Search results for: data analyses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27371

Search results for: data analyses

25991 Use of In-line Data Analytics and Empirical Model for Early Fault Detection

Authors: Hyun-Woo Cho

Abstract:

Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: batch process, monitoring, measurement, kernel method

Procedia PDF Downloads 323
25990 The Impact of the General Data Protection Regulation on Human Resources Management in Schools

Authors: Alexandra Aslanidou

Abstract:

The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.

Keywords: general data protection regulation, human resource management, educational system

Procedia PDF Downloads 100
25989 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia PDF Downloads 157
25988 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment

Authors: P. Venu, Joeju M. Issac

Abstract:

Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.

Keywords: hybrid data handler, QFD, prioritization, module-based deployment

Procedia PDF Downloads 297
25987 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 9
25986 Fuzzy Decision Making to the Construction Project Management: Glass Facade Selection

Authors: Katarina Rogulj, Ivana Racetin, Jelena Kilic

Abstract:

In this study, the fuzzy logic approach (FLA) was developed for construction project management (CPM) under uncertainty and duality. The focus was on decision making in selecting the type of the glass facade for a residential-commercial building in the main design. The adoption of fuzzy sets was capable of reflecting construction managers’ reliability level over subjective judgments, and thus the robustness of the system can be achieved. An α-cuts method was utilized for discretizing the fuzzy sets in FLA. This method can communicate all uncertain information in the optimization process, taking into account the values of this information. Furthermore, FLA provides in-depth analyses of diverse policy scenarios that are related to various levels of economic aspects when it comes to the construction projects' valid decision making. The developed approach is applied to CPM to demonstrate its applicability. Analyzing the materials of glass facades, variants were defined. The development of the FLA for the CPM included relevant construction projec'ts stakeholders that were involved in the criteria definition to evaluate each variant. Using fuzzy Decision-Making Trial and Evaluation Laboratory Method (DEMATEL) comparison of the glass facade was conducted. This way, a rank, according to the priorities for inclusion into the main design, of variants is obtained. The concept was tested on a residential-commercial building in the city of Rijeka, Croatia. The newly developed methodology was then compared with the existing one. The aim of the research was to define an approach that will improve current judgments and decisions when it comes to the material selection of buildings facade as one of the most important architectural and engineering tasks in the main design. The advantage of the new methodology compared to the old one is that it includes the subjective side of the managers’ decisions, as an inevitable factor in each decision making. The proposed approach can help construction projects managers to identify the desired type of glass facade according to their preference and practical conditions, as well as facilitate in-depth analyses of tradeoffs between economic efficiency and architectural design.

Keywords: construction projects management, DEMATEL, fuzzy logic approach, glass façade selection

Procedia PDF Downloads 137
25985 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: classification, data mining, evaluation measures, groundwater

Procedia PDF Downloads 280
25984 Hydrodynamic and Sediment Transport Analysis of Computational Fluid Dynamics Designed Flow Regulating Liner (Smart Ditch)

Authors: Saman Mostafazadeh-Fard, Zohrab Samani, Kenneth Suazo

Abstract:

Agricultural ditch liners are used to prevent soil erosion and reduce seepage losses. This paper introduced an approach to validate a computational fluid dynamics (CFD) platform FLOW-3D code and its use to design a flow-regulating corrugated agricultural ditch liner system (Smart Ditch (SM)). Hydrodynamic and sediment transport analyses were performed on the proposed liner flow using the CFD platform FLOW-3D code. The code's hydrodynamic and scour and sediment transport models were calibrated and validated using lab data with an accuracy of 94 % and 95%, respectively. The code was then used to measure hydrodynamic parameters of sublayer turbulent intensity, kinetic energy, dissipation, and packed sediment mass normalized with respect to sublayer flow velocity. Sublayer turbulent intensity, kinetic energy, and dissipation in the SM flow were significantly higher than CR flow. An alternative corrugated liner was also designed, and sediment transport was measured and compared to SM and CR flows. Normalized packed sediment mass with respect to average sublayer flow velocity was 27.8 % lower in alternative flow compared to SM flow. CFD platform FLOW-3D code could effectively be used to design corrugated ditch liner systems and perform hydrodynamic and sediment transport analysis under various corrugation designs.

