Search results for: non linear analysis
28595 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 40628594 Comparative Morphometric Analysis of Yelganga-Shivbhadra and Kohilla River Sub-Basins in Aurangabad District Maharashtra India
Authors: Chandrakant Gurav, Md Babar, Ajaykumar Asode
Abstract:
Morphometric analysis is the first stage of any basin analysis. By using these morphometric parameters we give indirect information about the nature and relations of stream with other streams, Geology of the area, groundwater condition and tectonic history of the basin. In the present study, Yelganga, Shivbhadra and Kohilla rivers, tributaries of the Godavari River in Aurangabad district, Maharashtra, India are considered to compare and study their morphometric characters. The linear, areal and relief morphometric aspects of the sub-basins have been assessed and evaluated in GIS environment. For this study, ArcGIS 10.1 software has been used for delineating, digitizing and generating different thematic maps. The Survey of India (SOI) toposheets maps and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) on resolution 30 m downloaded from United States Geological Survey (USGS) have been used for preparation of map and data generation. Geologically, the study area is covered by Central Deccan Volcanic Province (CDVP). It mainly consists of ‘aa’ type of basaltic lava flows of Late (upper) Cretaceous to Early (lower) Eocene age. The total geographical area of Yelganga, Shivbhadra and Kohilla river sub-basins are 185.5 sq. km., 142.6 sq. km and 122.3 sq. km. respectively The stream ordering method as suggested by the Strahler has been employed for present study and found that all the sub-basins are of 5th order streams. The average bifurcation ratio value of the sub-basins is below 5, indicates that there appears to be no strong structural control on drainage development, homogeneous nature of lithology and drainage network is in well-developed stage of erosion. The drainage density of Yelganga, Shivbhadra and Kohilla Sub-basins is 1.79 km/km2, 1.48 km/km2 and 1.89 km/km2 respectively and stream frequency is 1.94 streams/km2, 1.19 streams/km2 and 1.68 streams/km2 respectively, indicating semi-permeable sub-surface. Based on textural ratio values it indicates that the sub-basins have coarse texture. Shape parameters such as form factor ratio, circularity ratio and elongation ratio values shows that all three sub- basins are elongated in shape.Keywords: GIS, Kohilla, morphometry, Shivbhadra, Yelganga
Procedia PDF Downloads 15828593 An Investigation about the Health-Promoting Lifestyle of 1389 Emergency Nurses in China
Authors: Lei Ye, Min Liu, Yong-Li Gao, Jun Zhang
Abstract:
Purpose: The aims of the study are to investigate the status of health-promoting lifestyle and to compare the healthy lifestyle of emergency nurses in different levels of hospitals in Sichuan province, China. The investigation is mainly about the health-promoting lifestyle, including spiritual growth, health responsibility, physical activity, nutrition, interpersonal relations, stress management. Then the factors were analyzed influencing the health-promoting lifestyle of emergency nurses in hospitals of Sichuan province in order to find the relevant models to provide reference evidence for intervention. Study Design: A cross-sectional research method was adopted. Stratified cluster sampling, based on geographical location, was used to select the health facilities of 1389 emergency nurses in 54 hospitals from Sichuan province in China. Method: The 52-item, six-factor structure Health-Promoting Lifestyle Profile II (HPLP- II) instrument was used to explore participants’ self-reported health-promoting behaviors and measure the dimensions of health responsibility, physical activity, nutrition, interpersonal relations, spiritual growth, and stress management. Demographic characteristics, education, work duration, emergency nursing work duration and self-rated health status were documented. Analysis: Data were analyzed through SPSS software ver. 17.0. Frequency, percentage, mean ± standard deviation were used to describe the general information, while the Nonparametric Test was used to compare the constituent ratio of general data of different hospitals. One-way ANOVA was used to compare the scores of health-promoting lifestyle in different levels hospital. A multiple linear regression model was established. P values which were less than 0.05 determined statistical significance in all analyses. Result: The survey showed that the total score of health-promoting lifestyle of nurses at emergency departments in Sichuan Province was 120.49 ± 21.280. The relevant dimensions are ranked by scores in descending order: interpersonal relations, nutrition, health responsibility, physical activity, stress management, spiritual growth. The total scores of the three-A hospital were the highest (121.63 ± 0.724), followed by the