Search results for: seismic response feature
6035 Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane
Authors: Taehoon Kwon, Hyeongrae Cho, Dirk Henkensmeier, Youngjong Kang, Chong Min Koo
Abstract:
Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery.Keywords: actuation performance, composite membranes, ionic polymer actuators, organic filler
Procedia PDF Downloads 2786034 Transient Enhanced LDO Voltage Regulator with Improved Feed Forward Path Compensation
Authors: A. Suresh, Sreehari Rao Patri, K. S. R. Krishnaprasad
Abstract:
An ultra low power capacitor less low-dropout voltage regulator with improved transient response using gain enhanced feed forward path compensation is presented in this paper. It is based on a cascade of a voltage amplifier and a transconductor stage in the feed forward path with regular error amplifier to form a composite gain-enhanced feed forward stage. It broadens the gain bandwidth and thus improves the transient response without substantial increase in power consumption. The proposed LDO, designed for a maximum output current of 100 mA in UMC 180 nm, requires a quiescent current of 69 µA. An undershoot of 153.79mV for a load current changes from 0mA to 100mA and an overshoot of 196.24mV for current change of 100mA to 0mA. The settling time is approximately 1.1 µs for the output voltage undershoot case. The load regulation is of 2.77 µV/mA at load current of 100mA. Reference voltage is generated by using an accurate band gap reference circuit of 0.8V.The costly features of SOC such as total chip area and power consumption is drastically reduced by the use of only a total compensation capacitance of 6pF while consuming power consumption of 0.096 mW.Keywords: capacitor-less LDO, frequency compensation, transient response, latch, self-biased differential amplifier
Procedia PDF Downloads 4516033 The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete
Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri
Abstract:
The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.Keywords: self-compacting concrete, fiber, tensile strength, post-cracking, direct and inverse technique
Procedia PDF Downloads 2396032 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques
Authors: Ved Kulkarni, Karthik Kini
Abstract:
This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.Keywords: data mining, language processing, artificial neural networks, sentiment analysis
Procedia PDF Downloads 176031 Targeted Photodynamic Therapy for Intraperitoneal Ovarian Cancer, A Way to Stimulate Anti-Tumoral Immune Response
Authors: Lea Boidin, Martha Baydoun, Bertrand Leroux, Olivier Morales, Samir Acherar, Celine Frochot, Nadira Delhem
Abstract:
Ovarian cancer (OC) is one of the most defying diseases in gynecologic oncology. Even though surgery remains crucial in the therapy of patients with primary ovarian cancer, recurrent recidivism calls for the development of new therapy protocols to propose for patients dealing with this cancer. FRα is described as a tumor‐associated antigen in OC, where FRα expression is usually linked with more poorly differentiated, aggressive tumors. The Photodynamic treatment (PDT) available data have shown improvements in the uptake of small tumors and in the induction of a proper anti-tumoral immune response. In order to target specifically peritoneal metastatis, which overexpress FRα, a new-patented PS coupled with folic acid has been developed in our team. Herein we propose PDT using this new patented PS for PDT applied in an in vivo mice model. The efficacy of the treatment was evaluated in mice without and with PBMC reconstitution. Mice were divided into four groups: Non-Treated, PS, Light Only, and PDT Treated and subjected to illumination by laser set at 668nm with a duration of illumination of 45 minutes (or 1 min of illumination followed by 2 minutes of pause repeated 45 times). When mice were not reconstituted and after fractionized PDT protocol, a significant decrease in the tumor volume was noticed. An induction in the anti-tumoral cytokine IFNγ chaperoned this decrease while a subsequent inhibition in the cytokine TGFβ. Even more crucial, when mice were reconstituted and upon PDT, the fold of tumor decrease was even higher. An immune response was activated decoded with an increase in NK, CD3 +, LT helper and Cytotoxic T cells. Thereafter, an increase in the expression of the cytokines IFNγ and TNFα were noticed while an inhibition in TGFβ, IL8 and IL10 accompanied this immune response activation. Therefore, our work has shown for the first time that a fractionized PDT protocol using a folate-targeted PDT is effective for treatment of ovarian cancer. The interest in using PDT in this case, goes beyond the local induction of tumor apoptosis only, but can promote subsequent anti-tumor response. Most of the therapies currently used to treat ovarian cancer, have an uncooperative outcomes on the host immune response. The readiness of a tumor adjuvant treatment like PDT adequate in eliminating the tumor and in concert stimulating anti-tumor immunity would be weighty.Keywords: folate receptor, ovarian cancer, photodynamic therapy, humanized mice model