Keywords: CFD, hydrodynamic, sediment transport, ditch, liner design

Procedia PDF Downloads 122
25983 Application of Knowledge Discovery in Database Techniques in Cost Overruns of Construction Projects

Authors: Mai Ghazal, Ahmed Hammad

Abstract:

Cost overruns in construction projects are considered as worldwide challenges since the cost performance is one of the main measures of success along with schedule performance. To overcome this problem, studies were conducted to investigate the cost overruns' factors, also projects' historical data were analyzed to extract new and useful knowledge from it. This research is studying and analyzing the effect of some factors causing cost overruns using the historical data from completed construction projects. Then, using these factors to estimate the probability of cost overrun occurrence and predict its percentage for future projects. First, an intensive literature review was done to study all the factors that cause cost overrun in construction projects, then another review was done for previous researcher papers about mining process in dealing with cost overruns. Second, a proposed data warehouse was structured which can be used by organizations to store their future data in a well-organized way so it can be easily analyzed later. Third twelve quantitative factors which their data are frequently available at construction projects were selected to be the analyzed factors and suggested predictors for the proposed model.

Keywords: construction management, construction projects, cost overrun, cost performance, data mining, data warehousing, knowledge discovery, knowledge management

Procedia PDF Downloads 370
25982 Sampling Error and Its Implication for Capture Fisheries Management in Ghana

Authors: Temiloluwa J. Akinyemi, Denis W. Aheto, Wisdom Akpalu

Abstract:

Capture fisheries in developing countries provide significant animal protein and directly supports the livelihoods of several communities. However, the misperception of biophysical dynamics owing to a lack of adequate scientific data has contributed to the suboptimal management in marine capture fisheries. This is because yield and catch potentials are sensitive to the quality of catch and effort data. Yet, studies on fisheries data collection practices in developing countries are hard to find. This study investigates the data collection methods utilized by fisheries technical officers within the four fishing regions of Ghana. We found that the officers employed data collection and sampling procedures which were not consistent with the technical guidelines curated by FAO. For example, 50 instead of 166 landing sites were sampled, while 290 instead of 372 canoes were sampled. We argue that such sampling errors could result in the over-capitalization of capture fish stocks and significant losses in resource rents.

Keywords: Fisheries data quality, fisheries management, Ghana, Sustainable Fisheries

Procedia PDF Downloads 92
25981 Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads

Authors: Younghoo Choi, Yong Jun, Jinkoo Kim

Abstract:

In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories.

Keywords: staggered wall systems, reinforced concrete, seismic performance

Procedia PDF Downloads 392
25980 Improvement of Data Transfer over Simple Object Access Protocol (SOAP)

Authors: Khaled Ahmed Kadouh, Kamal Ali Albashiri

Abstract:

This paper presents a designed algorithm involves improvement of transferring data over Simple Object Access Protocol (SOAP). The aim of this work is to establish whether using SOAP in exchanging XML messages has any added advantages or not. The results showed that XML messages without SOAP take longer time and consume more memory, especially with binary data.

Keywords: JAX-WS, SMTP, SOAP, web service, XML

Procedia PDF Downloads 495
25979 Design, Synthesis and Anti-Inflammatory Activity of Some Coumarin and Flavone Derivatives Containing 1,4 Dioxane Ring System

Authors: Asif Husain, Shah Alam Khan

Abstract:

Coumarins and flavones are oxygen containing heterocyclic compounds which are present in various biologically active compounds. Both the heterocyclic rings are associated with diverse biological actions, therefore considered as an important scaffold for the design of molecules of pharmaceutical interest. Aim: To synthesize and evaluate the in vivo anti-inflammatory activity of few coumrain and flavone derivatives containing 1,4 dioxane ring system. Materials and methods: Coumarin derivatives (3a-d) were synthesized by reacting 7,8 dihydroxy coumarin (2a) and its 4-methyl derivative (2b) with epichlorohydrin/ethylene dibromide. The flavone derivatives (10a-d) were prepared by using quercetin and 3,4 dihydroxy flavones. Compounds of both the series were also evaluated for their anti-inflammatory, analgesic activity and ulcerogenicity in animal models by reported methods. Results and Discussion: The structures of all newly synthesized compounds were confirmed with the help of IR, 1H NMR, 13C NMR and Mass spectral studies. Elemental analyses data for each element analyzed (C, H, N) was found to be within acceptable range of ±0.4 %. Flavone derivatives, but in particular quercetin containing 1,4 dioxane ring system (10d) showed better anti-inflammatory and analgesic activity along with reduced gastrointestinal toxicity as compared to other synthesized compounds. The results of anti-inflammatory and analgesic activities of both the series are comparable with the positive control, diclofenac. Conclusion: Compound 10d, a quercetin derivative, emerged as a lead molecule which exhibited potent anti-inflammatory and analgesic activity with significant reduced gastric toxicity.

Keywords: analgesic, anti-inflammatory, 1, 4 dioxane, coumarin, flavone

Procedia PDF Downloads 327
25978 Enhancing Healthcare Data Protection and Security

Authors: Joseph Udofia, Isaac Olufadewa

Abstract:

Everyday, the size of Electronic Health Records data keeps increasing as new patients visit health practitioner and returning patients fulfil their appointments. As these data grow, so is their susceptibility to cyber-attacks from criminals waiting to exploit this data. In the US, the damages for cyberattacks were estimated at $8 billion (2018), $11.5 billion (2019) and $20 billion (2021). These attacks usually involve the exposure of PII. Health data is considered PII, and its exposure carry significant impact. To this end, an enhancement of Health Policy and Standards in relation to data security, especially among patients and their clinical providers, is critical to ensure ethical practices, confidentiality, and trust in the healthcare system. As Clinical accelerators and applications that contain user data are used, it is expedient to have a review and revamp of policies like the Payment Card Industry Data Security Standard (PCI DSS), the Health Insurance Portability and Accountability Act (HIPAA), the Fast Healthcare Interoperability Resources (FHIR), all aimed to ensure data protection and security in healthcare. FHIR caters for healthcare data interoperability, FHIR caters to healthcare data interoperability, as data is being shared across different systems from customers to health insurance and care providers. The astronomical cost of implementation has deterred players in the space from ensuring compliance, leading to susceptibility to data exfiltration and data loss on the security accuracy of protected health information (PHI). Though HIPAA hones in on the security accuracy of protected health information (PHI) and PCI DSS on the security of payment card data, they intersect with the shared goal of protecting sensitive information in line with industry standards. With advancements in tech and the emergence of new technology, it is necessary to revamp these policies to address the complexity and ambiguity, cost barrier, and ever-increasing threats in cyberspace. Healthcare data in the wrong hands is a recipe for disaster, and we must enhance its protection and security to protect the mental health of the current and future generations.

Keywords: cloud security, healthcare, cybersecurity, policy and standard

Procedia PDF Downloads 90
25977 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing

Procedia PDF Downloads 296
25976 The Impact of Language Anxiety on EFL Learners' Proficiency: Case Study of University of Jeddah

Authors: Saleh Mohammad Alqahtani

Abstract:

Foreign language Anxiety has been found to be a key issue in learning English as foreign language in the classroom. This study investigated the impact of foreign language anxiety on Saudi EFL learners' proficiency in the classroom. A total of 197 respondents had participated in the study, comprising of 96 male and 101 female, who enrolled in preparatory year, first year, second year, and fourth year of English language department at the University of Jeddah. Two instruments were used to answer the study questions. The Foreign Language Classroom Anxiety Scale (FLCAS) was used to identify the levels of foreign language (FL) anxiety for Saudi learners. Moreover, an International English Language Testing System (IELTS) test was used as an objective measure of the learners’ English language proficiency. The data were analyzed using descriptive analyses, t-test, one-way ANOVA, correlation, and regression analysis. The findings revealed that Saudi EFL learners' experience a level of anxiety in the classroom, and there is a significant differences between the course levels in their level of language anxiety. Moreover, it is also found that female students are less anxious in learning English as a foreign language than male students. The results show that foreign language anxiety and English proficiency are negatively related to each other. Furthermore, the study revealed that there were significant differences between Saudi learners in language use anxiety, while there were no significant differences in language class anxiety. The study suggested that teachers should employ a diversity of designed techniques to encourage the environment of the classroom in order to control learners’ FLA, which in turns will improve their EFL proficiency.