senior class hospital (119.7 ± 1.362) and three-B hospital (117.80 ± 1.255). The difference was statistically significant (P=0.024). The general data of nurses was used as the independent variable which includes age, gender, marital status, living conditions, nursing income, hospital level, Length of Service in nursing, Length of Service in emergency, Professional Title, education background, and the average number of night shifts. The total score of health-promoting lifestyle was used as dependent variable; Multiple linear regression analysis method was adopted to establish the regression model. The regression equation F = 20.728, R2 = 0.061, P < 0.05, the age, gender, nursing income, turnover intention and status of coping stress affect the health-promoting lifestyle of nurses in emergency department, the result was statistically significant (P < 0.05 ). Conclusion: The results of the investigation indicate that it will help to develop health promoting interventions for emergency nurses in all levels of hospital in Sichuan Province through further research. Managers need to pay more attention to emergency nurses’ exercise, stress management, self-realization, and conduct intervention in nurse training programs.Keywords: emergency nurse, health-promoting lifestyle profile II, health behaviors, lifestyle
Procedia PDF Downloads 28328592 Analysis of the Plastic Zone Under Mixed Mode Fracture in Bonded Composite Repair of Aircraft
Authors: W. Oudad, H. Fikirini, K. Boulenouar
Abstract:
Material fracture by opening (mode I) is not alone responsible for fracture propagation. Many industrial examples show the presence of mode II and mixed mode I + II. In the present work the three-dimensional and non-linear finite element method is used to estimate the performance of the bonded composite repair of metallic aircraft structures by analyzing the plastic zone size ahead of repaired cracks under mixed mode loading. The computations are made according to Von Mises and Tresca criteria. The extension of the plastic zone which takes place at the tip of a crack strictly depends on many variables, such as the yield stress of the material, the loading conditions, the crack size and the thickness of the cracked component, The obtained results show that the presence of the composite patch reduces considerably the size of the plastic zone ahead of the crack. The effects of the composite orientation layup (adhesive properties) and the patch thickness on the plastic zone size ahead of repaired cracks were analyzed.Keywords: crack, elastic-plastic, J integral, patch, plastic zone
Procedia PDF Downloads 44528591 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 12328590 Numerical Study of Sloshing in a Flexible Tank
Authors: Wissem Tighidet, Faïçal Naït Bouda, Moussa Allouche
Abstract:
The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation.Keywords: arbitrary lagrangian-eulerian, fluid-structure interaction, sloshing, volume of fluid
Procedia PDF Downloads 10728589 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 12828588 Allura Red, Sunset Yellow and Amaranth Azo Dyes for Corrosion Inhibition of Mild Steel in 0.5 H₂SO₄ Solutions
Authors: Ashish Kumar Singh, Preeti Tiwari, Shubham Srivastava, Rajiv Prakash, Herman Terryn, Gopal Ji
Abstract:
Corrosion inhibition potential of azo dyes namely Allura red (AR), Sunset Yellow (SY) and Amaranth (AN) have been investigated in 0.5 M H2SO4 solutions by electrochemical impedance spectroscopy (EIS), Tafel polarization curves, linear polarization curves, open circuit potential (ocp) curves, UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. Amaranth dye is found to provide highest corrosion inhibition (90 %) against mild steel corrosion in sulfuric acid solutions among all the tested dyes; while SY and AR dye shows 80% and 78% corrosion inhibition efficiency respectively. The electrochemical measurements and surface morphology analysis reveal that molecular adsorption of dyes at metal acid interface is accountable for inhibition of mild steel corrosion in H2SO4 solutions. The adsorption behavior of dyes has been investigated by various isotherms models, which verifies that it is in accordance with Langmuir isotherm.Keywords: mild steel, Azo dye, EIS, Langmuir isotherm
Procedia PDF Downloads 37928587 Comparing the Trophic Structure of the Moroccan Mediterranean Sea with the Moroccan Atlantic Coast Using Ecopath Model
Authors: Salma Aboussalam, Karima Khalil, Khalid Elkalay
Abstract:
