Search results for: building life cycle energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18455

Search results for: building life cycle energy

4775 Supplementation of Mannan Oligosaccharides in Guinea Pigs: Mortality and Growth Performance

Authors: C. Minguez, J. Bueso-Rodenas, C. Ibanez, A. Calvo

Abstract:

Mannan oligosaccharides (MOS) is one of the prebiotic most used in livestock nutrition. In this research, the effect of MOS dietary supplementation on growth performance and mortality in meat guinea pigs were studied. Three different experimental groups were compared: Control group (no additives); MOS 1 (1.5 g kg−1); MOS 2 (2 g kg−1). Guinea pigs were housed in 15 collective cages (n = 50 animals in each trial; 10 animals per cage). The young guinea pigs were weaning at day 28 and individually identified by a little ear tag. The fattening period was 49 days. Guinea pigs in both groups were fed ad libitum, with a standard commercial pellet diet (10 MJ of digestible energy/kg, 17% crude protein, 11% crude fiber, and 4.5% crude fat) and alfalfa (Medicago sativa) as forage. Growth traits, including body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), were measured weekly. On day 74, the animals were slaughtered. Contrasts between groups were obtained by calculated generalized least squares values. Mortality were evaluated by Fisher's exact test. Between MOS groups no significant differences were observed for growth traits and mortality. However, significant differences against the control group were observed for traits studied (pvalue < 0.05). In conclusion, the use of MOS could be a good prebiotic supplement to raise guinea pigs because it MOS has shown positive effects in growth traits and immune response in animals.

Keywords: guinea pig, growth, mannan oligosaccharides, mortality

Procedia PDF Downloads 116
4774 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 34
4773 Labyrinthine Venous Vasculature Ablation for the Treatment of Sudden Sensorineural Hearing Loss: Two Case Reports

Authors: Kritin K. Verma, Bailey Duhon, Patrick W. Slater

Abstract:

Objective: To introduce the possible etiological role that the Labyrinthine Venous Vasculature (LVV) has in venous congestion of the cochlear system in Sudden Sensorineural Hearing Loss (SSNHL) patients. Patients: Two patients (62-year-old female, 50-year-old male) presented within twenty-four hours of onset of SSNHL. Intervention: Following failed conservative and salvage techniques, the patients underwent ablation of the labyrinthine venous vasculature ipsilateral to the side of the loss. Main Outcome Measures: Improvement of sudden SSNHL based on an improvement of pure-tone audiometric (PTA) low-tone scoring averages at 250, 500, and 1000 Hz. Word recognition scoring using the NU-6 word list was used to assess quality of life. Results: Case 1 experienced a 51.7 dB increase in low-tone PTA and an increased word recognition scoring of 90%. Case 2 experienced a 33.4 dB increase in low-tone PTA and 60% increase in word recognition score. No major complications noted. Conclusion: Two patients experienced significant improvement in their low-tone PTA and word recognition scoring following the labyrinthine venous vasculature ablation.

Keywords: case report, sudden sensorineural hearing loss, venous congestion, vascular ablation

Procedia PDF Downloads 115
4772 A Professional Learning Model for Schools Based on School-University Research Partnering That Is Underpinned and Structured by a Micro-Credentialing Regime

Authors: David Lynch, Jake Madden

Abstract:

There exists a body of literature that reports on the many benefits of partnerships between universities and schools, especially in terms of teaching improvement and school reform. This is because such partnerships can build significant teaching capital, by deepening and expanding the skillsets and mindsets needed to create the connections that support ongoing and embedded teacher professional development and career goals. At the same time, this literature is critical of such initiatives when the partnership outcomes are short- term or one-sided, misaligned to fundamental problems, and not expressly focused on building the desired teaching capabilities. In response to this situation, research conducted by Professor David Lynch and his TeachLab research team, has begun to shed light on the strengths and limitations of school/university partnerships, via the identification of key conceptual elements that appear to act as critical partnership success factors. These elements are theorised as an inter-play between professional knowledge acquisition, readiness, talent management and organisational structure. However, knowledge of how these elements are established, and how they manifest within the school and its teaching workforce as an overall system, remains incomplete. Therefore, research designed to more clearly delineate these elements in relation to their impact on school/university partnerships is thus required. It is within this context that this paper reports on the development and testing of a Professional Learning (PL) model for schools and their teachers that incorporates school-university research partnering within a systematic, whole-of-school PL strategy that is underpinned and structured by a micro-credentialing (MC) regime. MC involves learning a narrow-focused certificate (a micro-credential) in a specific topic area (e.g., 'How to Differentiate Instruction for English as a second language Students') and embedded in the teacher’s day-to-day teaching work. The use of MC is viewed as important to the efficacy and sustainability of teacher PL because it (1) provides an evidence-based framework for teacher learning, (2) has the ability to promote teacher social capital and (3) engender lifelong learning in keeping professional skills current in an embedded and seamless to work manner. The associated research is centred on a primary school in Australia (P-6) that acted as an arena to co-develop, test/investigate and report on outcomes for teacher PL that uses MC to support a whole-of-school partnership with a university.

Keywords: teaching improvement, teacher professional learning, talent management, education partnerships, school-university research

Procedia PDF Downloads 64
4771 Bio-Grouting Applications in Caprock Sealing for Geological CO2 Storage

Authors: Guijie Sang, Geo Davis, Momchil Terziev

Abstract:

Geological CO2 storage has been regarded as a promising strategy to mitigate the emission of greenhouse gas generated from traditional power stations and energy-intensive industry. Caprocks with very low permeability and ultra-fine pores create viscous and capillary barriers to guarantee CO2 sealing efficiency. However, caprock fractures, either naturally existing or artificially induced due to injection, could provide preferential paths for CO₂ escaping. Seeking an efficient technique to seal and strengthen caprock fractures is crucial. We apply microbial-induced-calcite-precipitation (MICP) technique for sealing and strengthening caprock fractures in the laboratory scale. The MICP bio-grouting technique has several advantages over conventional cement grouting methods, including its low viscosity, micron-size microbes (accessible to fine apertures), and low carbon footprint, among others. Different injection strategies are tested to achieve relatively homogenous calcite precipitation along the fractures, which is monitored dynamically based on laser ultrasonic technique. The MICP process in caprock fractures, which integrates the coupled flow and bio-chemical precipitation, is also modeled and validated through the experiment. The study could provide an effective bio-mediated grouting strategy for caprock sealing and thus ensuring a long-term safe geological CO2 storage.

Keywords: caprock sealing, geological CO2 storage, grouting strategy, microbial induced calcite precipitation

Procedia PDF Downloads 164
4770 Bioremediation of Sea Food Waste in Solid State Fermentation along with Production of Bioactive Agents

Authors: Rahul Warmoota, Aditya Bhardwaj, Steffy Angural, Monika Rana, Sunena Jassal, Neena Puri, Naveen Gupta

Abstract:

Seafood processing generates large volumes of waste products such as skin, heads, tails, shells, scales, backbones, etc. Pollution due to conventional methods of seafood waste disposal causes negative implications on the environment, aquatic life, and human health. Moreover, these waste products can be used for the production of high-value products which are still untapped due to inappropriate management. Paenibacillus sp. AD is known to act on chitinolytic and proteinaceous waste and was explored for its potential to degrade various types of seafood waste in solid-state fermentation. Effective degradation of seafood waste generated from a variety of sources such as fish scales, crab shells, prawn shells, and a mixture of such wastes was observed. 30 to 40 percent degradation in terms of decrease in the mass was achieved. Along with the degradation, chitinolytic and proteolytic enzymes were produced, which can have various biotechnological applications. Apart from this, value-added products such as chitin oligosaccharides and peptides of various degrees of polymerization were also produced, which can be used for various therapeutic purposes. Results indicated that Paenibacillus sp. AD can be used for the development of a process for the infield degradation of seafood waste.