Keywords: foreign language anxiety, FLA, language use anxiety, language class anxiety, gender, L2 proficiency

Procedia PDF Downloads 260
25975 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey

Authors: D. I. George Amalarethinam, A. Emima

Abstract:

Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.

Keywords: classification technique, data mining, EDM methods, prediction methods

Procedia PDF Downloads 117
25974 Lipidomic Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Salvador Sanchez Vinces, Caroline F. A. Gatinoni, Vitor P. Iordanu, Carlos A. R. Martinez

Abstract:

Lipidomics methods are widely used in the identification and validation of disease-specific biomarkers and therapy response evaluation. The present study aimed to identify a panel of potential lipid biomarkers to evaluate response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma (RAC). Liquid chromatography–mass spectrometry (LC-MS)-based untargeted lipidomic was used to profile human serum samples from patients with clinical stage T2 or T3 resectable RAC, after and before chemoradiotherapy treatment. A total of 28 blood plasma samples were collected from 14 patients with RAC who recruited at the São Francisco University Hospital (HUSF/USF). The study was approved by the ethics committee (CAAE 14958819.8.0000.5514). Univariate and multivariate statistical analyses were applied to explore dysregulated metabolic pathways using untargeted lipidic profiling and data mining approaches. A total of 36 statistically significant altered lipids were identified and the subsequent partial least-squares discriminant analysis model was both cross validated (R2, Q2) and permutated. Lisophosphatidyl-choline (LPC) plasmalogens containing palmitoleic and oleic acids, with high variable importance in projection score, showed a tendency to be lower after completion of chemoradiotherapy. Chemoradiotherapy seems to change plasmanyl-phospholipids levels, indicating that these lipids play an important role in the RAC pathogenesis.

Keywords: lipidomics, neoadjuvant chemoradiotherapy, plasmalogens, rectal adenocarcinoma

Procedia PDF Downloads 131
25973 Design of Distribution Network for Gas Cylinders in Jordan

Authors: Hazem J. Smadi

Abstract:

Performance of a supply chain is directly related to a distribution network that entails the location of storing materials or products and how products are delivered to the end customer through different stages in the supply chain. This study analyses the current distribution network used for delivering gas cylinders to end customer in Jordan. Evaluation of current distribution has been conducted across customer service components. A modification on the current distribution network in terms of central warehousing in each city in the country improves the response time and customer experience. 

Keywords: distribution network, gas cylinder, Jordan, supply chain

Procedia PDF Downloads 459
25972 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology

Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar

Abstract:

Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.

Keywords: data privacy, distributed system, federated learning, machine learning

Procedia PDF Downloads 133
25971 A Political-Economic Analysis of Next Generation EU Recovery Fund

Authors: Fernando Martín-Espejo, Christophe Crombez

Abstract:

This paper presents a political-economic analysis of the reforms introduced during the coronavirus crisis at the EU level with a special emphasis on the recovery fund Next Generation EU (NGEU). It also introduces a spatial model to evaluate whether the governmental features of the recovery fund can be framed inside the community method. Particularly, by evaluating the brake clause in the NGEU legislation, this paper analyses theoretically the political and legislative implications of the introduction of flexibility clauses in the EU decision-making process.

Keywords: EU, legislative procedures, spatial model, coronavirus

Procedia PDF Downloads 177
25970 A Concept of Data Mining with XML Document

Authors: Akshay Agrawal, Anand K. Srivastava

Abstract:

The increasing amount of XML datasets available to casual users increases the necessity of investigating techniques to extract knowledge from these data. Data mining is widely applied in the database research area in order to extract frequent correlations of values from both structured and semi-structured datasets. The increasing availability of heterogeneous XML sources has raised a number of issues concerning how to represent and manage these semi structured data. In recent years due to the importance of managing these resources and extracting knowledge from them, lots of methods have been proposed in order to represent and cluster them in different ways.

