Search results for: real quantum mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5944

Search results for: real quantum mechanics

4564 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case

Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang

Abstract:

In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.

Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination

Procedia PDF Downloads 54
4563 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques

Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet

Abstract:

5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.

Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics

Procedia PDF Downloads 45
4562 Vascular Targeted Photodynamic Therapy Monitored by Real-Time Laser Speckle Imaging

Authors: Ruth Goldschmidt, Vyacheslav Kalchenko, Lilah Agemy, Rachel Elmoalem, Avigdor Scherz

Abstract:

Vascular Targeted Photodynamic therapy (VTP) is a new modality for selective cancer treatment that leads to the complete tumor ablation. A photosensitizer, a bacteriochlorophyll derivative in our case, is first administered to the patient and followed by the illumination of the tumor area, by a near-IR laser for its photoactivation. The photoactivated drug releases reactive oxygen species (ROS) in the circulation, which reacts with blood cells and the endothelium leading to the occlusion of the blood vasculature. If the blood vessels are only partially closed, the tumor may recover, and cancer cells could survive. On the other hand, excessive treatment may lead to toxicity of healthy tissues nearby. Simultaneous VTP monitoring and image processing independent of the photoexcitation laser has not yet been reported, to our knowledge. Here we present a method for blood flow monitoring, using a real-time laser speckle imaging (RTLSI) in the tumor during VTP. We have synthesized over the years a library of bacteriochlorophyll derivatives, among them WST11 and STL-6014. Both are water soluble derivatives that are retained in the blood vasculature through their partial binding to HSA. WST11 has been approved in Mexico for VTP treatment of prostate cancer at a certain drug dose, and time/intensity of illumination. Application to other bacteriochlorophyll derivatives or other cancers may require different treatment parameters (such as light/drug administration). VTP parameters for STL-6014 are still under study. This new derivative mainly differs from WST11 by its lack of the central Palladium, and its conjugation to an Arg-Gly-Asp (RGD) sequence. RGD is a tumor-specific ligand that is used for targeting the necrotic tumor domains through its affinity to αVβ3 integrin receptors. This enables the study of cell-targeted VTP. We developed a special RTLSI module, based on Labview software environment for data processing. The new module enables to acquire raw laser speckle images and calculate the values of the laser temporal statistics of time-integrated speckles in real time, without additional off-line processing. Using RTLSI, we could monitor the tumor’s blood flow following VTP in a CT26 colon carcinoma ear model. VTP with WST11 induced an immediate slow down of the blood flow within the tumor and a complete final flow arrest, after some sporadic reperfusions. If the irradiation continued further, the blood flow stopped also in the blood vessels of the surrounding healthy tissue. This emphasizes the significance of light dose control. Using our RTLSI system, we could prevent any additional healthy tissue damage by controlling the illumination time and restrict blood flow arrest within the tumor only. In addition, we found that VTP with STL-6014 was the most effective when the photoactivation was conducted 4h post-injection, in terms of tumor ablation success in-vivo and blood vessel flow arrest. In conclusion, RTSLI application should allow to optimize VTP efficacy vs. toxicity in both the preclinical and clinical arenas.

Keywords: blood vessel occlusion, cancer treatment, photodynamic therapy, real time imaging

Procedia PDF Downloads 211
4561 Mental Health Challenges, Internalizing and Externalizing Behavior Problems, and Academic Challenges among Adolescents from Broken Families

Authors: Fadzai Munyuki

Abstract:

Parental divorce is one of youth's most stressful life events and is associated with long-lasting emotional and behavioral problems. Over the last few decades, research has consistently found strong associations between divorce and adverse health effects in adolescents. Parental divorce has been hypothesized to lead to psychosocial development problems, mental health challenges, internalizing and externalizing behavior problems, and low academic performance among adolescents. This is supported by the Positive youth development theory, which states that a family setup has a major role to play in adolescent development and well-being. So, the focus of this research will be to test this hypothesized process model among adolescents in five provinces in Zimbabwe. A cross-sectional study will be conducted to test this hypothesis, and 1840 (n = 1840) adolescents aged between 14 to 17 will be employed for this study. A Stress and Questionnaire scale, a Child behavior checklist scale, and an academic concept scale will be used for this study. Data analysis will be done using Structural Equations Modeling. This study has many limitations, including the lack of a 'real-time' study, a few cross-sectional studies, a lack of a thorough and validated population measure, and many studies that have been done that have focused on one variable in relation to parental divorce. Therefore, this study seeks to bridge this gap between past research and current literature by using a validated population measure, a real-time study, and combining three latent variables in this study.

