Search results for: network backbone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4874

Search results for: network backbone

3524 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting

Authors: Nader Khalafian, Mohsen Ghaderi

Abstract:

Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.

Keywords: reverse faulting, surface deformation, numerical, neural network

Procedia PDF Downloads 421
3523 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP

Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost

Abstract:

The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.

Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)

Procedia PDF Downloads 426
3522 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 227
3521 Fault Ride Through Management in Renewable Power Park

Authors: Mohd Zamri Che Wanik

Abstract:

This paper presents the management of the Fault Ride Through event within a Solar Farm during a grid fault. The modeling and simulation of a photovoltaic (PV) with battery energy storage connected to the power network will be described. The modeling approach and the study analysis performed are described. The model and operation scenarios are simulated using a digital simulator for different scenarios. The dynamic response of the system when subjected to sudden self-clearance temporary fault is presented. The capability of the PV system and battery storage riding through the power system fault and, at the same time, supporting the local grid by injecting fault current is demonstrated. For each case, the different control methods to achieve the objective of supporting the grid according to grid code requirements are presented and explained. The inverter modeling approach is presented and described.

Keywords: faut ride through, solar farm, grid code, power network

Procedia PDF Downloads 51
3520 Complex Network Analysis of Seismicity and Applications to Short-Term Earthquake Forecasting

Authors: Kahlil Fredrick Cui, Marissa Pastor

Abstract:

Earthquakes are complex phenomena, exhibiting complex correlations in space, time, and magnitude. Recently, the concept of complex networks has been used to shed light on the statistical and dynamical characteristics of regional seismicity. In this work, we study the relationships and interactions of seismic regions in Chile, Japan, and the Philippines through weighted and directed complex network analysis. Geographical areas are digitized into cells of fixed dimensions which in turn become the nodes of the network when an earthquake has occurred therein. Nodes are linked if a correlation exists between them as determined and measured by a correlation metric. The networks are found to be scale-free, exhibiting power-law behavior in the distributions of their different centrality measures: the in- and out-degree and the in- and out-strength. The evidence is also found of preferential interaction between seismically active regions through their degree-degree correlations suggesting that seismicity is dictated by the activity of a few active regions. The importance of a seismic region to the overall seismicity is measured using a generalized centrality metric taken to be an indicator of its activity or passivity. The spatial distribution of earthquake activity indicates the areas where strong earthquakes have occurred in the past while the passivity distribution points toward the likely locations an earthquake would occur whenever another one happens elsewhere. Finally, we propose a method that would project the location of the next possible earthquake using the generalized centralities coupled with correlations calculated between the latest earthquakes and a geographical point in the future.

Keywords: complex networks, correlations, earthquake, hazard assessment

Procedia PDF Downloads 212
3519 GIS Based Public Transport Accessibility of Lahore using PTALs Model

Authors: Naveed Chughtai, Salman Atif, Azhar Ali Taj, Murtaza Asghar Bukhari

Abstract:

Accessible transport systems play a crucial role in infrastructure management and ease of access to destinations. Thus, the necessity of knowledge of service coverage and service deprived areas is a prerequisite for devising policies. Integration of PTALs model with GIS network analysis models (Service Area Analysis, Closest Facility Analysis) facilitates the analysis of deprived areas. In this research, models presented determine the accessibility. The empirical evidence suggests that current bus network system caters only 18.5% of whole population. Using network analysis results as inputs for PTALs, it is seen that excellent accessibility indexed bands cover a limited areas, while 78.8% of area is totally deprived of any service. To cater the unserved catchment, new route alignments are proposed while keeping in focus the Socio-economic characteristics, land-use type and net population density of the deprived area. Change in accessibility with proposed routes show a 10% increment in service delivery and enhancement in terms of served population is up to 20.4%. PTALs result shows a decrement of 60 Km2 in unserved band. The result of this study can be used for planning, transport infrastructure management, allocation of new route alignments in combination with future land-use development and for adequate spatial distribution of service access points.

Keywords: GIS, public transport accessibility, PTALs, accessibility index, service area analysis, closest facility analysis

Procedia PDF Downloads 438
3518 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections

Authors: Ravneil Nand

Abstract:

Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.

Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse

Procedia PDF Downloads 335
3517 Real Time Detection of Application Layer DDos Attack Using Log Based Collaborative Intrusion Detection System

Authors: Farheen Tabassum, Shoab Ahmed Khan

Abstract:

The brutality of attacks on networks and decisive infrastructures are on the climb over recent years and appears to continue to do so. Distributed Denial of service attack is the most prevalent and easy attack on the availability of a service due to the easy availability of large botnet computers at cheap price and the general lack of protection against these attacks. Application layer DDoS attack is DDoS attack that is targeted on wed server, application server or database server. These types of attacks are much more sophisticated and challenging as they get around most conventional network security devices because attack traffic often impersonate normal traffic and cannot be recognized by network layer anomalies. Conventional techniques of single-hosted security systems are becoming gradually less effective in the face of such complicated and synchronized multi-front attacks. In order to protect from such attacks and intrusion, corporation among all network devices is essential. To overcome this issue, a collaborative intrusion detection system (CIDS) is proposed in which multiple network devices share valuable information to identify attacks, as a single device might not be capable to sense any malevolent action on its own. So it helps us to take decision after analyzing the information collected from different sources. This novel attack detection technique helps to detect seemingly benign packets that target the availability of the critical infrastructure, and the proposed solution methodology shall enable the incident response teams to detect and react to DDoS attacks at the earliest stage to ensure that the uptime of the service remain unaffected. Experimental evaluation shows that the proposed collaborative detection approach is much more effective and efficient than the previous approaches.

Keywords: Distributed Denial-of-Service (DDoS), Collaborative Intrusion Detection System (CIDS), Slowloris, OSSIM (Open Source Security Information Management tool), OSSEC HIDS

Procedia PDF Downloads 354
3516 Communication in a Heterogeneous Ad Hoc Network

Authors: C. Benjbara, A. Habbani

Abstract:

Wireless networks are getting more and more used in every new technology or feature, especially those without infrastructure (Ad hoc mode) which provide a low cost alternative to the infrastructure mode wireless networks and a great flexibility for application domains such as environmental monitoring, smart cities, precision agriculture, and so on. These application domains present a common characteristic which is the need of coexistence and intercommunication between modules belonging to different types of ad hoc networks like wireless sensor networks, mesh networks, mobile ad hoc networks, vehicular ad hoc networks, etc. This vision to bring to life such heterogeneous networks will make humanity duties easier but its development path is full of challenges. One of these challenges is the communication complexity between its components due to the lack of common or compatible protocols standard. This article proposes a new patented routing protocol based on the OLSR standard in order to resolve the heterogeneous ad hoc networks communication issue. This new protocol is applied on a specific network architecture composed of MANET, VANET, and FANET.

Keywords: Ad hoc, heterogeneous, ID-Node, OLSR

Procedia PDF Downloads 215
3515 Trusting the Eyes: The Changing Landscape of Eyewitness Testimony

Authors: Manveen Singh

Abstract:

Since the very advent of law enforcement, eyewitness testimony has played a pivotal role in identifying, arresting and convicting suspects. Reliant heavily on the accuracy of human memory, nothing seems to carry more weight with the judiciary than the testimony of an actual witness. The acceptance of eyewitness testimony as a substantive piece of evidence lies embedded in the assumption that the human mind is adept at recording and storing events. Research though, has proven otherwise. Having carried out extensive study in the field of eyewitness testimony for the past 40 years, psychologists have concluded that human memory is fragile and needs to be treated carefully. The question that arises then, is how reliable is eyewitness testimony? The credibility of eyewitness testimony, simply put, depends on several factors leaving it reliable at times while not so much at others. This is further substantiated by the fact that as per scientific research, over 75 percent of all eyewitness testimonies may stand in error; quite a few of these cases resulting in life sentences. Although the advancement of scientific techniques, especially DNA testing, helped overturn many of these eyewitness testimony-based convictions, yet eyewitness identifications continue to form the backbone of most police investigations and courtroom decisions till date. What then is the solution to this long standing concern regarding the accuracy of eyewitness accounts? The present paper shall analyze the linkage between human memory and eyewitness identification as well as look at the various factors governing the credibility of eyewitness testimonies. Furthermore, it shall elaborate upon some best practices developed over the years to help reduce mistaken identifications. Thus, in the process, trace out the changing landscape of eyewitness testimony amidst the evolution of DNA and trace evidence.