Keywords: XML, similarity measure, clustering, cluster quality, semantic clustering

Procedia PDF Downloads 381
25969 Modelling Asymmetric Magnetic Recording Heads with an Underlayer Using Superposition

Authors: Ammar Edress Mohamed, Mustafa Aziz, David Wright

Abstract:

This paper analyses and calculates the head fields of asymmetrical 2D magnetic recording heads when the soft-underlayer is present using the appropriate Green's function to derive the surface potential/field by utilising the surface potential for asymmetrical head without underlayer. The results follow closely the corners, while the gap region shows a linear behaviour for d/g < 0.5 compared with the calculated fields from finite-element.

Keywords: magnetic recording, finite elements, asymmetrical magnetic heads, superposition, Laplace's equation

Procedia PDF Downloads 391
25968 Speed-Up Data Transmission by Using Bluetooth Module on Gas Sensor Node of Arduino Board

Authors: Hiesik Kim, YongBeum Kim

Abstract:

Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to speed up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group(SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as Open source hardware, Gas sensor, and Bluetooth Module and algorithm controlling transmission speed is demonstrated. Experiment controlling transmission speed also is progressed by developing Android Application receiving measured data, and controlling this speed is available at the experiment result. it is important that in the future, improvement for communication algorithm be needed because few error occurs when data is transferred or received.

Keywords: Arduino, Bluetooth, gas sensor, internet of things, transmission Speed

Procedia PDF Downloads 483
25967 Evaluating the Total Costs of a Ransomware-Resilient Architecture for Healthcare Systems

Authors: Sreejith Gopinath, Aspen Olmsted

Abstract:

This paper is based on our previous work that proposed a risk-transference-based architecture for healthcare systems to store sensitive data outside the system boundary, rendering the system unattractive to would-be bad actors. This architecture also allows a compromised system to be abandoned and a new system instance spun up in place to ensure business continuity without paying a ransom or engaging with a bad actor. This paper delves into the details of various attacks we simulated against the prototype system. In the paper, we discuss at length the time and computational costs associated with storing and retrieving data in the prototype system, abandoning a compromised system, and setting up a new instance with existing data. Lastly, we simulate some analytical workloads over the data stored in our specialized data storage system and discuss the time and computational costs associated with running analytics over data in a specialized storage system outside the system boundary. In summary, this paper discusses the total costs of data storage, access, and analytics incurred with the proposed architecture.

Keywords: cybersecurity, healthcare, ransomware, resilience, risk transference

Procedia PDF Downloads 132
25966 Rate, Indication and Outcome of Operative Vaginal Delivery at Mayo University Hospital 2022

Authors: Mohammed Mustafa, Fatima Abusin, Mariam Abufatema

Abstract:

Objective: This audit aims to evaluate the practices and outcomes of operative vaginal deliveries (OPVD) at Mayo University Hospital, focusing on identifying trends, complications, and adherence to clinical guidelines. Methods: A retrospective review was conducted on all cases of operative vaginal deliveries at Mayo University Hospital over one year. Data was collected from patient records, including demographics, OPVD indications, types of instruments used (forceps or vacuum), maternal and neonatal outcomes, and any associated complications. Statistical analyses were performed to assess the rates of successful and unsuccessful OPVDs and identify factors influencing outcomes. Results: The study included 159 [out of 174 total OPVD in 1 year] cases of operative vaginal deliveries. The indications predominantly consisted of the prolonged second stage of labor, fetal distress and suspicious CTG. The success rate of OVD was [97.5%]; maternal perineal tears [10 cases], hemorrhage[43 cases] and neonatal outcomes needed for SCBU admission[12 cases] were also assessed. Conclusion: This audit provides insights into the current practices and outcomes of operative vaginal deliveries at Mayo University Hospital. The findings underline the importance of adherence to clinical guidelines and highlight areas for potential improvement in practice

Keywords: OPVD operative vaginal delivery, GTG green top guidelines, PPH postpartum hemorrhage, SCBU special care baby unit

Procedia PDF Downloads 6
25965 Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping

Authors: Ismayanti Magfirah, Sartohadi Junun, Samodra Guruh

Abstract:

Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.