Keywords: mental health, internalizing and externalizing behavior, divorce, academic achievements

Procedia PDF Downloads 60
4560 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles

Authors: Paulo Sérgio Ribeiro de Araújo Bogas

Abstract:

Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.

Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing

Procedia PDF Downloads 72
4559 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: control, identification, robot, co-manipulation, sensor-less

Procedia PDF Downloads 147
4558 The Methodology of Hand-Gesture Based Form Design in Digital Modeling

Authors: Sanghoon Shim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the digital technology develops, studies on the TUI (Tangible User Interface) that links the physical environment utilizing the human senses with the virtual environment through the computer are actively being conducted. In addition, there has been a tremendous advance in computer design making through the use of computer-aided design techniques, which enable optimized decision-making through comparison with machine learning and parallel comparison of alternatives. However, a complex design that can respond to user requirements or performance can emerge through the intuition of the designer, but it is difficult to actualize the emerged design by the designer's ability alone. Ancillary tools such as Gaudí's Sandbag can be an instrument to reinforce and evolve emerged ideas from designers. With the advent of many commercial tools that support 3D objects, designers' intentions are easily reflected in their designs, but the degree of their reflection reflects their intentions according to the proficiency of design tools. This study embodies the environment in which the form can be implemented by the fingers of the most basic designer in the initial design phase of the complex type building design. Leapmotion is used as a sensor to recognize the hand motions of the designer, and it is converted into digital information to realize an environment that can be linked in real time in virtual reality (VR). In addition, the implemented design can be linked with Rhino™, a 3D authoring tool, and its plug-in Grasshopper™ in real time. As a result, it is possible to design sensibly using TUI, and it can serve as a tool for assisting designer intuition.

Keywords: design environment, digital modeling, hand gesture, TUI, virtual reality

Procedia PDF Downloads 356
4557 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R

Authors: Pavel H. Llamocca, Victoria Lopez

Abstract:

The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.

Keywords: open data, R language, data integration, environmental data

Procedia PDF Downloads 300
4556 Uncovering Hidden Bugs: An Exploratory Approach

Authors: Sagar Jitendra Mahendrakar

Abstract:

Exploratory testing is a dynamic and adaptable method of software quality assurance that is frequently praised for its ability to find hidden flaws and improve the overall quality of the product. Instead of using preset test cases, exploratory testing allows testers to explore the software application dynamically. This is in contrast to scripted testing methodologies, which primarily rely on tester intuition, creativity, and adaptability. There are several tools and techniques that can aid testers in the exploratory testing process which we will be discussing in this talk.Tests of this kind are able to find bugs of this kind that are harder to find during structured testing or that other testing methods may have overlooked.The purpose of this abstract is to examine the nature and importance of exploratory testing in modern software development methods. It explores the fundamental ideas of exploratory testing, highlighting the value of domain knowledge and tester experience in spotting possible problems that may escape the notice of traditional testing methodologies. Throughout the software development lifecycle, exploratory testing promotes quick feedback loops and continuous improvement by giving testers the ability to make decisions in real time based on their observations. This abstract also clarifies the unique features of exploratory testing, like its non-linearity and capacity to replicate user behavior in real-world settings. Testers can find intricate bugs, usability problems, and edge cases in software through impromptu exploration that might go undetected. Exploratory testing's flexible and iterative structure fits in well with agile and DevOps processes, allowing for a quicker time to market without sacrificing the quality of the final product.

Keywords: exploratory, testing, automation, quality

Procedia PDF Downloads 24
4555 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach

Authors: Massimo Zucchetti

Abstract:

In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.

Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety

Procedia PDF Downloads 71
4554 Detection and Quantification of Viable but Not Culturable Vibrio Parahaemolyticus in Frozen Bivalve Molluscs

Authors: Eleonora Di Salvo, Antonio Panebianco, Graziella Ziino

Abstract:

Background: Vibrio parahaemolyticus is a human pathogen that is widely distributed in marine environments. It is frequently isolated from raw seafood, particularly shellfish. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus may lead to acute gastroenteritis. Vibrio spp. has excellent resistance to low temperatures so it can be found in frozen products for a long time. Recently, the viable but non-culturable state (VBNC) of bacteria has attracted great attention, and more than 85 species of bacteria have been demonstrated to be capable of entering this state. VBNC cells cannot grow in conventional culture medium but are viable and maintain metabolic activity, which may constitute an unrecognized source of food contamination and infection. Also V. parahaemolyticus could exist in VBNC state under nutrient starvation or low-temperature conditions. Aim: The aim of the present study was to optimize methods and investigate V. parahaemolyticus VBNC cells and their presence in frozen bivalve molluscs, regularly marketed. Materials and Methods: propidium monoazide (PMA) was integrated with real-time polymerase chain reaction (qPCR) targeting the tl gene to detect and quantify V. parahaemolyticus in the VBNC state. PMA-qPCR resulted highly specific to V. parahaemolyticus with a limit of detection (LOD) of 10-1 log CFU/mL in pure bacterial culture. A standard curve for V. parahaemolyticus cell concentrations was established with the correlation coefficient of 0.9999 at the linear range of 1.0 to 8.0 log CFU/mL. A total of 77 samples of frozen bivalve molluscs (35 mussels; 42 clams) were subsequently subjected to the qualitative (on alkaline phosphate buffer solution) and quantitative research of V. parahaemolyticus on thiosulfate-citrate-bile salts-sucrose (TCBS) agar (DIFCO) NaCl 2.5%, and incubation at 30°C for 24-48 hours. Real-time PCR was conducted on homogenate samples, in duplicate, with and without propidium monoazide (PMA) dye, and exposed for 45 min under halogen lights (650 W). Total DNA was extracted from cell suspension in homogenate samples according to bolliture protocol. The Real-time PCR was conducted with species-specific primers for V. parahaemolitycus. The RT-PCR was performed in a final volume of 20 µL, containing 10 µL of SYBR Green Mixture (Applied Biosystems), 2 µL of template DNA, 2 µL of each primer (final concentration 0.6 mM), and H2O 4 µL. The qPCR was carried out on CFX96 TouchTM (Bio-Rad, USA). Results: All samples were negative both to the quantitative and qualitative detection of V. parahaemolyticus by the classical culturing technique. The PMA-qPCR let us individuating VBNC V. parahaemolyticus in the 20,78% of the samples evaluated with a value between the Log 10-1 and Log 10-3 CFU/g. Only clams samples were positive for PMA-qPCR detection. Conclusion: The present research is the first evaluating PMA-qPCR assay for detection of VBNC V. parahaemolyticus in bivalve molluscs samples, and the used method was applicable to the rapid control of marketed bivalve molluscs. We strongly recommend to use of PMA-qPCR in order to identify VBNC forms, undetectable by the classic microbiological methods. A precise knowledge of the V.parahaemolyticus in a VBNC form is fundamental for the correct risk assessment not only in bivalve molluscs but also in other seafood.

Keywords: food safety, frozen bivalve molluscs, PMA dye, Real-time PCR, VBNC state, Vibrio parahaemolyticus

Procedia PDF Downloads 122
4553 Determination of ILSS of Composite Materials Using Micromechanical FEA Analysis

Authors: K. Rana, H.A.Saeed, S. Zahir

Abstract:

Inter Laminar Shear Stress (ILSS) is a main key parameter which quantify the properties of composite materials. These properties can ascertain the use of material for a specific purpose like aerospace, automotive etc. A modelling approach for determination of ILSS is presented in this paper. Geometric modelling of composite material is performed in TEXGEN software where reinforcement, cured matrix and their interfaces are modelled separately as per actual geometry. Mechanical properties of matrix and reinforcements are modelled separately which incorporated anisotropy in the real world composite material. ASTM D2344 is modelled in ANSYS for ILSS. In macroscopic analysis model approximates the anisotropy of the material and uses orthotropic properties by applying homogenization techniques. Shear Stress analysis in that case does not show the actual real world scenario and rather approximates it. In this paper actual geometry and properties of reinforcement and matrix are modelled to capture the actual stress state during the testing of samples as per ASTM standards. Testing of samples is also performed in order to validate the results. Fibre volume fraction of yarn is determined by image analysis of manufactured samples. Fibre volume fraction data is incorporated into the numerical model for correction of transversely isotropic properties of yarn. A comparison between experimental and simulated results is presented.