Keywords: chitin, chitin-oligosaccharides, chitinase, protease, biodegradation, crab shells, prawn shells, fish scales

Procedia PDF Downloads 78
4769 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

Authors: Barenten Suciu

Abstract:

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Keywords: amplification of angular speed differential, circular concentric rails, double-cone, wave-powered electrical generator

Procedia PDF Downloads 135
4768 Perceptions and Attitudes toward Pain in Patients with Chronic Low-Back Pain

Authors: Naomi Sato, Tomonori Sato, Kenji Masui, Rob Stanborough

Abstract:

To date, there are few studies on the subjective experiences of patients with chronic low-back pain (CLBP). The purpose of this study was to gain a better understanding of CLBP patients’ perceptions and attitudes regarding pain. Individual, semi-constructed interviews were conducted with 7 Japanese and 10 Americans who had been diagnosed with CLBP. The interviews were transcribed verbatim and analyzed based on a content analysis approach. The study proposal was approved by the Institutional Review Board of the first author’s affiliate university. All participants provided written consent. Participants’ ages ranged from 48 to 82. Five main categories were emerged, namely, 'There are no reasons for long-term chronic pain,' 'Just will not worsen,' 'Have something to help me cope,' 'Pain restricts my life,' and 'Have something to relieve me.' Participants lived with CLBP, which could sometimes be avoided as a result of the coping strategies that they employed, and due to which they sometimes felt helpless, despite their efforts. As a result, they had mixed feelings, which included resignation, resoluteness, and optimism. However, their perceptions and attitudes toward pain seemed to differ based on their backgrounds, including biological, social, religious, and cultural status. There is a need for the development of a scale in future studies, to enable quantitative measurement of individuals’ perceptions of and attitudes toward pain. There is also a need for an investigation of factors influencing perceptions and attitudes toward pain.

Keywords: attitude, chronic low-back pain, perception, qualitative study

Procedia PDF Downloads 226
4767 Difference between 'HDR Ir-192 and Co-60 Sources' for High Dose Rate Brachytherapy Machine

Authors: Md Serajul Islam

Abstract:

High Dose Rate (HDR) Brachytherapy is used for cancer patients. In our country’s prospect, we are using only cervices and breast cancer treatment by using HDR. The air kerma rate in air at a reference distance of less than a meter from the source is the recommended quantity for the specification of gamma ray source Ir-192 in brachytherapy. The absorbed dose for the patients is directly proportional to the air kerma rate. Therefore the air kerma rate should be determined before the first use of the source on patients by qualified medical physicist who is independent from the source manufacturer. The air kerma rate will then be applied in the calculation of the dose delivered to patients in their planning systems. In practice, high dose rate (HDR) Ir-192 afterloader machines are mostly used in brachytherapy treatment. Currently, HDR-Co-60 increasingly comes into operation too. The essential advantage of the use of Co-60 sources is its longer half-life compared to Ir-192. The use of HDRCo-60 afterloading machines is also quite interesting for developing countries. This work describes the dosimetry at HDR afterloading machines according to the protocols IAEA-TECDOC-1274 (2002) with the nuclides Ir-192 and Co-60. We have used 3 different measurement methods (with a ring chamber, with a solid phantom and in free air and with a well chamber) in dependence of each of the protocols. We have shown that the standard deviations of the measured air kerma rate for the Co-60 source are generally larger than those of the Ir-192 source. The measurements with the well chamber had the lowest deviation from the certificate value. In all protocols and methods, the deviations stood for both nuclides by a maximum of about 1% for Ir-192 and 2.5% for Co-60-Sources respectively.

Keywords: Ir-192 source, cancer, patients, cheap treatment cost

Procedia PDF Downloads 208
4766 Investigation of Factors Affecting the Total Ionizing Dose Threshold of Electrically Erasable Read Only Memories for Use in Dose Rate Measurement

Authors: Liqian Li, Yu Liu, Karen Colins

Abstract:

The dose rate present in a seriously contaminated area can be indirectly determined by monitoring radiation damage to inexpensive commercial electronics, instead of deploying expensive radiation hardened sensors. EEPROMs (Electrically Erasable Read Only Memories) are a good candidate for this purpose because they are inexpensive and are sensitive to radiation exposure. When the total ionizing dose threshold is reached, an EEPROM chip will show signs of damage that can be monitored and transmitted by less susceptible electronics. The dose rate can then be determined from the known threshold dose and the exposure time, assuming the radiation field remains constant with time. Therefore, the threshold dose needs to be well understood before this method can be used. There are many factors affecting the threshold dose, such as the gamma ray energy spectrum, the operating voltage, etc. The purpose of this study was to experimentally determine how the threshold dose depends on dose rate, temperature, voltage, and duty factor. It was found that the duty factor has the strongest effect on the total ionizing dose threshold, while the effect of the other three factors that were investigated is less significant. The effect of temperature was found to be opposite to that expected to result from annealing and is yet to be understood.

Keywords: EEPROM, ionizing radiation, radiation effects on electronics, total ionizing dose, wireless sensor networks

Procedia PDF Downloads 155
4765 Validating Texture Analysis as a Tool for Determining Bioplastic (Bio)Degradation

Authors: Sally J. Price, Greg F. Walker, Weiyi Liu, Craig R. Bunt

Abstract:

Plastics, due to their long lifespan, are becoming more of an environmental concern once their useful life has been completed. There are a vast array of different types of plastic, and they can be found in almost every ecosystem on earth and are of particular concern in terrestrial environments where they can become incorporated into the food chain. Hence bioplastics have become more of interest to manufacturers and the public recently as they have the ability to (bio)degrade in commercial and in home composting situations. However, tools in which to quantify how they degrade in response to environmental variables are still being developed -one such approach is texture analysis using a TA.XT Texture Analyser, Stable Microsystems, was used to determine the force required to break or punch holes in standard ASTM D638 Type IV 3D printed bioplastic “dogbones” depending on the thicknesses of them. Manufacturers’ recommendations for calibrating the Texture Analyser are one such approach for standardising results; however, an independent technique using dummy dogbones and a substitute for the bioplastic was used alongside the samples. This approach was unexpectedly more valuable than realised at the start of the trial as irregular results were later discovered with the substitute material before valuable samples collected from the field were lost due to possible machine malfunction. This work will show the value of having an independent approach to machine calibration for accurate sample analysis with a Texture Analyser when analysing bioplastic samples.

Keywords: bioplastic, degradation, environment, texture analyzer

Procedia PDF Downloads 172
4764 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter

Authors: Mengmeng Liu, J. David Frost

Abstract:

Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.

Keywords: connectivity, interstate highway system, network analysis, resilience analysis

Procedia PDF Downloads 233
4763 Logistics Process of Pineapple’s Leaves Product in Prachuapkhirikhan Province

Authors: Atcharawan Phenwansuk

Abstract:

The product design is important to the development of SME towards the global, because it made to the quality product to react the needs of consumers and could reduces cost in the production, making it more profitable. As a results, the business are competition advantage for more marketing. It also enhance image of product and firms to build its own brand products to be acceptable. The product was designed should be shape, size, colorful, and direct of target consumers. This is method to add value products to get popular and effective, because the beauty is first satisfaction which come from main shape and color of the design product, but the product was designed need to hold data and law combination of shape and color between artistic theory and satisfaction of consumers together. The design must consider the safety of life and asset of consumers the most important. From to use of designed products should be to consider the cost savings, convenient distance, transportation, routes (land, water or air) of living space on transport (capacity, volume, width, length of the car, truck and container, etc). The packaging must be can to prevent not damage of the products. If products is more large , maybe to design new packaging, which can easily disassembled for make smaller package such as designing the assembly. Products must be packed in the container for size standard for save costs, as well as the buyer can make transport and assembly of products to fit easily on your own.