Keywords: DNA, eyewitness, identification, testimony, evidence

Procedia PDF Downloads 328
3514 The Efficacy of Psychological Interventions for Psychosis: A Systematic Review and Network Meta-Analysis

Authors: Radu Soflau, Lia-Ecaterina Oltean

Abstract:

Background: Increasing evidence supports the efficacy of psychological interventions for psychosis. However, it is unclear which one of these interventions is most likely to address negative psychotic symptoms and related outcomes. We aimed to determine the relative efficacy of psychological and psychosocial interventions for negative symptoms, overall psychotic symptoms, and related outcomes. Methods: To attain this goal, we conducted a systematic review and network meta-analysis. We searched for potentially eligible trials in PubMed, EMBASE, PsycInfo, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases up until February 08, 2022. We included randomized controlled trials that investigated the efficacy of psychological for adults with psychosis. We excluded interventions for prodromal or “at risk” individuals, as well as patients with serious co-morbid medical or psychiatric conditions (others than depressive and/or anxiety disorders). Two researchers conducted study selection and performed data extraction independently. Analyses were run using STATA network and mvmeta packages, applying a random effect model under a frequentist framework in order to compute standardized mean differences or risk ratio. Findings: We identified 47844 records and screened 29466 records for eligibility. The majority of eligible interventions were delivered in addition to pharmacological treatment. Treatment as usual (TAU) was the most frequent common comparator. Theoretically driven psychological interventions generally outperformed TAU at post-test and follow-up, displaying small and small-to-medium effect sizes. A similar pattern of results emerged in sensitivity analyses focused on studies that employed an inclusion criterion for relevant negative symptom severity. Conclusion: While the efficacy of some psychological interventions is promising, there is a need for more high-quality studies, as well as more trials directly comparing psychological treatments for negative psychotic symptoms.

Keywords: psychosis, network meta-analysis, psychological interventions, efficacy, negative symptoms

Procedia PDF Downloads 103
3513 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach

Authors: Hassan M. H. Mustafa

Abstract:

This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.

Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology

Procedia PDF Downloads 470
3512 A Comparative Analysis of Vocabulary Learning Strategies among EFL Freshmen and Senior Medical Sciences Students across Different Fields of Study

Authors: M. Hadavi, Z. Hashemi

Abstract:

Learning strategies play an important role in the development of language skills. Vocabulary learning strategies as the backbone of these strategies have become a major part of English language teaching. This study is a comparative analysis of Vocabulary Learning Strategies (VLS) use and preference among freshmen and senior EFL medical sciences students with different fields of study. 449 students (236 freshman and 213 seniors) participated in the study. 64.6% were female and 35.4% were male. The instrument utilized in this research was a questionnaire consisting of 41 items related to the students’ approach to vocabulary learning. The items were classified under eight sections as dictionary strategies, guessing strategies, study preferences, memory strategies, autonomy, note- taking strategies, selective attention, and social strategies. The participants were asked to answer each item with a 5-point Likert-style frequency scale as follows:1) I never or almost never do this, 2) I don’t usually do this, 3) I sometimes do this, 4) I usually do this, and 5)I always or almost always do this. The results indicated that freshmen students and particularly surgical technology students used more strategies compared to the seniors. Overall guessing and dictionary strategies were the most frequently used strategies among all the learners (p=0/000). The mean and standard deviation of using VLS in the students who had no previous history of participating in the private English language classes was less than the students who had attended these type of classes (p=0/000). Female students tended to use social and study preference strategies whereas male students used mostly guessing and dictionary strategies. It can be concluded that the senior students under instruction from the university have learned to rely on themselves and choose the autonomous strategies more, while freshmen students use more strategies that are related to the study preferences.

Keywords: vocabulary leaning strategies, medical sciences, students, linguistics

Procedia PDF Downloads 451
3511 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems

Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu

Abstract:

Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.

Keywords: agent communication, introspective agent, isolation of agent, policy enforcement system

Procedia PDF Downloads 297
3510 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation

Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian

Abstract:

The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.

Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction

Procedia PDF Downloads 99
3509 Room Level Indoor Localization Using Relevant Channel Impulse Response Parameters

Authors: Raida Zouari, Iness Ahriz, Rafik Zayani, Ali Dziri, Ridha Bouallegue

Abstract:

This paper proposes a room level indoor localization algorithm based on the use Multi-Layer Neural Network (MLNN) classifiers and one versus one strategy. Seven parameters of the Channel Impulse Response (CIR) were used and Gram-Shmidt Orthogonalization was performed to study the relevance of the extracted parameters. Simulation results show that when relevant CIR parameters are used as position fingerprint and when optimal MLNN architecture is selected good room level localization score can be achieved. The current study showed also that some of the CIR parameters are not correlated to the location and can decrease the localization performance of the system.

Keywords: mobile indoor localization, multi-layer neural network (MLNN), channel impulse response (CIR), Gram-Shmidt orthogonalization

Procedia PDF Downloads 358
3508 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms

Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili

Abstract:

In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.

Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm

Procedia PDF Downloads 634
3507 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels Along The Jeddah Coast, Saudi Arabia

Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati

Abstract:

Sea level rise threatens to increase the impact of future storms and hurricanes on coastal communities. Accurate sea level change prediction and supplement is an important task in determining constructions and human activities in coastal and oceanic areas. In this study, support vector machines (SVM) is proposed to predict daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal parameter values of kernel function are determined using a genetic algorithm. The SVM results are compared with the field data and with back propagation (BP). Among the models, the SVM is superior to BPNN and has better generalization performance.

Keywords: tides, prediction, support vector machines, genetic algorithm, back-propagation neural network, risk, hazards

Procedia PDF Downloads 468
3506 Clustering Based and Centralized Routing Table Topology of Control Protocol in Mobile Wireless Sensor Networks

Authors: Mbida Mohamed, Ezzati Abdellah

Abstract:

A strong challenge in the wireless sensor networks (WSN) is to save the energy and have a long life time in the network without having a high rate of loss information. However, topology control (TC) protocols are designed in a way that the network is divided and having a standard system of exchange packets between nodes. In this article, we will propose a clustering based and centralized routing table protocol of TC (CBCRT) which delegates a leader node that will encapsulate a single routing table in every cluster nodes. Hence, if a node wants to send packets to the sink, it requests the information's routing table of the current cluster from the node leader in order to root the packet.

Keywords: mobile wireless sensor networks, routing, topology of control, protocols

Procedia PDF Downloads 273
3505 Overview of Wireless Body Area Networks

Authors: Rashi Jain

Abstract:

The Wireless Body Area Networks (WBANs) is an emerging interdisciplinary area where small sensors are placed on/within the human body. These sensors monitor the physiological activities and vital statistics of the body. The data from these sensors is aggregated and communicated to a remote doctor for immediate attention or to a database for records. On 6 Feb 2012, the IEEE 802.15.6 task group approved the standard for Body Area Network (BAN) technologies. The standard proposes the physical and MAC layer for the WBANs. The work provides an introduction to WBANs and overview of the physical and MAC layers of the standard. The physical layer specifications have been covered. A comparison of different protocols used at MAC layer is drawn. An introduction to the network layer and security aspects of the WBANs is made. The WBANs suffer certain limitations such as regulation of frequency bands, minimizing the effect of transmission and reception of electromagnetic signals on the human body, maintaining the energy efficiency among others. This has slowed down their implementation.

Keywords: vehicular networks, sensors, MicroController 8085, LTE

Procedia PDF Downloads 259
3504 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network

Authors: Wilfred Fritz

Abstract:

Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.

Keywords: harmonics, power quality, pulse width modulation, total harmonic distortion

Procedia PDF Downloads 239
3503 Implementing a Prevention Network for the Ortenaukreis

Authors: Klaus Froehlich-Gildhoff, Ullrich Boettinger, Katharina Rauh, Angela Schickler

Abstract:

The Prevention Network Ortenaukreis, PNO, funded by the German Ministry of Education and Research, aims to promote physical and mental health as well as the social inclusion of 3 to 10 years old children and their families in the Ortenau district. Within a period of four years starting 11/2014 a community network will be established. One regional and five local prevention representatives are building networks with stakeholders of the prevention and health promotion field bridging the health care, educational and youth welfare system in a multidisciplinary approach. The regional prevention representative implements regularly convening prevention and health conferences. On a local level, the 5 local prevention representatives implement round tables in each area as a platform for networking. In the setting approach, educational institutions are playing a vital role when gaining access to children and their families. Thus the project will offer 18 month long organizational development processes with specially trained coaches to 25 kindergarten and 25 primary schools. The process is based on a curriculum of prevention and health promotion which is adapted to the specific needs of the institutions. Also to ensure that the entire region is reached demand oriented advanced education courses are implemented at participating day care centers, kindergartens and schools. Evaluation method: The project is accompanied by an extensive research design to evaluate the outcomes of different project components such as interview data from community prevention agents, interviews and network analysis with families at risk on their support structures, data on community network development and monitoring, as well as data from kindergarten and primary schools. The latter features a waiting-list control group evaluation in kindergarten and primary schools with a mixed methods design using questionnaires and interviews with pedagogues, teachers, parents, and children. Results: By the time of the conference pre and post test data from the kindergarten samples (treatment and control group) will be presented, as well as data from the first project phase, such as qualitative interviews with the prevention coordinators as well as mixed methods data from the community needs assessment. In supporting this project, the Federal Ministry aims to gain insight into efficient components of community prevention and health promotion networks as it is implemented and evaluated. The district will serve as a model region, so that successful components can be transferred to other regions throughout Germany. Accordingly, the transferability to other regions is of high interest in this project.