Keywords: ILSS, FEA, micromechanical, fibre volume fraction, image analysis

Procedia PDF Downloads 354
4552 Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress

Authors: Sibgha Noreen, Muhammad Salim Akhter, Seema Mahmood

Abstract:

Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress.

Keywords: salt stress, silicon nutrition, chlorophyll constituents, antioxidant enzymes, barley crop

Procedia PDF Downloads 22
4551 Bluetooth Communication Protocol Study for Multi-Sensor Applications

Authors: Joao Garretto, R. J. Yarwood, Vamsi Borra, Frank Li

Abstract:

Bluetooth Low Energy (BLE) has emerged as one of the main wireless communication technologies used in low-power electronics, such as wearables, beacons, and Internet of Things (IoT) devices. BLE’s energy efficiency characteristic, smart mobiles interoperability, and Over the Air (OTA) capabilities are essential features for ultralow-power devices, which are usually designed with size and cost constraints. Most current research regarding the power analysis of BLE devices focuses on the theoretical aspects of the advertising and scanning cycles, with most results being presented in the form of mathematical models and computer software simulations. Such computer modeling and simulations are important for the comprehension of the technology, but hardware measurement is essential for the understanding of how BLE devices behave in real operation. In addition, recent literature focuses mostly on the BLE technology, leaving possible applications and its analysis out of scope. In this paper, a coin cell battery-powered BLE Data Acquisition Device, with a 4-in-1 sensor and one accelerometer, is proposed and evaluated with respect to its Power Consumption. First, evaluations of the device in advertising mode with the sensors turned off completely, followed by the power analysis when each of the sensors is individually turned on and data is being transmitted, and concluding with the power consumption evaluation when both sensors are on and respectively broadcasting the data to a mobile phone. The results presented in this paper are real-time measurements of the electrical current consumption of the BLE device, where the energy levels that are demonstrated are matched to the BLE behavior and sensor activity.

Keywords: bluetooth low energy, power analysis, BLE advertising cycle, wireless sensor node

Procedia PDF Downloads 76
4550 A Study of Basic and Reactive Dyes Removal from Synthetic and Industrial Wastewater by Electrocoagulation Process

Authors: Almaz Negash, Dessie Tibebe, Marye Mulugeta, Yezbie Kassa

Abstract:

Large-scale textile industries use large amounts of toxic chemicals, which are very hazardous to human health and environmental sustainability. In this study, the removal of various dyes from effluents of textile industries using the electrocoagulation process was investigated. The studied dyes were Reactive Red 120 (RR-120), Basic Blue 3 (BB-3), and Basic Red 46 (BR-46), which were found in samples collected from effluents of three major textile factories in the Amhara region, Ethiopia. For maximum removal, the dye BB-3 required an acidic pH 3, RR120 basic pH 11, while BR-46 neutral pH 7 conditions. BB-3 required a longer treatment time of 80 min than BR46 and RR-120, which required 30 and 40 min, respectively. The best removal efficiency of 99.5%, 93.5%, and 96.3% was achieved for BR-46, BB-3, and RR-120, respectively, from synthetic wastewater containing 10 mg L1of each dye at an applied potential of 10 V. The method was applied to real textile wastewaters and 73.0 to 99.5% removal of the dyes was achieved, Indicating Electrocoagulation can be used as a simple, and reliable method for the treatment of real wastewater from textile industries. It is used as a potentially viable and inexpensive tool for the treatment of textile dyes. Analysis of the electrochemically generated sludge by X-ray Diffraction, Scanning Electron Microscope, and Fourier Transform Infrared Spectroscopy revealed the expected crystalline aluminum oxides (bayerite (Al(OH)3 diaspore (AlO(OH)) found in the sludge. The amorphous phase was also found in the floc. Textile industry owners should be aware of the impact of the discharge of effluents on the Ecosystem and should use the investigated electrocoagulation method for effluent treatment before discharging into the environment.