To describe the structure, functioning, and state of the Moroccan Mediterranean Sea ecosystem, an Ecopath mass balance model has been applied. The model is based on 31 functional groups, containing 21 fishes, 7 invertebrates, 2 primary producers, and one dead group (detritus), which are considered in this work to explore the trophic interaction. The system's average trophic transfer efficiency was 23%. Both the total primary production and total respiration were calculated to be >1, suggesting that more energy is produced than respired in the system. The structure of our system is based on high respiration and consumption flows. Indicators of ecosystem stability and development showed low values of the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), suggesting that our system is disturbed and has a more linear than web-like trophic structure. The keystone index and mixed trophic impact analysis indicated that other demersal invertebrates, zooplankton, and cephalopods had a tremendous impact on other groups and were recognized as keystone species.Keywords: Ecopath, food web, trophic flux, Moroccan Mediterranean Sea
Procedia PDF Downloads 9328586 Adding a Degree of Freedom to Opinion Dynamics Models
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 11928585 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve
Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk
Abstract:
The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.Keywords: electro-hydraulic servo valve, fluid power control system, system stiffness, static and dynamic performance
Procedia PDF Downloads 15628584 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions
Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani
Abstract:
Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.Keywords: masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity
Procedia PDF Downloads 28628583 Prioritization of Sub-Watersheds in Semi Arid Region: A Case Study of Shevgaon and Pathardi Tahsils in Maharashtra
Authors: Dadasaheb R. Jawre, Maya G. Unde
Abstract:
Prioritization of sub-watershed plays important role in watershed management. It shows the requirement of watershed to give a treatment for the green growth of the region and conservation of the sub-watersheds. There is a number of factors like topography of the region, climatic characteristics like rainfall and runoff, land-use land-cover, social factors which are related to the development of watershed for agricultural uses and domestic purposes in the region. The present research is throwing a focus on how morphometric parameters in association with GIS analysis will help in identifying the ranking of the sub-watersheds for further development which help of suggested watershed structures. Shevgaon and Pathardi tahsils are drought prone tahsils of Ahmednagar district in Maharashtra. These tahsils come under the semi-arid region. Sub-watershed prioritization is necessary for proper planning and management of natural resources for sustainable development of the study area. Less rainfall and increasing population pressure on the land as well as water resources lead to scarcity of the water in the region. Hence, researcher has selected Shevgaon and Pathardi tahsils for sub-watershed prioritization. There are seven sub-watersheds which selected for the present research paper. In the morphological analysis linear aspects, aerial aspects and relief aspects are considered for the prioritization. The largest sub-watershed is Erdha which is located at Karanji in Pathardi tahsil having an area of 145.06 km2 and smallest sub-watershed is Erandgaon which is located in Shevgaon tahsil having an area of 40.143 km2. For all seven sub-watersheds, seven morphometric parameters were considered for calculating the compound parameter values. Finally, compound parameter values are grouped into three groups such as, high priority (below 4.0), moderate priority (4.0 to 5.0) and low priority (above 5.0) according to the compound value Erandgaon, Chapadgaon and Tarak sub-watersheds comes under high priority group, Erdha and Domeshwar sub-watersheds come under moderate priority group and Chandani and Kasichi sub-watershed come under low priority group. Both the tahsils falls in drought prone area, after getting the watershed structure overall development of the region will take place.Keywords: sub-watersheds, GIS and remote sensing, morphometric analysis, compound parameter value, prioritization
Procedia PDF Downloads 15528582 Simultaneous Determination of p-Phenylenediamine, N-Acetyl-p-phenylenediamine and N,N-Diacetyl-p-phenylenediamine in Human Urine by LC-MS/MS
Authors: Khaled M. Mohamed
Abstract:
Background: P-Phenylenediamine (PPD) is used in the manufacture of hair dyes and skin decoration. In some developing countries, suicidal, homicidal and accidental cases by PPD were recorded. In this work, a sensitive LC-MS/MS method for determination of PPD and its metabolites N-acetyl-p-phenylenediamine (MAPPD) and N,N-diacetyl-p-phenylenediamine (DAPPD) in human urine has been developed and validated. Methods: PPD, MAPPD and DAPPD were extracted from urine by methylene chloride at alkaline pH. Acetanilide was used as internal standard (IS). The analytes and IS were separated on an Eclipse XDB- C18 column (150 X 4.6 mm, 5 µm) using a mobile phase of acetonitrile-1% formic acid in gradient elution. Detection was performed by LC-MS/MS using electrospray positive ionization under multiple reaction-monitoring mode. The transition ions m/z 109 → 92, m/z 151 → 92, m/z 193 → 92, and m/z 136 → 77 were selected for the quantification of PPD, MAPPD, DAPPD, and IS, respectively. Results: Calibration curves were linear in the range 10–2000 ng/mL for all analytes. The mean recoveries for PPD, MAPPD and DAPPD were 57.62, 74.19 and 50.99%, respectively. Intra-assay and inter-assay imprecisions were within 1.58–9.52% and 5.43–9.45% respectively for PPD, MAPPD and DAPPD. Inter-assay accuracies were within -7.43 and 7.36 for all compounds. PPD, MAPPD and DAPPD were stable in urine at –20 degrees for 24 hours. Conclusions: The method was successfully applied to the analysis of PPD, MAPPD and DAPPD in urine samples collected from suicidal cases.Keywords: p-Phenylenediamine, metabolites, urine, LC-MS/MS, validation
Procedia PDF Downloads 35528581 On Fourier Type Integral Transform for a Class of Generalized Quotients
Authors: A. S. Issa, S. K. Q. AL-Omari
Abstract:
In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.Keywords: Boehmian, Fourier integral, Fourier type integral, generalized quotient
Procedia PDF Downloads 36728580 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures
Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu
Abstract:
The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.Keywords: electron beam irradiation, EPDM rubber, crosslinking density, gel fraction
Procedia PDF Downloads 15528579 The Effect of Tax Avoidance on Firm Value: Evidence from Amman Stock Exchange
Authors: Mohammad Abu Nassar, Mahmoud Al Khalilah, Hussein Abu Nassar
Abstract:
The purpose of this study is to examine whether corporate tax avoidance practices can impact firm value in the Jordanian context. The study employs a quantitative approach using s sample of (124) industrial and services companies listed on the Amman Stock Exchange for the period from 2010 to 2019. Multiple linear regression analysis has been applied to test the study's hypothesis. The study employs effective tax rate and book-tax difference to measure tax avoidance and Tobin's Q factor to measure firm value. The results of the study revealed that tax avoidance practices, when measured using effective tax rates, do not significantly impact firm value. When the book-tax difference is used to measure tax avoidance, the study results showed a negative impact on firm value. The result of the study has not supported the traditional view of tax avoidance as a transfer of wealth from the government to shareholders for industrial and services companies listed on the Amman Stock Exchange, indicating that Jordanian firms should not use tax avoidance strategies to enhance their value.Keywords: tax avoidance, effective tax rate, book-tax difference, firm value, Amman stock exchange
Procedia PDF Downloads 16828578 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 33128577 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution
Authors: P. Zarfam, M. Mansouri Baghbaderani
Abstract:
In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution
Procedia PDF Downloads 24728576 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes
Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari
Abstract:
In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior
Procedia PDF Downloads 6728575 Development and Validation of a Rapid Turbidimetric Assay to Determine the Potency of Cefepime Hydrochloride in Powder Injectable Solution
Authors: Danilo F. Rodrigues, Hérida Regina N. Salgado
Abstract:
Introduction: The emergence of resistant microorganisms to a large number of clinically approved antimicrobials has been increasing, which restrict the options for the treatment of bacterial infections. As a strategy, drugs with high antimicrobial activities are in evidence. Stands out a class of antimicrobial, the cephalosporins, having as fourth generation cefepime (CEF) a semi-synthetic product which has activity against various Gram-positive bacteria (e.g. oxacillin resistant Staphylococcus aureus) and Gram-negative (e.g. Pseudomonas aeruginosa) aerobic. There are few studies in the literature regarding the development of microbiological methodologies for the analysis of this antimicrobial, so researches in this area are highly relevant to optimize the analysis of this drug in the industry and ensure the quality of the marketed product. The development of microbiological methods for the analysis of antimicrobials has gained strength in recent years and has been highlighted in relation to physicochemical methods, especially because they make possible to determine the bioactivity of the drug against a microorganism. In this context, the aim of this work was the development and validation of a microbiological method for quantitative analysis of CEF in powder lyophilized for injectable solution by turbidimetric assay. Method: For performing the method, Staphylococcus aureus