Procedia PDF Downloads 1106030 Robust Method for Evaluation of Catchment Response to Rainfall Variations Using Vegetation Indices and Surface Temperature
Authors: Revalin Herdianto
Abstract:
Recent climate changes increase uncertainties in vegetation conditions such as health and biomass globally and locally. The detection is, however, difficult due to the spatial and temporal scale of vegetation coverage. Due to unique vegetation response to its environmental conditions such as water availability, the interplay between vegetation dynamics and hydrologic conditions leave a signature in their feedback relationship. Vegetation indices (VI) depict vegetation biomass and photosynthetic capacity that indicate vegetation dynamics as a response to variables including hydrologic conditions and microclimate factors such as rainfall characteristics and land surface temperature (LST). It is hypothesized that the signature may be depicted by VI in its relationship with other variables. To study this signature, several catchments in Asia, Australia, and Indonesia were analysed to assess the variations in hydrologic characteristics with vegetation types. Methods used in this study includes geographic identification and pixel marking for studied catchments, analysing time series of VI and LST of the marked pixels, smoothing technique using Savitzky-Golay filter, which is effective for large area and extensive data. Time series of VI, LST, and rainfall from satellite and ground stations coupled with digital elevation models were analysed and presented. This study found that the hydrologic response of vegetation to rainfall variations may be shown in one hydrologic year, in which a drought event can be detected a year later as a suppressed growth. However, an annual rainfall of above average do not promote growth above average as shown by VI. This technique is found to be a robust and tractable approach for assessing catchment dynamics in changing climates.Keywords: vegetation indices, land surface temperature, vegetation dynamics, catchment
Procedia PDF Downloads 2876029 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1586028 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1886027 Electrochemical Response Transductions of Graphenated-Polyaniline Nanosensor for Environmental Anthracene
Authors: O. Tovide, N. Jahed, N. Mohammed, C. E. Sunday, H. R. Makelane, R. F. Ajayi, K. M. Molapo, A. Tsegaye, M. Masikini, S. Mailu, A. Baleg, T. Waryo, P. G. Baker, E. I. Iwuoha
Abstract:
A graphenated–polyaniline (GR-PANI) nanocomposite sensor was constructed and used for the determination of anthracene. The direct electro-oxidation behavior of anthracene on the GR-PANI modified glassy carbon electrode (GCE) was used as the sensing principle. The results indicate thatthe response profile of the oxidation of anthracene on GR-PANI-modified GCE provides for the construction of sensor systems based onamperometric and potentiometric signal transductions. A dynamic linear range of 0.12- 100 µM anthracene and a detection limit of 0.044 µM anthracene were established for the sensor system.Keywords: electrochemical sensors, environmental pollutants, graphenated-polymers, polyaromatic hydrocarbon
Procedia PDF Downloads 3566026 Protection from Risks of Natural Disasters and Social and Economic Support to the Native Population
Authors: Maria Angela Bedini, Fabio Bronzini
Abstract:
The risk of natural disasters affects all the countries of the world, whether it refers to seismic events or tsunamis or hydrogeological disasters. In most cases, the risk can be considered in its three components: hazard, exposure, vulnerability (and urban vulnerability). The aim of this paper is to evaluate how the Italian scientific community has related the contribution of these three components, superimposing the three different maps that summarize the fundamental structure of the risk. Based on the three components considered, the study applies the Regional Planning methodology on the three phases of the risk protection and mitigation process: the prevention phase, the emergency intervention phase, the post-disaster phase. The paper illustrates the Italian experience of the pre-during-post-earthquake intervention. Main results: The study deepens these aspects in the belief that “a historical center” and an “island” can present similar problems at the international level, both in the phase of prevention (earthquake, tsunamis, hydrogeological disasters), in emergency phase (protocols and procedures of intervention) and in the post-disaster phase. The conclusions of the research identify the need to plan in advance how to deal with