Search results for: Heck coupling reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3087

Search results for: Heck coupling reaction

1737 Superconducting Properties of Fe Doped in Cu-Site of Bi1.6Pb0.4Sr2Ca2Cu3-xFexOy

Authors: M. A. Suazlina, H. Azhan, S. A. Syamsyir, S. Y. S. Yusainee

Abstract:

Fe2O3 was doped to Bi-2223 superconductor prepared in bulk form using high purity oxide powders via solid state reaction technique with intermediate grinding. A stiochiometric of x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10 Fe are systematically added to the well balanced Bi1.6Pb0.4Sr2Ca2Cu3-xFexOy in order to trace the effect of Fe doping to the system. Microstructure, resistive transitions, phase volume, and cell parameters were hence investigated. Substitution of Fe is found to slowly decrease the Bi-2223 phase volume and the resistive transitions for x=0.00 – 0.10 samples whereas accelerated formation of the Bi-2212 phase is detected for further substitutions. Changes in superconducting properties of Fe-doping Bi-2223 system were discussed and the findings were further compared with available literature.

Keywords: BSCCO, critical temperature, critical current density, XRD, flux pinning

Procedia PDF Downloads 390
1736 Experimental Assessment of a Grid-Forming Inverter in Microgrid Islanding Operation Mode

Authors: Dalia Salem, Detlef Schulz

Abstract:

As Germany pursues its ambitious plan towards a power system based on renewable energy sources, the necessity to establish steady, robust microgrids becomes more evident. Inside the microgrid, there is at least one grid-forming inverter responsible for generating the coupling voltage and stabilizing the system frequency within the standardized accepted limits when the microgrid is forced to operate as a stand-alone power system. Grid-forming control for distributed inverters is required to enable steady control of a low-inertia power system. In this paper, a designed droop control technique is tested at the controller of an inverter as a component of a hardware test bed to understand the microgrid behavior in two modes of operation: i) grid-connected and ii) operating in islanding mode. This droop technique includes many current and voltage inner control loops, where the Q-V and P-f droop provide the required terminal output voltage and frequency. The technique is tested first in a simulation model of the inverter in MATLAB/SIMULINK, and the results are compared to the results of the hardware laboratory test. The results of this experiment illuminate the pivotal role of the grid-forming inverter in facilitating microgrid resilience during grid disconnection events and how microgrids could provide the functionality formerly provided by synchronous machinery, such as the black start process.

Keywords: microgrid, grid-forming inverters, droop-control, islanding-operation

Procedia PDF Downloads 70
1735 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna

Authors: Chuanzhi Chen, Wenjing Yu

Abstract:

Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.

Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation

Procedia PDF Downloads 146
1734 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 328
1733 Biocompatibilities of Various Calcium Silicate Cements

Authors: Seok Woo Chang, Kee Yeon Kum, Kwang Shik Bae, WooCheol Lee

Abstract:

Aim: The objective of this study was to compare the biocompatibilities and mineralization potential of ProRoot MTA and newly developed calcium phosphate based cement, Capseal. Materials and Methods: The biocompatibilities and mineralization-related gene expressions (Bone sialoprotein (BSP) and osteocalcin (OCN)) of ProRoot MTA and Capseal were also compared by a methylthiazol tetrazolium (MTT) assay and reverse transcription-polymerization chain reaction (RT-PCR) analysis on 1, 3, and 7 days, respectively. Empty rings were used as control group. The results were statistically analyzed by Kruskal-Wallis test with a Bonferroni correction. P-value of < 0.05 was considered significant. Results: The biocompatibilities of ProRoot MTA and Capseal were equally favorable. ProRoot MTA and Capseal affected the messenger RNA expression of osteocalcin and osteonectin. Conclusions: Based on the results, both ProRoot MTA and Capseal could be a useful biomaterial in clinical endodontics.