Keywords: childhood research, health promotion, physical health, prevention network, psychological well-being, social inclusion

Procedia PDF Downloads 222
3502 A One Dimensional Cdᴵᴵ Coordination Polymer: Synthesis, Structure and Properties

Authors: Z. Derikvand, M. Dusek, V. Eigner

Abstract:

One dimensional coordination polymer of Cdᴵᴵ based on pyrazine (pz) and 3-nitrophthalic acid (3-nphaH₂), namely poly[[diaqua bis(3-nitro-2-carboxylato-1-carboxylic acid)(µ₂-pyrazine) cadmium(II)]dihydrate], {[Cd(3-nphaH)2(pz)(H₂O)₂]. 2H₂O}ₙ was prepared and characterized. The asymmetric unit consists of one Cdᴵᴵ center, two (3-nphaH)– anions, two halves of two crystallographically distinct pz ligands, two coordinated and two uncoordinated water molecules. The Cdᴵᴵ cation is surrounded by four oxygen atoms from two (3-nphaH)– and two water molecules as well as two nitrogen atoms from two pz ligands in distorted octahedral geometry. Complicated hydrogen bonding network accompanied with N–O···π and C–O···π stacking interactions leads to formation of a 3D supramolecular network. Commonly, this kind of C–O–π and N–O···π interaction is detected in electron-rich CO/NO groups of (3-nphaH)– ligand and electron-deficient π-system of pyrazine.

Keywords: supramolecular chemistry, Cd coordination polymer, crystal structure, 3-nithrophethalic acid

Procedia PDF Downloads 401
3501 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris

Abstract:

Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.

Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging

Procedia PDF Downloads 360
3500 The Task-Centered Instructional Strategy to Prepare Teachers for Integrating Robotics Activities in Science Education

Authors: Doaa Saad, Igor Verner, Rinat B. Rosenberg-Kima

Abstract:

This case study demonstrates how the Task-Centered Instructional Strategy can be used to develop robotics competencies in middle-school science teachers without programming knowledge, thereby reducing their anxiety about robotics. Sixteen middle school science teachers participated in a teachers’ professional development program. The strategy combines the progression of real-world tasks with explicit instruction that serves as the backbone of instruction. The designed progression includes three tasks that integrate building and programming robots, pedagogy, and science knowledge, with an increasing level of complexity and decreasing level of support. We used EV3 LEGO kits and programming blocks, a new technology for most of the participating teachers. Pre-post questionnaires were used to examine teachers’ anxiety in performing robotics tasks before the program began and after the program ended. In addition, post-program questionnaires were used to obtain teachers’ feedback on the program’s overall quality. The case study results showed that teachers were less anxious about performing robotics tasks after the program and were highly satisfied with the professional development program. Overall, our research findings indicate a positive effect of the Task-Centered Instructional Strategy for preparing in-service science teachers to integrate robotics activities into their science classes.

Keywords: competencies, educational robotics, task-centered instructional strategy, teachers’ professional development

Procedia PDF Downloads 86
3499 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network

Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello

Abstract:

Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.

Keywords: Internet of Things, LoRa, LoRaWAN, smart cities

Procedia PDF Downloads 148
3498 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation

Authors: Carl van Walraven, Meltem Tuna

Abstract:

Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.

Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation

Procedia PDF Downloads 235
3497 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet

Authors: Jan Schmidt, Pierre Köhring

Abstract:

Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.

Keywords: analytical model, eddy current, losses, lattice network, permanent magnet

Procedia PDF Downloads 421
3496 Integrated Location-Allocation Planning in Multi Product Multi Echelon Single Period Closed Loop Supply Chain Network Design

Authors: Santhosh Srinivasan, Vipul Garhiya, Shahul Hamid Khan

Abstract:

Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Single objective mathematical models for a total cost for the entire forward supply chain and reverse chain are considered. Here five different problems are considered by varying the number of facilities for illustration. M-MOGA, Shuffle Frog Leaping algorithm (SFLA) and CPLEX are used for finding the optimal solution for the mathematical model.

Keywords: closed loop supply chain, genetic algorithm, random search, multi period, green supply chain

Procedia PDF Downloads 391
3495 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir

Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi

Abstract:

Determination of water saturation in sandstone is a vital question to determine the initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting accepted values of Archie’s parameters and, consequently, reliable water saturation values. This work focuses on Archie’s parameters determination techniques; conventional technique, CAPE technique, and 3-D technique, and then the calculation of water saturation using current. Using the same data, a hybrid parallel self-organizing neural network (PSONN) algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted with statistical analysis, indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.

Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir

Procedia PDF Downloads 128