the post-disaster phase and consider it a priority with respect to the simple reconstruction of destroyed buildings. In fact the main result of the post-disaster intervention must be the return and the social and economic support of the indigenous population, and not only the construction of new housing and equipment. In this sense, the results of the research show that the elderly inhabitants of a historic center can be compared to the indigenous population of an atoll of fishermen, as both constitute the most important resource: the human resource. Their return in conditions of security testifies, with their presence, the culture, customs, and values rooted in the history of a people.Keywords: post-disaster interventions, risk of natural disasters in Italy and abroad, seismic events in Italy, social and economic protection and support for the native population of historical centers
Procedia PDF Downloads 1016025 Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield
Authors: Wen Ma, Yong Peng, Zhixiang Li
Abstract:
Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application.Keywords: constitutive model, impact response, mechanism properties, PVB film, tempered glass
Procedia PDF Downloads 1466024 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4036023 Classroom Management Practices of Hotel, Restaurant, and Institution Management Instructors
Authors: Diana Ruth Caga-Anan
Abstract:
Classroom management is a critical skill but the styles are constantly evolving. It is constantly under pressure particularly in the college education level due to diversity in student profiles, modes of delivery, and marketization of higher education. This study sought to analyze the extent of implementation of classroom management practices (CMPs) of the college instructors of the Hotel, Restaurant, and Institution Management of a premier university in the Philippines. It was also determined if their length of teaching affects their classroom management style. A questionnaire with sixteen 'evidenced-based' CMPs grouped into five critical features of classroom management, adopted from the literature search of Simonsen et al. (2008), was administered to 4 instructor-respondents and to their 88 students. Weighted mean scores of each of the CMPs revealed that there were differences between the instructors’ self-scores and their students’ ratings on their implementation of CMPs. The critical feature of classroom management 'actively engage students in observable ways' got the highest mean score, corresponding to 'always' from the instructors’ self-rating and 'frequently' from their students’ ratings. However, 'use a continuum of strategies to respond to inappropriate behaviors' got the lowest scores from both the instructors and their students corresponding only to 'occasionally'. Analysis of variance showed that the only CMP affected by the length of teaching is the practice of 'prompting students to respond'. Based on the findings, some recommendations for the instructors to improve on the critical feature where they scored low are discussed and suggestions are included for future research.Keywords: classroom management, CMPs, critical features, evidence-based classroom management practices
Procedia PDF Downloads 1726022 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty
Authors: Mehdi Jalalpour, Mazdak Tootkaboni
Abstract:
We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization
Procedia PDF Downloads 6056021 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1256020 Longitudinal Profile of Antibody Response to SARS-CoV-2 in Patients with Covid-19 in a Setting from Sub–Saharan Africa: A Prospective Longitudinal Study
Authors: Teklay Gebrecherkos
Abstract:
Background: Serological testing for SARS-CoV-2 plays an important role in epidemiological studies, in aiding the diagnosis of COVID-19 and assess vaccine responses. Little is known about the dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. Methods: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune assays (LFIAs) and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. Results: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in the positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increase in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly from 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested within a median time of 11 (IQR: 9–15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6–11) vs. 15 (IQR: 13–21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibodies at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. Conclusions: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of serum assays before implementation. Factors associated with failure to seroconvert need further research.Keywords: COVID-19, antibody, rapid diagnostic tests, ethiopia