Keywords: biocompatibility, calcium silicate cement, MTT, RT-PCR

Procedia PDF Downloads 391
1732 Preparation of Heterogeneous Ferrite Catalysts and Their Application for Fenton-Like Oxidation of Radioactive Organic Wastewater

Authors: Hsien T. Hsieh, Chao R. Chen, Li C. Chuang, Chin C. Shen

Abstract:

Fenton oxidation technology is the general strategy for the treatment of organic compounds-contained wastewater. However, a considerable amount of ferric sludge was produced during the Fenton process as secondary wastes, which were needed to be further removed from the effluent and treated. In this study, heterogeneous catalysts based on ferrite oxide (Cu-Fe-Ce-O) were synthesized and characterized, and their application for Fenton-like oxidation of simulated and actual radioactive organic wastewater was investigated. The results of TOC decomposition efficiency around 54% ~ 99% were obtained when the catalyst loading, H2O2 loading, pH, temperature, and reaction time were controlled. In this case, no secondary wastes formed and the given catalysts were able to be separated by magnetic devices and reused again.

Keywords: fenton, oxidation, heterogeneous catalyst, wastewater

Procedia PDF Downloads 362
1731 Grain and Grain Boundary Behavior of Sm Substituted Barium Titanate Based Ceramics

Authors: Parveen Kumar, J. K. Juneja, Chandra Prakash, K. K. Raina

Abstract:

A series of polycrystalline ferroelectric ceramics with compositional formula Ba0.80-xSmxPb0.20Ti0.90Zr0.10O3 with x varying from 0 to 0.01 in the steps of 0.0025 has been prepared by solid state reaction method. The dielectric constant and tangent loss was measured as a function of frequency from 100Hz to 1MHz at different temperatures (200-500oC). The electrical behavior was then investigated using complex impedance spectroscopy (CIS) technique. From the CIS study, it has been found that there is a contribution of both grain and grain boundary in the electrical behavior of such ceramics. Grain and grain boundary resistivity and capacitance were calculated at different temperature using CIS technique. The present paper is about the discussion of grain and grain boundary contribution towards the electrical properties of Sm modified BaTiO3 based ceramics at high temperature.

Keywords: grain, grain boundary, impedance, dielectric

Procedia PDF Downloads 398
1730 Electroencephalography Activity during Sensory Organization Balance Test

Authors: Tariq Ali Gujar, Anita Hökelmann

Abstract:

Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.

Keywords: balance, electroencephalography activity, somatosensory, visual, vestibular

Procedia PDF Downloads 584
1729 Multifunctional Polydopamine-Silver-Polydopamine Nanofilm With Applications in Digital Microfluidics and SERS

Authors: Yilei Xue, Yat-Hing Ham, Wenting Qiu, Wan Chan, Stefan Nagl

Abstract:

Polydopamine (PDA) is a popular material in biological and medical applications due to its excellent biocompatibility, outstanding physicochemical properties, and facile fabrication. In this project, a new sandwich-structured PDA and silver (Ag) hybrid material named PDA-Ag-PDA was synthesized and characterized layer-by-layer, where silver nanoparticles (Ag NPs) are wrapped in PDA coatings, using SEM, AFM, 3D surface metrology, and contact angle meter. The silver loading capacity is positively proportional to the roughness value of the initial PDA film. This designed film was subsequently integrated within a digital microfluidic (DMF) platform coupling with an oxygen sensor layer for on-chip antibacterial assay. The concentration of E. coli was quantified on DMF by real-time monitoring oxygen consumption during E. coli growth with the optical oxygen sensor layer. The PDA-Ag-PDA coating shows an 99.9% reduction in E. coli population under non-nutritive condition with 1-hour treatment and has a strong growth inhibition of E. coliin nutrient LB broth as well. Furthermore, PDA-Ag-PDA film maintaining a low cytotoxicity effect to human cells. After treating with PDA-Ag-PDA film for 24 hours, 82% HEK 293 and 86% HeLa cells were viable. The SERS enhancement factor of PDA-Ag-PDA is estimated to be 1.9 × 104 using Rhodamine 6G (R6G). Multifunctional PDA-Ag-PDA coating provides an alternative platform to conjugate biomolecules and perform biological applications on DMF, in particular, for the adhesive protein and cell study.