Keywords: electrocoagulation, aluminum electrodes, Basic Blue 3, Basic Red 46, Reactive Red 120, textile industry, wastewater

Procedia PDF Downloads 35
4549 On Paranorm Zweier I-Convergent Sequence Spaces

Authors: Nazneen Khan, Vakeel A. Khan

Abstract:

In this article we introduce the Paranorm Zweier I-convergent sequence spaces, for a sequence of positive real numbers. We study some topological properties, prove the decomposition theorem and study some inclusion relations on these spaces.

Keywords: ideal, filter, I-convergence, I-nullity, paranorm

Procedia PDF Downloads 468
4548 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models

Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park

Abstract:

Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.

Keywords: display-control layout design, interactive layout design system, mental model, train drivers

Procedia PDF Downloads 290
4547 A Particle Image Velocimetric (PIV) Experiment on Simplified Bottom Hole Flow Field

Authors: Heqian Zhao, Huaizhong Shi, Zhongwei Huang, Zhengliang Chen, Ziang Gu, Fei Gao

Abstract:

Hydraulics mechanics is significantly important in the drilling process of oil or gas exploration, especially for the drill bit. The fluid flows through the nozzles on the bit and generates a water jet to remove the cutting at the bottom hole. In this paper, a simplified bottom hole model is established. The Particle Image Velocimetric (PIV) is used to capture the flow field of the single nozzle. Due to the limitation of the bottom and wellbore, the potential core is shorter than that of the free water jet. The velocity magnitude rapidly attenuates when fluid close to the bottom is lower than about 5 mm. Besides, a vortex zone appears near the middle of the bottom beside the water jet zone. A modified exponential function can be used to fit the centerline velocity well. On the one hand, the results of this paper can provide verification for the numerical simulation of the bottom hole flow field. On the other hand, it also can provide an experimental basis for the hydraulic design of the drill bit.

Keywords: oil and gas, hydraulic mechanic of drilling, PIV, bottom hole

Procedia PDF Downloads 199
4546 Performance and Lifetime of Tandem Organic Solar Cells

Authors: Guillaume Schuchardt, Solenn Berson, Gerard Perrier

Abstract:

Multi-junction solar cell configurations, where two sub-cells with complementary absorption are stacked and connected in series, offer an exciting approach to tackle the single junction limitations of organic solar cells and improve their power conversion efficiency. However, the augmentation of the number of layers has, as a consequence, to increase the risk of reducing the lifetime of the cell due to the ageing phenomena present at the interfaces. In this work, we study the intrinsic degradation mechanisms, under continuous illumination AM1.5G, inert atmosphere and room temperature, in single and tandem organic solar cells using Impedance Spectroscopy, IV Curves, External Quantum Efficiency, Steady-State Photocarrier Grating, Scanning Kelvin Probe and UV-Visible light.

Keywords: single and tandem organic solar cells, intrinsic degradation mechanisms, characterization: SKP, EQE, SSPG, UV-Visible, Impedance Spectroscopy, optical simulation

Procedia PDF Downloads 350
4545 Development of a Three-Dimensional-Flywheel Robotic System

Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu

Abstract:

In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.

Keywords: gyro, gimbal, lagrange equation, spherical robots

Procedia PDF Downloads 297
4544 FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation

Authors: Abbas Moradi, Mohsen Safajoy, Reza Yazdanparast

Abstract:

Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods.

Keywords: computational contact mechanics, dovetail joints, nonlinear FEM, mortar approach

Procedia PDF Downloads 334
4543 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam

Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar

Abstract:

Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.