ATCC 6538 IAL 2082 was used as the test microorganism and the culture medium chosen was the Casoy broth. The test was performed using temperature control (35.0 °C ± 2.0 °C) and incubated for 4 hours in shaker. The readings of the results were made at a wavelength of 530 nm through a spectrophotometer. The turbidimetric microbiological method was validated by determining the following parameters: linearity, precision (repeatability and intermediate precision), accuracy and robustness, according to ICH guidelines. Results and discussion: Among the parameters evaluated for method validation, the linearity showed results suitable for both statistical analyses as the correlation coefficients (r) that went 0.9990 for CEF reference standard and 0.9997 for CEF sample. The precision presented the following values 1.86% (intraday), 0.84% (interday) and 0.71% (between analyst). The accuracy of the method has been proven through the recovery test where the mean value obtained was 99.92%. The robustness was verified by the parameters changing volume of culture medium, brand of culture medium, incubation time in shaker and wavelength. The potency of CEF present in the samples of lyophilized powder for injectable solution was 102.46%. Conclusion: The turbidimetric microbiological method proposed for quantification of CEF in lyophilized powder for solution for injectable showed being fast, linear, precise, accurate and robust, being in accordance with all the requirements, which can be used in routine analysis of quality control in the pharmaceutical industry as an option for microbiological analysis.Keywords: cefepime hydrochloride, quality control, turbidimetric assay, validation
Procedia PDF Downloads 36328574 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 13028573 Analysis of Diabetes Patients Using Pearson, Cost Optimization, Control Chart Methods
Authors: Devatha Kalyan Kumar, R. Poovarasan
Abstract:
In this paper, we have taken certain important factors and health parameters of diabetes patients especially among children by birth (pediatric congenital) where using the above three metrics methods we are going to assess the importance of each attributes in the dataset and thereby determining the most highly responsible and co-related attribute causing diabetics among young patients. We use cost optimization, control chart and Spearmen methodologies for the real-time application of finding the data efficiency in this diabetes dataset. The Spearmen methodology is the correlation methodologies used in software development process to identify the complexity between the various modules of the software. Identifying the complexity is important because if the complexity is higher, then there is a higher chance of occurrence of the risk in the software. With the use of control; chart mean, variance and standard deviation of data are calculated. With the use of Cost optimization model, we find to optimize the variables. Hence we choose the Spearmen, control chart and cost optimization methods to assess the data efficiency in diabetes datasets.Keywords: correlation, congenital diabetics, linear relationship, monotonic function, ranking samples, pediatric
Procedia PDF Downloads 25728572 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 12128571 Oxidosqualene Cyclase: A Novel Inhibitor
Authors: Devadrita Dey Sarkar
Abstract:
Oxidosqualene cyclase is a membrane bound enzyme in which helps in the formation of steroid scaffold in higher organisms. In a highly selective cyclization reaction oxidosqualene cyclase forms LANOSTEROL with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. In humans OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. The enzyme oxidosqualene: lanosterol cyclase (OSC) represents a novel target for the treatment of hypercholesterolemia. OSC catalyzes the cyclization of the linear 2,3-monoepoxysqualene to lanosterol, the initial four-ringed sterol intermediate in the cholesterol biosynthetic pathway. OSC also catalyzes the formation of 24(S), 25-epoxycholesterol, a ligand activator of the liver X receptor. Inhibition of OSC reduces cholesterol biosynthesis and selectively enhances 24(S),25-epoxycholesterol synthesis. Through this dual mechanism, OSC inhibition decreases plasma levels of low-density lipoprotein (LDL)-cholesterol and prevents cholesterol deposition within macrophages. The recent crystallization of OSC identifies the mechanism of action for this complex enzyme, setting the stage for the design of OSC inhibitors with improved pharmacological properties for cholesterol lowering and treatment of atherosclerosis. While studying and designing the inhibitor of oxidosqulene cyclase, I worked on the pdb id of 1w6k which was the most worked on pdb id and I used several methods, techniques and softwares to identify and validate the top most molecules which could be acting as an inhibitor for oxidosqualene cyclase. Thus, by partial blockage of this enzyme, both an inhibition of lanosterol and subsequently cholesterol formation as well as a concomitant effect on HMG-CoA reductase can be achieved. Both effects complement each other and lead to an effective control of cholesterol biosynthesis. It is therefore concluded that 2,3-oxidosqualene cyclase plays a crucial role in the regulation of intracellular cholesterol homeostasis. 2,3-Oxidosqualene cyclase inhibitors offer an attractive approach for novel lipid-lowering agents.Keywords: anticholesteraemic, crystallization, statins, homeostasis