Keywords: polydopamine, silver nanoparticles, digital microfluidic, optical sensor, antimicrobial assay, SERS

Procedia PDF Downloads 93
1728 Effect of Relative Humidity on Corrosion Behavior of SN-0.7Cu Solder under Polyvinyl Chloride Fire Smoke Atmosphere

Authors: Qian Li, Shouxiang Lu

Abstract:

With the rapid increase in electric power use, wire and cable fire occur more and more frequent. The fire smoke has a corrosive effect on the solders, which seriously affects the function of electronic equipment. In this research, the effect of environment relative humidity on corrosion behavior of Sn-0.7Cu solder has been researched under 140 g·m⁻³ polyvinyl chloride (PVC) fire smoke atmosphere. The mass loss of Sn-0.7Cu solder increased with the relative humidity. Furthermore, the microstructures and corrosion mechanism were analyzed by using SEM, EDS, XRD, and XPS. The result shows that Sn₂₁Cl₁₆(OH)₁₄O₆ is the main corrosion products and the corrosion process is an electrochemical reaction. The present work could provide guidance to the risk assessment for electronic equipment rescue after a fire.

Keywords: corrosion, fire smoke, relative humidity, Sn-0.7Cu solder

Procedia PDF Downloads 365
1727 Integrating GIS and Analytical Hierarchy Process-Multicriteria Decision Analysis for Identification of Suitable Areas for Artificial Recharge with Reclaimed Water

Authors: Mahmoudi Marwa, Bahim Nadhem, Aydi Abdelwaheb, Issaoui Wissal, S. Najet

Abstract:

This work represents a coupling between the geographic information system (GIS) and the multicriteria analysis aiming at the selection of an artificial recharge site by the treated wastewater for the Ariana governorate. On regional characteristics, bibliography and available data on artificial recharge, 13 constraints and 5 factors were hierarchically structured for the adequacy of an artificial recharge. The factors are subdivided into two main groups: environmental factors and economic factors. The adopted methodology allows a preliminary assessment of a recharge site, the weighted linear combination (WLC) and the analytical hierarchy process (AHP) in a GIS. The standardization of the criteria is carried out by the application of the different membership functions. The form and control points of the latter are defined by the consultation of the experts. The weighting of the selected criteria is allocated according to relative importance using the AHP methodology. The weighted linear combination (WLC) integrates the different criteria and factors to delineate the most suitable areas for artificial recharge site selection by treated wastewater. The results of this study showed three potential candidate sites that appear when environmental factors are more important than economic factors. These sites are ranked in descending order using the ELECTRE III method. Nevertheless, decision making for the selection of an artificial recharge site will depend on the decision makers in force.

Keywords: artificial recharge site, treated wastewater, analytical hierarchy process, ELECTRE III

Procedia PDF Downloads 166
1726 Micro- and Nanoparticle Transport and Deposition in Elliptic Obstructed Channels by Lattice Boltzmann Method

Authors: Salman Piri

Abstract:

In this study, a two-dimensional lattice Boltzmann method (LBM) was considered for the numerical simulation of fluid flow in a channel. Also, the Lagrangian method was used for particle tracking in one-way coupling. Three hundred spherical particles with specific diameters were released in the channel entry and an elliptical object was placed in the channel for flow obstruction. The effect of gravity, the drag force, the Saffman lift and the Brownian forces were evaluated in the particle motion trajectories. Also, the effect of the geometrical parameter, ellipse aspect ratio, and the flow characteristic or Reynolds number was surveyed for the transport and deposition of particles. Moreover, the influence of particle diameter between 0.01 and 10 µm was investigated. Results indicated that in small Reynolds, more inertial and gravitational trapping occurred on the obstacle surface for particles with larger diameters. Whereas, for nano-particles, influenced by Brownian diffusion and vortices behind the obstacle, the inertial and gravitational mechanisms were insignificant and diffusion was the dominant deposition mechanism. In addition, in Reynolds numbers larger than 400, there was no significant difference between the deposition of finer and larger particles. Also, in higher aspect ratios of the ellipse, more inertial trapping occurred for particles of larger diameter (10 micrometers), while in lower cases, interception and gravitational mechanisms were dominant.

Keywords: ellipse aspect elito, particle tracking diffusion, lattice boltzman method, larangain particle tracking

Procedia PDF Downloads 79
1725 Increasing of Gain in Unstable Thin Disk Resonator

Authors: M. Asl. Dehghan, M. H. Daemi, S. Radmard, S. H. Nabavi

Abstract:

Thin disk lasers are engineered for efficient thermal cooling and exhibit superior performance for this task. However the disk thickness and large pumped area make the use of this gain format in a resonator difficult when constructing a single-mode laser. Choosing an unstable resonator design is beneficial for this purpose. On the other hand, the low gain medium restricts the application of unstable resonators to low magnifications and therefore to a poor beam quality. A promising idea to enable the application of unstable resonators to wide aperture, low gain lasers is to couple a fraction of the out coupled radiation back into the resonator. The output coupling gets dependent on the ratio of the back reflection and can be adjusted independently from the magnification. The excitation of the converging wave can be done by the use of an external reflector. The resonator performance is numerically predicted. First of all the threshold condition of linear, V and 2V shape resonator is investigated. Results show that the maximum magnification is 1.066 that is very low for high quality purposes. Inserting an additional reflector covers the low gain. The reflectivity and the related magnification of a 350 micron Yb:YAG disk are calculated. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically by the Fox and Li algorithm. Results show that with back reflection mechanism in combination with increasing the number of beam incidents on disk, high gain and high magnification can occur.

Keywords: unstable resonators, thin disk lasers, gain, external reflector

Procedia PDF Downloads 413
1724 An Investigation of New Phase Diagram of Ag2SO4-CaSO4

Authors: Ravi V. Joat, Pravin S. Bodke, Shradha S. Binani, S. S. Wasnik

Abstract:

A phase diagram of the Ag2SO4 - CaSO4 (Silver sulphate – Calcium Sulphate) binaries system using conductivity, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis) data is constructed. The eutectic reaction (liquid -» a-Ag2SO4 + CaSO4) is observed at 10 mole% CaSO4 and 645°C. Room temperature solid solubility limit up to 5.27 mole % of Ca 2+ in Ag2SO4 is set using X-ray powder diffraction and scanning electron microscopy results. All compositions beyond this limit are two-phase mixtures below and above the transition temperature (≈ 416°C). The bulk conductivity, obtained following complex impedance spectroscopy, is found decreasing with increase in CaSO4 content. Amongst other binary compositions, the 80AgSO4-20CaSO4 gave improved sinterability/packing density.

Keywords: phase diagram, Ag2SO4-CaSO4 binaries system, conductivity, XRD, DTA

Procedia PDF Downloads 625
1723 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures

Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse

Abstract:

A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.

Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling

Procedia PDF Downloads 134
1722 Theoretical Study of Structural, Magnetic, and Magneto-Optical Properties of Ultrathin Films of Fe/Cu (001)

Authors: Mebarek Boukelkoul, Abdelhalim Haroun

Abstract:

By means of the first principle calculation, we have investigated the structural, magnetic and magneto-optical properties of the ultra-thin films of Fen/Cu(001) with (n=1, 2, 3). We adopted a relativistic approach using DFT theorem with local spin density approximation (LSDA). The electronic structure is performed within the framework of the Spin-Polarized Relativistic (SPR) Linear Muffin-Tin Orbitals (LMTO) with the Atomic Sphere Approximation (ASA) method. During the variational principle, the crystal wave function is expressed as a linear combination of the Bloch sums of the so-called relativistic muffin-tin orbitals centered on the atomic sites. The crystalline structure is calculated after an atomic relaxation process using the optimization of the total energy with respect to the atomic interplane distance. A body-centered tetragonal (BCT) pseudomorphic crystalline structure with a tetragonality ratio c/a larger than unity is found. The magnetic behaviour is characterized by an enhanced magnetic moment and a ferromagnetic interplane coupling. The polar magneto-optical Kerr effect spectra are given over a photon energy range extended to 15eV and the microscopic origin of the most interesting features are interpreted by interband transitions. Unlike thin layers, the anisotropy in the ultra-thin films is characterized by a perpendicular magnetization which is perpendicular to the film plane.

Keywords: ultrathin films, magnetism, magneto-optics, pseudomorphic structure

Procedia PDF Downloads 335
1721 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications

Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R

Abstract:

Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.

Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays

Procedia PDF Downloads 79
1720 Mutational Analysis of DNase I Gene in Diabetic Patients

Authors: Hateem Zafar Kayani, Nageen Hussain

Abstract:

The main aim is to analyze the mutations of DNASE I gene in diabetic patients. A total of 120 diabetes patients and 120 controls were sampled. The total number of male diabetic patients included in the study was 79 (66%) while female patients were 41 (34%) in number. Exon 8 of the DNASE I gene was amplified by using thermo cycler. The possible band of interest was located at 165 base pairs. Two samples showed similar missense mutations at 127th position of exon 8 which replaced amino acid Arginine (Arg) to Glutamine (Gln). All controls showed no mutations. The association of diabetes with different levels of blood pressure and body mass index (BMI) were found to be significant.

Keywords: deoxyribonuclease I, polymerase chain reaction, insulin-dependent diabetes mellitus, non-insulin dependent diabetes mellitus

Procedia PDF Downloads 325
1719 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions

Authors: Nisha Dhariwal, Anupama Sharma

Abstract:

The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.

Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization

Procedia PDF Downloads 301
1718 A Spectrophotometric Method for the Determination of Folic Acid - A Vitamin B9 in Pharmaceutical Dosage Samples

Authors: Chand Pasha, Yasser Turki Alharbi, Krasamira Stancheva

Abstract:

A simple spectrophotometric method for the determination of folic acid in pharmaceutical dosage samples was developed. The method is based on the diazotization reaction of thiourea with sodium nitrite in acidic medium yields diazonium compounds, which is then coupled with folic acid in basic medium yields yellow coloured azo dyes. Beer’s Lamberts law is observed in the range 0.5 – 16.2 μgmL-1 at a maximum wavelength of 416nm. The molar absorbtivity, sandells sensitivity, linear regression equation and detection limit and quantitation limit were found to be 5.695×104 L mol-1cm-1, 7.752×10-3 g cm-2, y= 0.092x - 0.018, 0.687 g mL-1 and 2.083 g mL-1. This method successfully determined Folate in Pharmaceutical formulations.

Keywords: folic acid determination, spectrophotometry, diazotization, thiourea, pharmaceutical dosage samples

Procedia PDF Downloads 76
1717 Analyzing the Influence of Gender onto Advertisement

Authors: Tamara Storozhenko

Abstract:

In the paper, we want to highlight the influence of the advertising field on gender and vice versa. We will show what it was like before and the way it has changed until nowadays. We will also analyze when and how advertisements are used to create gender stereotypes and at which moment gender became a shaping advertisement. In this paper, we work not only with pure advertisements (e.g., videos and printed materials) but also with films that contain ads. Special attention is placed on the separation of goods for the ‘male ones’ and ‘female ones’, specifically if they can be used independently of gender and sex (food items and some kinds of personal supplies). Also, in this paper, we represent the history of several advertising campaigns, including the following reaction of the society that demonstrated that some of the gender stereotypes were finding resonance while some of them were not heard. Moreover, advertisements could be used as a tool for creating new ones or developing stereotypes that had already existed, and it wasn’t always successful. In the final part of the paper, we would like to analyze the current situation in this area and show how the change of understanding gender made advertisement change.