Procedia PDF Downloads 826019 Real-Time Classification of Hemodynamic Response by Functional Near-Infrared Spectroscopy Using an Adaptive Estimation of General Linear Model Coefficients
Authors: Sahar Jahani, Meryem Ayse Yucel, David Boas, Seyed Kamaledin Setarehdan
Abstract:
Near-infrared spectroscopy allows monitoring of oxy- and deoxy-hemoglobin concentration changes associated with hemodynamic response function (HRF). HRF is usually affected by natural physiological hemodynamic (systemic interferences) which occur in all body tissues including brain tissue. This makes HRF extraction a very challenging task. In this study, we used Kalman filter based on a general linear model (GLM) of brain activity to define the proportion of systemic interference in the brain hemodynamic. The performance of the proposed algorithm is evaluated in terms of the peak to peak error (Ep), mean square error (MSE), and Pearson’s correlation coefficient (R2) criteria between the estimated and the simulated hemodynamic responses. This technique also has the ability of real time estimation of single trial functional activations as it was applied to classify finger tapping versus resting state. The average real-time classification accuracy of 74% over 11 subjects demonstrates the feasibility of developing an effective functional near infrared spectroscopy for brain computer interface purposes (fNIRS-BCI).Keywords: hemodynamic response function, functional near-infrared spectroscopy, adaptive filter, Kalman filter
Procedia PDF Downloads 1666018 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach
Authors: Amine M. Benmehaia, Amine Oulmane
Abstract:
The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.Keywords: Algeria, cointegration, livestock, supply response, vector error correction model
Procedia PDF Downloads 1416017 Ribosomal Protein S4 Gene: Exploring the Presence in Syrian Strain of Leishmania Tropica Genome, Sequencing it and Evaluating Immune Response of pCI-S4 DNA Vaccine
Authors: Alyaa Abdlwahab
Abstract:
Cutaneous leishmaniasis represents a serious health problem in Syria; this problem has become noticeably aggravated after the civil war in the country. Leishmania tropica parasite is the main cause of cutaneous leishmaniasis in Syria. In order to control the disease, we need an effective vaccine against leishmania parasite. DNA vaccination remains one of the favorable approaches that have been used to face cutaneous leishmaniasis. Ribosomal protein S4 is responsible for important roles in Leishmania parasite life. DNA vaccine based on S4 gene has been used against infections by many species of Leishmania parasite but leishmania tropica parasite, so this gene represents a good candidate for DNA vaccine construction. After proving the existence of ribosomal protein S4 gene in a Syrian strain of Leishmania tropica (LCED Syrian 01), sequencing it and cloning it into pCI plasmid, BALB/C mice were inoculated with pCI-S4 DNA vaccine. The immune response was determined by monitoring the lesion progression in inoculated BALB/C mice for six weeks after challenging mice with Leishmania tropica (LCED Syrian 01) parasites. IL-12, IFN-γ, and IL-4 were quantified in draining lymph nodes (DLNa) of the immunized BALB/C mice by using the RT-qPCR technique. The parasite burden was calculated in the final week for the footpad lesion and the DLNs of the mice. This study proved the existence and the expression of the ribosomal protein S4 gene in Leishmania tropica (LCED Syrian 01) promastigotes. The sequence of ribosomal protein cDNA S4 gene was determined and published in Genbank; the gene size was 822 bp. Expression was also demonstrated at the level of cDNA. Also, this study revealed that pCI-S4 DNA vaccine induces TH1\TH2 response in immunized mice; this response prevents partially developing a dermal lesion of Leishmania.Keywords: ribosomal protein S4, DNA vaccine, Leishmania tropica, BALB\c
Procedia PDF Downloads 1366016 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study
Authors: Priya Kedia, Kiranmoy Das
Abstract:
There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution
Procedia PDF Downloads 1566015 Criminal Law Instruments to Counter Corporate Crimes in Poland
Authors: Dorota Habrat
Abstract:
In Polish law, the idea of the introduction of corporate responsibility for crimes is becoming more popular and creates a lot of questions. The need to introduce into the Polish legal system liability of corporate (collective entities) has resulted, among others, from the Polish Republic's international commitments, in particular related to membership in the European Union. The Act of 28 October 2002 on the liability of collective entities for acts prohibited under penalty is one of the example of adaptation of Polish law to Community law. Introduction to Polish law a criminal nature liability of corporations (legal persons) has resulted in a lot of controversy and lack of acceptance from both the scientific community as well as the