Keywords: FPZ, fracture, FRP, shear

Procedia PDF Downloads 524
4542 Adjustable Counter-Weight for Full Turn Rotary Systems

Authors: G. Karakaya, C. Türker, M. Anaklı

Abstract:

It is necessary to test to see if optical devices such as camera, night vision devices are working properly. Therefore, a precision biaxial rotary system (gimbal) is required for mounting Unit Under Test, UUT. The Gimbal systems can be utilized for precise positioning of the UUT; hence, optical test can be performed with high accuracy. The weight of UUT, which is placed outside the axis of rotation, causes an off-axis moment to the mounting armature. The off-axis moment can act against the direction of movement for some orientation, thus the electrical motor, which rotates the gimbal axis, has to apply higher level of torque to guide and stabilize the system. Moreover, UUT and its mounting fixture to the gimbal can be changed, which causes change in applied resistance moment to the gimbals electrical motor. In this study, a preloaded spring is added to the gimbal system for minimizing applied off axis moment with the help of four bar mechanism. Two different possible methods for preloading spring are introduced and system optimization is performed to eliminate all moment which is created by off axis weight.

Keywords: adaptive, balancing, gimbal, mechanics, spring

Procedia PDF Downloads 106
4541 The Influence of Environmental Factors on Honey Bee Activities: A Quantitative Analysis

Authors: Hung-Jen Lin, Chien-Hao Wang, Chien-Peng Huang, Yu-Sheng Tseng, En-Cheng Yang, Joe-Air Jiang

Abstract:

Bees’ incoming and outgoing behavior is a decisive index which can indicate the health condition of a colony. Traditional methods for monitoring the behavior of honey bees (Apis mellifera) take too much time and are highly labor-intensive, and the lack of automation and synchronization disables researchers and beekeepers from obtaining real-time information of beehives. To solve these problems, this study proposes to use an Internet of Things (IoT)-based system for counting honey bees’ incoming and outgoing activities using an infrared interruption technique, while environmental factors are recorded simultaneously. The accuracy of the established system is verified by comparing the counting results with the outcomes of manual counting. Moreover, this highly -accurate device is appropriate for providing quantitative information regarding honey bees’ incoming and outgoing behavior. Different statistical analysis methods, including one-way ANOVA and two-way ANOVA, are used to investigate the influence of environmental factors, such as temperature, humidity, illumination and ambient pressure, on bees’ incoming and outgoing behavior. With the real-time data, a standard model is established using the outcomes from analyzing the relationship between environmental factors and bees’ incoming and outgoing behavior. In the future, smart control systems, such as a temperature control system, can also be combined with the proposed system to create an appropriate colony environment. It is expected that the proposed system will make a considerable contribution to the apiculture and researchers.

Keywords: ANOVA, environmental factors, honey bee, incoming and outgoing behavior

Procedia PDF Downloads 356
4540 First Principal Calculation of Structural, Elastic and Thermodynamic Properties of Yttrium-Copper Intermetallic Compound

Authors: Ammar Benamrani

Abstract:

This work investigates the equation of state parameters, elastic constants, and several other physical properties of (B2-type) Yttrium-Copper (YCu) rare earth intermetallic compound using the projected augmented wave (PAW) pseudopotentials method as implemented in the Quantum Espresso code. Using both the local density approximation (LDA) and the generalized gradient approximation (GGA), the finding of this research on the lattice parameter of YCu intermetallic compound agree very well with the experimental ones. The obtained results of the elastic constants and the Debye temperature are also in general in good agreement compared to the theoretical ones reported previously in literature. Furthermore, several thermodynamic properties of YCu intermetallic compound have been studied using quasi-harmonic approximations (QHA). The calculated data on the thermodynamic properties shows that the free energy and both isothermal and adiabatic bulk moduli decrease gradually with increasing of the temperature, while all other thermodynamic quantities increase with the temperature.