Keywords: advertisement, gender studies, psycholinguistics, sociolinguistics

Procedia PDF Downloads 155
1716 Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System

Authors: Amil Daraz, Suheel Abdullah Malik, Tahir Saleem, Sajid Ali Bhati

Abstract:

In this paper, Integral Proportional (I-P) controller is employed for superheated steam temperature control system. The Ziegler-Nichols (Z-N) method is used for the tuning of I-P controller. The performance analysis of Z-N based I-P controller is assessed on superheated steam system of 500-MW boiler. The comparison of transient response parameters such as rise time, settling time, and overshoot is made with Z-N based Proportional Integral (PI) controller. It is observed from the results that Z-N based I-P controller completely eliminates the overshoot in the output response.

Keywords: superheated steam, process reaction curve, PI and I-P controller, Ziegler-Nichols Tuning

Procedia PDF Downloads 331
1715 Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals

Authors: A. Hamza, H. Kathyayini, N. Nagaraju

Abstract:

Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites.

Keywords: amorphous metal-aluminophosphates, surface properties, acidic-basic properties, Aldol, Claisen-Shmidth condensation, jasminaldehyde, chalcone

Procedia PDF Downloads 304
1714 Risk Management of Natural Disasters on Insurance Stock Market

Authors: Tarah Bouaricha

Abstract:

The impact of worst natural disasters is analysed in terms of insured losses which happened between 2010 and 2014 on S&P insurance index. Event study analysis is used to test whether natural disasters impact insurance index stock market price. There is no negative impact on insurance stock market price around the disasters event. To analyse the reaction of insurance stock market, normal returns (NR), abnormal returns (AR), cumulative abnormal returns (CAR), cumulative average abnormal returns (CAAR) and a parametric test on AR and on CAR are used.

Keywords: study event, natural disasters, insurance, reinsurance, stock market

Procedia PDF Downloads 395
1713 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes

Authors: Sofia Lazareva, Artem Smolentsev

Abstract:

Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.

Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state

Procedia PDF Downloads 679
1712 Fabricating Anti-Counterfeiting Films by Grafting Cationic Dye on Cellulose Nanofiber

Authors: Mohammadreza Biabani, Mohammad Azadfallah

Abstract:

A facile and robust strategy is required to fabricate films with high special optical properties for application in the field of anti-counterfeit marking. Nanocellulose, derived from bioresources, is a renewable material with broad application prospects. In this paper, a method for grafting the eco-friendly Berberine cationic dye on cellulose nanofiber is proposed. A functional modification was carried out by in-situ polymerization along with a grafting approach with acrylic acid(AA) in order to develop cationic dyeability of the cellulose nanofiber (CNF). The Berberine grafting on nanocellulose was significantly influenced by the reaction time and temperature during the dyeing process. The dyed CNF-films exhibited appropriate characteristics like appearance, color strength, and fastness for anti-counterfeiting application.

Keywords: Cellulose nanofiber, Berberine, Grafting, anti-counterfeiting, film

Procedia PDF Downloads 132
1711 Increase in the Persistence of Various Invaded Multiplex Metacommunities Induced by Heterogeneity of Motifs

Authors: Dweepabiswa Bagchi, D. V. Senthilkumar

Abstract:

Numerous studies have typically demonstrated the devastation of invasions on an isolated ecosystem or, at most, a network of dispersively coupled similar ecosystem patches. Using such a simplistic 2-D network model, one can only consider dispersal coupling and inter-species trophic interactions. However, in a realistic ecosystem, numerous species co-exist and interact trophically and non-trophically in groups of 2 or more. Even different types of dispersal can introduce complexity in an ecological network. Therefore, a more accurate representation of actual ecosystems (or ecological networks) is a complex network consisting of motifs formed by two or more interacting species. Here, the apropos structure of the network should be multiplex or multi-layered. Motifs between different patches or species should be identical within the same layer and vary from one layer to another. This study investigates three distinct ecological multiplex networks facing invasion from one or more external species. This work determines and quantifies the criteria for the increased extinction risk of these networks. The dynamical states of the network with high extinction risk, i.e., the danger states, and those with low extinction risk, i.e., the resistive network states, are both subsequently identified. The analysis done in this study further quantifies the persistence of the entire network corresponding to simultaneous changes in the strength of invasive dispersal and higher-order trophic and non-trophic interactions. This study also demonstrates that the ecosystems enjoy an inherent advantage against invasions due to their multiplex network structure.

Keywords: increased ecosystem persistence, invasion on ecosystems, multiplex networks, non-trophic interactions

Procedia PDF Downloads 64
1710 The Analysis of a Reactive Hydromagnetic Internal Heat Generating Poiseuille Fluid Flow through a Channel

Authors: Anthony R. Hassan, Jacob A. Gbadeyan

Abstract:

In this paper, the analysis of a reactive hydromagnetic Poiseuille fluid flow under each of sensitized, Arrhenius and bimolecular chemical kinetics through a channel in the presence of heat source is carried out. An exothermic reaction is assumed while the concentration of the material is neglected. Adomian Decomposition Method (ADM) together with Pade Approximation is used to obtain the solutions of the governing nonlinear non – dimensional differential equations. Effects of various physical parameters on the velocity and temperature fields of the fluid flow are investigated. The entropy generation analysis and the conditions for thermal criticality are also presented.

Keywords: chemical kinetics, entropy generation, thermal criticality, adomian decomposition method (ADM) and pade approximation

Procedia PDF Downloads 464
1709 The Concept and Practice of Good Governance in the European Union

Authors: Robert Grzeszczak

Abstract:

The article deals with one of the most significant issues concerning the functioning of the public sector in the European Union. The objectives of good governance were formulated by the EU itself and also the Scholars in reaction to the discussion that started a decade ago and concerned the role of the government in 21st century, the future of integration processes and globalization challenges in Europe. Currently, the concept of good governance is mainly associated with the improvement of management of public policies in the European Union, concerning both domestic and EU policies. However, it goes beyond the issues of state capacity and effectiveness of management. Good governance relates also to societal participation in the public administration and verification of decisions made in public authorities’ (including public administration). Indirectly, the concept and practice of good governance are connected to societal legitimisation of public bodies in the European Union.

Keywords: good governance, government, European law, European Union

Procedia PDF Downloads 560
1708 Poly(Lactic Acid) Based Flexible Films

Authors: Fathilahbinti Ali, Jamarosliza Jamaluddin, Arun Kumar Upadhyay

Abstract:

Poly(lactic acid) (PLA) is a biodegradable polymer which has good mechanical properties, however, its brittleness limits its usage especially in packaging materials. Therefore, in this work, PLA based polyurethane films were prepared by synthesizing with different types of isocyanates; methylene diisocyanate (MDI) and hexamethylene diisocyanates (HDI). For this purpose, PLA based polyurethane must have good strength and flexibility. Therefore, polycaprolactone which has better flexibility were prepared with PLA. An effective way to endow polylactic acid with toughness is through chain-extension reaction of the polylactic acid pre-polymer with polycaprolactone used as chain extender. Polyurethane prepared from MDI showed brittle behaviour, while, polyurethane prepared from HDI showed flexibility at same concentrations.

Keywords: biodegradable polymer, flexible, poly(lactic acid), polyurethane

Procedia PDF Downloads 352