Procedia PDF Downloads 35128570 Effects of Matrix Properties on Surfactant Enhanced Oil Recovery in Fractured Reservoirs
Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsæter
Abstract:
The properties of rocks have effects on efficiency of surfactant. One objective of this study is to analyze the effects of rock properties (permeability, porosity, initial water saturation) on surfactant spontaneous imbibition at laboratory scale. The other objective is to evaluate existing upscaling methods and establish a modified upscaling method. A core is put in a container that is full of surfactant solution. Assume there is no space between the bottom of the core and the container. The core is modelled as a cuboid matrix with a length of 3.5 cm, a width of 3.5 cm, and a height of 5 cm. The initial matrix, brine and oil properties are set as the properties of Ekofisk Field. The simulation results of matrix permeability show that the oil recovery rate has a strong positive linear relationship with matrix permeability. Higher oil recovery is obtained from the matrix with higher permeability. One existing upscaling method is verified by this model. The study on matrix porosity shows that the relationship between oil recovery rate and matrix porosity is a negative power function. However, the relationship between ultimate oil recovery and matrix porosity is a positive power function. The initial water saturation of matrix has negative linear relationships with ultimate oil recovery and enhanced oil recovery. However, the relationship between oil recovery and initial water saturation is more complicated with the imbibition time because of the transition of dominating force from capillary force to gravity force. Modified upscaling methods are established. The work here could be used as a reference for the surfactant application in fractured reservoirs. And the description of the relationships between properties of matrix and the oil recovery rate and ultimate oil recovery helps to improve upscaling methods.Keywords: initial water saturation, permeability, porosity, surfactant EOR
Procedia PDF Downloads 16328569 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology
Authors: I. F. Ejim, F. L. Kamen
Abstract:
Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction
Procedia PDF Downloads 33928568 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy
Procedia PDF Downloads 11128567 Linearization of Y-Force Equation of Rigid Body Equation of Motion and Behavior of Fighter Aircraft under Imbalance Weight on Wings during Combat
Authors: Jawad Zakir, Syed Irtiza Ali Shah, Rana Shaharyar, Sidra Mahmood
Abstract:
Y-force equation comprises aerodynamic forces, drag and side force with side slip angle β and weight component along with the coupled roll (φ) and pitch angles (θ). This research deals with the linearization of Y-force equation using Small Disturbance theory assuming equilibrium flight conditions for different state variables of aircraft. By using assumptions of Small Disturbance theory in non-linear Y-force equation, finally reached at linearized lateral rigid body equation of motion; which says that in linearized Y-force equation, the lateral acceleration is dependent on the other different aerodynamic and propulsive forces like vertical tail, change in roll rate (Δp) from equilibrium, change in yaw rate (Δr) from equilibrium, change in lateral velocity due to side force, drag and side force components due to side slip, and the lateral equation from coupled rotating frame to decoupled rotating frame. This paper describes implementation of this lateral linearized equation for aircraft control systems. Another significant parameter considered on which y-force equation depends is ‘c’ which shows that any change bought in the weight of aircrafts wing will cause Δφ and cause lateral force i.e. Y_c. This simplification also leads to lateral static and dynamic stability. The linearization of equations is required because much of mathematics control system design for aircraft is based on linear equations. This technique is simple and eases the linearization of the rigid body equations of motion without using any high-speed computers.Keywords: Y-force linearization, small disturbance theory, side slip, aerodynamic force drag, lateral rigid body equation of motion
Procedia PDF Downloads 49928566 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 144