Keywords: Yttrium-Copper intermetallic compound, thermo_pw package, elastic constants, thermodynamic properties

Procedia PDF Downloads 137
4539 Creativity in the Dark: A Qualitative Study of Cult’s Members Battle between True and False Self in Heterotopia

Authors: Shirly Bar-Lev, Michal Morag

Abstract:

Cults are usually thought of as suppressive organizations, where creativity is systematically stifled. Except for few scholars, creativity in cults remains an uncharted terrain (Boeri and Pressley, 2010). This paperfocuses on how cult members sought real and imaginary spaces to express themselves and even used their bodies as canvases on which to assert their individuality, resistance, devotion, pain, and anguish. We contend that cult members’ creativity paves their way out of the cult. This paper is part of a larger study into the experiences of former members of cults and cult-like NewReligiousMmovements (NRM). The research is based on in-depth interviews conducted with thirtyIsraeli men and women, aged 24 to 50, who either joined an NRM or were born into one. Their stories reveal that creativity is both emplaced and embedded in power relations. That is why Foucault’s idea of Heterotopia and Winnicott’s idea of the battle between True and False self canbenefit our understanding of how cult members creatively assert their autonomy over their bodies and thoughts while in the cult. Cults’ operate on a complex tension between submission and autonomy. On the one hand, they act as heterotopias byallowing for a ‘simultaneousmythic and real contestation of the space in which we live. Ascounter-hegemonic sites, they serve as‘the greatest reserve of theimagination’, to use Foucault’s words. Cults definitely possesselements of mystery, danger, and transgression where an alternative social ordering can emerge. On the other hand, cults are set up to format alternative identities. Often, the individuals who inhibit these spaces look for spiritual growth, self-reflection, and self-actualization. They might willingly relinquish autonomy over vast aspects of their lives in pursuit of self-improvement. In any case, cultsclaim the totality of their members’ identities and absolute commitment and compliance with the cult’s regimes. It, therefore, begs the question how the paradox between autonomy and submissioncan spur instances of creativity. How can cult members escape processes of performative regulation to assert their creative self? Both Foucault and Winnicott recognize the possibility of an authentic self – one that is spontaneous and creative. Both recognize that only the true self can feel real andmust never comply. Both note the disciplinary regimes that push the true self into hiding, as well as the social and psychological mechanisms that individuals develop to protect their true self. But while Foucault spoke of the power of critic as a way of salvaging the true self, Winnicott spoke of recognition and empathy - feeling known by others. Invitinga dialogue between the two theorists can yield a productive discussion on how cult members assert their ‘true self’ to cultivate a creative self within the confines of the cult.

Keywords: cults, creativity, heterotopia, true and false self

Procedia PDF Downloads 73
4538 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 219
4537 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education

Procedia PDF Downloads 107
4536 Comparison of Phynotypic Traits of Three Arabian Horse Strains

Authors: Saria Almarzook, Monika Reissmann, Gudrun Brockmann

Abstract:

Due to its history, occurrence in different ecosystems and diverse using, the modern horse (Equus caballus) shows large variability in size, appearance, behavior and habits. At all times, breeders try to create groups (breeds, strains) representing high homology but showing clear differences in comparison to other groups. A great interest of analyzing phenotypic and genetic traits looking for real diversity and genetic uniqueness existents for Arabian horses in Syria. 90 Arabian horses from governmental research center of Arabian horses in Damascus were included. The horses represent three strains (Kahlawi, Saklawi, Hamdani) originated from different geographical zones. They were raised on the same farm, under stable conditions. Twelve phenotypic traits were measured: wither height (WH), croup width (CW), croup height (CH), neck girth (NG), thorax girth (TG), chest girth (ChG), chest depth (ChD), chest width (ChW), back line length (BLL), body length (BL), fore cannon length (FCL) and hind cannon length (HCL). The horses were divided into groups according to age (less than 2 years, 2-4 years, 4-9 years, over 9 years) and to sex (male, female). The statistical analyzes show that age has significant influence of WH while the strain has only a very limited effect. On CW, NG, BLL, FCL and HCL, there is only a significant influence of sex. Age has significant effect on CH and BL. All sources of classes have a significant effect on TG, ChG, ChD and ChW. Strain has a significant effect on the BL. These results provide first information for real biodiversity in and between the strains and can be used to develop the breeding work in the Arabian horse breed.

Keywords: Arabian horse, phenotypic traits, strains, Syria

Procedia PDF Downloads 378
4535 Applying Kinect on the Development of a Customized 3D Mannequin

Authors: Shih-Wen Hsiao, Rong-Qi Chen

Abstract:

In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.

Keywords: 3D mannequin, kinect scanner, interactive closest point, shape morphing, subdivision

Procedia PDF Downloads 295