judiciary. The responsibility of collective entities under the Act has a criminal nature. The main question concerns the ability of the collective entity to be brought to guilt under criminal law sense. Polish criminal law knows only the responsibility of individual persons. So far, guilt as a personal feature of action, based on the ability of the offender to feel in his psyche, could be considered only in relation to the individual person, while the said Act destroyed this conviction. Guilt of collective entity must be proven under at least one of the three possible forms: the guilt in the selection or supervision and so called organizational guilt. The next question is how the principle of proportionality in relation to criminal measures in response of collective entities should be considered. It should be remembered that the legal subjectivity of collective entities, including their rights and freedoms, is an emanation of the rights and freedoms of individual persons which create collective entities and through these entities implement their rights and freedoms. The adopted Act largely reflects the international legal regulations but also contains the unknown and original legislative solutions.Keywords: criminal corporate responsibility, Polish criminal law, legislative solutions, Act of 28 October 2002
Procedia PDF Downloads 5056014 Smart Demand Response: A South African Pragmatic, Non-Destructive and Alternative Advanced Metering Infrastructure-Based Maximum Demand Reduction Methodology
Authors: Christo Nicholls
Abstract:
The National Electricity Grid (NEG) in South Africa has been under strain for the last five years. This overburden of the NEG led Eskom (the State-Owned Entity responsible for the NEG) to implement a blunt methodology to assist them in reducing the maximum demand (MD) on the NEG, when required, called Loadshedding. The challenge of this methodology is that not only does it lead to immense technical issues with the distribution network equipment, e.g., transformers, due to the frequent abrupt off and on switching, it also has a broader negative fiscal impact on the distributors, as their key consumers (commercial & industrial) are now grid defecting due to the lack of Electricity Security Provision (ESP). This paper provides a pragmatic alternative methodology utilizing specific functionalities embedded within direct-connect single and three-phase Advanced Meter Infrastructure (AMI) Solutions deployed within the distribution network, in conjunction with a Multi-Agent Systems Based AI implementation focused on Automated Negotiation Peer-2-Peer trading. The results of this research clearly illustrate, not only does methodology provide a factual percentage contribution towards the NEG MD at the point of consideration, it also allows the distributor to leverage the real-time MD data from key consumers to activate complex, yet impact-measurable Demand Response (DR) programs.Keywords: AI, AMI, demand response, multi-agent
Procedia PDF Downloads 1126013 Development of an Elastic Functionally Graded Interphase Model for the Micromechanics Response of Composites
Authors: Trevor Sabiston, Mohsen Mohammadi, Mohammed Cherkaoui, Kaan Inal
Abstract:
A new micromechanics framework is developed for long fibre reinforced composites using a single fibre surrounded by a functionally graded interphase and matrix as a representative unit cell. The unit cell is formulated to represent any number of aligned fibres by a single fibre. Using this model the elastic response of long fibre composites is predicted in all directions. The model is calibrated to experimental results and shows very good agreement in the elastic regime. The differences between the proposed model and existing models are discussed.Keywords: computational mechanics, functionally graded interphase, long fibre composites, micromechanics
Procedia PDF Downloads 3196012 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior
Authors: Burak Bal
Abstract:
Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure
Procedia PDF Downloads 1546011 Vibration Response of Soundboards of Classical Guitars
Authors: Meng Koon Lee, Mohammad Hosseini Fouladi, Satesh Narayana Namasivayam
Abstract:
Research is focused on the response of soundboards of Classical guitars at frequencies up to 5 kHz as the soundboard is a major contributor to acoustic radiation at high frequencies when compared to the bridge and sound hole. A thin rectangular plate of variable thickness that is simply-supported on all sides is used as an analytical model of the research. This model is used to study the response of the guitar soundboard as the latter can be considered as a modified form of a rectangular plate. Homotopy Perturbation Method (HPM) is selected as a mathematical method to obtain an analytical solution of the 4th-order parabolic partial differential equation of motion of the rectangular plate of constant thickness viewed as a linear problem. This procedure is generalized to the nonlinear problem of the rectangular plate with variable thickness and an analytical solution can also be obtained. Sound power is used as a parameter to investigate the acoustic radiation of soundboards made from spruce using various bracing patterns. The sound power of soundboards made from Malaysian softwood such as damar minyak, sempilor or podo are investigated to determine the viability of replacing spruce as future materials for soundboards of Classical guitars.Keywords: rectangular plates, analytical solution, homotopy perturbation, natural frequencies
