovarian aging

Procedia PDF Downloads 104
16579 Spatially Downscaling Land Surface Temperature with a Non-Linear Model

Authors: Kai Liu

Abstract:

Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.

Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature

Procedia PDF Downloads 330
16578 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province

Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).

Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR

Procedia PDF Downloads 199
16577 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.

Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus

Procedia PDF Downloads 220
16576 Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait

Authors: Ahmed M. AlHasem

Abstract:

The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions.

Keywords: astronomy, cultural heritage, statistical analysis, weather prediction

Procedia PDF Downloads 123