Keywords: change detection method, landslide inventory mapping, Sentinel-1A, Sentinel-2A

Procedia PDF Downloads 171
25964 A DEA Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most DEA models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp DEA into DEA with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the DEA model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units’ efficiency. Finally, the developed DEA model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, DEA, fuzzy, decision making units, higher education institutions

Procedia PDF Downloads 52
25963 Effects of Macroprudential Policies on BankLending and Risks

Authors: Stefanie Behncke

Abstract:

This paper analyses the effects of different macroprudential policy measures that have recently been implemented in Switzerland. Among them is the activation and the increase of the countercyclical capital buffer (CCB) and a tightening of loan-to-value (LTV) requirements. These measures were introduced to limit systemic risks in the Swiss mortgage and real estate markets. They were meant to affect mortgage growth, mortgage risks, and banks’ capital buffers. Evaluation of their quantitative effects provides insights for Swiss policymakers when reassessing their policy. It is also informative for policymakers in other countries who plan to introduce macroprudential instruments. We estimate the effects of the different macroprudential measures with a Differences-in-Differences estimator. Banks differ with respect to the relative importance of mortgages in their portfolio, their riskiness, and their capital buffers. Thus, some of the banks were more affected than others by the CCB, while others were more affected by the LTV requirements. Our analysis is made possible by an unusually informative bank panel data set. It combines data on newly issued mortgage loans and quantitative risk indicators such as LTV and loan-to-income (LTI) ratios with supervisory information on banks’ capital and liquidity situation and balance sheets. Our results suggest that the LTV cap of 90% was most effective. The proportion of new mortgages with a high LTV ratio was significantly reduced. This result does not only apply to the 90% LTV, but also to other threshold values (e.g. 80%, 75%) suggesting that the entire upper part of the LTV distribution was affected. Other outcomes such as the LTI distribution, the growth rates of mortgages and other credits, however, were not significantly affected. Regarding the activation and the increase of the CCB, we do not find any significant effects: neither LTV/LTI risk parameters nor mortgage and other credit growth rates were significantly reduced. This result may reflect that the size of the CCB (1% of relevant residential real estate risk-weighted assets at activation, respectively 2% at the increase) was not sufficiently high enough to trigger a distinct reaction between the banks most likely to be affected by the CCB and those serving as controls. Still, it might be have been effective in increasing the resilience in the overall banking system. From a policy perspective, these results suggest that targeted macroprudential policy measures can contribute to financial stability. In line with findings by others, caps on LTV reduced risk taking in Switzerland. To fully assess the effectiveness of the CCB, further experience is needed.

Keywords: banks, financial stability, macroprudential policy, mortgages

Procedia PDF Downloads 362
25962 Revealing the Manufacturing Techniques of the Leather Scale Armour of Tutankhamun by the Assist of Conservation Procedures

Authors: Safwat Mohamed, Rasha Metawi, Hadeel Khalil, Hussein Kamal

Abstract:

This paper discusses and reveals the manufacturing techniques of the leather scale armour of Tutankhamun. This armour was in critical condition and went under many conservation procedures as it suffered from some serious deterioration aspects including fragmentation. In addition, its original shape was lost, the leather scales were found scattered in the box and separated from the linen basis, and hence its outlines were blurred and incomprehensible. In view of this, the leather scale armour of Tutankhamun was desperate for urgent conservation and reconstruction interventions. Documentation measures were done before conservation. Several re-treatable conservation procedures were applied seeking for stabilizing the armour and reaching sustainable condition. The conservation treatments included many investigations and analyses that helped in revealing materials and techniques of making the armour. The leather scale armour of Tutankhamun consisted of leather scales attached to a linen support. This linen support consisted of several layers. Howard Carter assumed that the linen support consisted of 6 layers. The undertaken conservation treatments helped in revealing the actual number of layers of the linen support as well as in reaching the most sustainable condition. This paper views the importance of the conservation procedures, which were recently carried out on Tutankhamun’s leather scale armour, in identifying and revealing all materials and techniques used in its manufacturing. The collected data about manufacturing techniques were used in making a replica of the leather scale armour with the same methods and materials.

Keywords: leather scales armours, conservation, manufacturing techniques, Tutankhamun, producing a replica

Procedia PDF Downloads 100