Procedia PDF Downloads 3896010 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 776009 Development of Macrobenthic Communities in the North Port, West Coastal Water of Malaysia
Authors: Seyedeh Belin Tavakoly Sany, Rosli Hashim, Majid Rezayi, Aishah Salleh
Abstract:
The primary objectives of this study were to investigate the distribution and composition of the macrobenthic community and their response to environmental parameters in the North Port, west coastal waters of Malaysia. A total of 25 species were identified, including 13 bivalvia, 4 gastropoda, and 3 crustacea. The other taxa were less diversified. There were no temporal changes in the macrobenthic community composition, but significant effects (p < 0.05) on the benthic community composition were found on a spatial scale. The correlation analyses and similarity tests were in good agreement, confirming the significant response of macrobenthic community composition to variations of environmental parameters.Keywords: distribution, macrobenthic community, diversity, North Port, Malaysia
Procedia PDF Downloads 3156008 Proficient Estimation Procedure for a Rare Sensitive Attribute Using Poisson Distribution
Authors: S. Suman, G. N. Singh
Abstract:
The present manuscript addresses the estimation procedure of population parameter using Poisson probability distribution when characteristic under study possesses a rare sensitive attribute. The generalized form of unrelated randomized response model is suggested in order to acquire the truthful responses from respondents. The resultant estimators have been proposed for two situations when the information on an unrelated rare non-sensitive characteristic is known as well as unknown. The properties of the proposed estimators are derived, and the measure of confidentiality of respondent is also suggested for respondents. Empirical studies are carried out in the support of discussed theory.Keywords: Poisson distribution, randomized response model, rare sensitive attribute, non-sensitive attribute
Procedia PDF Downloads 2666007 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: CH4 hydrate, Black Sea hydrates, gas hydrate experiments, HydrateResSim
Procedia PDF Downloads 6236006 Multi-Objective Multi-Period Allocation of Temporary Earthquake Disaster Response Facilities with Multi-Commodities
Authors: Abolghasem Yousefi-Babadi, Ali Bozorgi-Amiri, Aida Kazempour, Reza Tavakkoli-Moghaddam, Maryam Irani
Abstract:
All over the world, natural disasters (e.g., earthquakes, floods, volcanoes and hurricanes) causes a lot of deaths. Earthquakes are introduced as catastrophic events, which is accident by unusual phenomena leading to much loss around the world. Such could be replaced by disasters or any other synonyms strongly demand great long-term help and relief, which can be hard to be managed. Supplies and facilities are very important challenges after any earthquake which should be prepared for the disaster regions to satisfy the people's demands who are suffering from earthquake. This paper proposed disaster response facility allocation problem for disaster relief operations as a mathematical programming model. Not only damaged people in the earthquake victims, need the consumable commodities (e.g., food and water), but also they need non-consumable commodities (e.g., clothes) to protect themselves. Therefore, it is concluded that paying attention to disaster points and people's demands are very necessary. To deal with this objective, both commodities including consumable and need non-consumable commodities are considered in the presented model. This paper presented the multi-objective multi-period mathematical programming model regarding the minimizing the average of the weighted response times and minimizing the total operational cost and penalty costs of unmet demand and unused commodities simultaneously. Furthermore, a Chebycheff multi-objective solution procedure as a powerful solution algorithm is applied to solve the proposed model. Finally, to illustrate the model applicability, a case study of the Tehran earthquake is studied, also to show model validation a sensitivity analysis is carried out.Keywords: facility location, multi-objective model, disaster response, commodity
Procedia PDF Downloads 257