Keywords: logistics process , pineapple’s leaves product, product design, satisfaction of consumers

Procedia PDF Downloads 379
4762 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: amplitude-independent damping, homogeneous friction, pendulum nonlinear dynamics, structural control, vibration resonant absorbers

Procedia PDF Downloads 126
4761 Investigation of the Mechanical Performance of Carbon Nanomembranes for Water Separation Technologies

Authors: Marinos Dimitropoulos, George Trakakis, Nikolaus Meyerbröker, Raphael Dalpke, Polina Angelova, Albert Schnieders, Christos Pavlou, Christos Kostaras, Costas Galiotis, Konstantinos Dassios

Abstract:

Intended for purifying water, water separation technologies are widely employed in a variety of contemporary household and industrial applications. Ultrathin Carbon Nanomembranes (CNMs) offer a highly selective, fast-flow, energy-efficient water separation technology intended for demanding water treatment applications as a technological replacement for biological filtration membranes. The membranes are two-dimensional (2D) materials with sub-nm functional pores and a thickness of roughly 1 nm; they may be generated in large quantities on porous supporting substrates and have customizable properties. The purpose of this work was to investigate and analyze the mechanical characteristics of CNMs and their substrates in order to ensure the structural stability of the membrane during operation. Contrary to macro-materials, it is difficult to measure the mechanical properties of membranes that are only a few nanometers thick. The membranes were supported on atomically flat substrates as well as suspended over patterned substrates, and their inherent mechanical properties were tested with atomic force microscopy. Quantitative experiments under nanomechanical loading, nanoindentation, and nano fatigue demonstrated the membranes' potential for usage in water separation applications.

Keywords: carbon nanomembranes, mechanical properties, AFM

Procedia PDF Downloads 63
4760 An Empirical Study of Students’ Learning Attitude, Problem-solving Skills and Learning Engagement in an Online Internship Course During Pandemic

Authors: PB Venkataraman

Abstract:

Most of the real-life problems are ill-structured. They do not have a single solution but many competing solutions. The solution paths are non-linear and ambiguous, and the problem definition itself is many times a challenge. Students of professional education learn to solve such problems through internships. The current pandemic situation has constrained on-site internship opportunities; thus the students have no option but to pursue this learning online. This research assessed the learning gain of four undergraduate students in engineering as they undertook an online internship in an organisation over a period of eight weeks. A clinical interview at the end of the internship provided the primary data to assess the team’s problem-solving skills using a tested rubric. In addition to this, change in their learning attitudes were assessed through a pre-post study using a repurposed CLASS instrument for Electrical Engineering. Analysis of CLASS data indicated a shift in the sophistication of their learning attitude. A learning engagement survey adopting a 6-point Likert scale showed active participation and motivation in learning. We hope this new research will stimulate educators to exploit online internships even beyond the time of pandemic as more and more business operations are transforming into virtual.

Keywords: ill-structured problems, learning attitudes, internship, assessment, student engagement

Procedia PDF Downloads 188
4759 i2kit: A Tool for Immutable Infrastructure Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservice architectures are increasingly in distributed cloud applications due to the advantages on the software composition, development speed, release cycle frequency and the business logic time to market. On the other hand, these architectures also introduce some challenges on the testing and release phases of applications. Container technology solves some of these issues by providing reproducible environments, easy of software distribution and isolation of processes. However, there are other issues that remain unsolved in current container technology when dealing with multiple machines, such as networking for multi-host communication, service discovery, load balancing or data persistency (even though some of these challenges are already solved by traditional cloud vendors in a very mature and widespread manner). Container cluster management tools, such as Kubernetes, Mesos or Docker Swarm, attempt to solve these problems by introducing a new control layer where the unit of deployment is the container (or the pod — a set of strongly related containers that must be deployed on the same machine). These tools are complex to configure and manage and they do not follow a pure immutable infrastructure approach since servers are reused between deployments. Indeed, these tools introduce dependencies at execution time for solving networking or service discovery problems. If an error on the control layer occurs, which would affect running applications, specific expertise is required to perform ad-hoc troubleshooting. As a consequence, it is not surprising that container cluster support is becoming a source of revenue for consulting services. This paper presents i2kit, a deployment tool based on the immutable infrastructure pattern, where the virtual machine is the unit of deployment. The input for i2kit is a declarative definition of a set of microservices, where each microservice is defined as a pod of containers. Microservices are built into machine images using linuxkit —- a tool for creating minimal linux distributions specialized in running containers. These machine images are then deployed to one or more virtual machines, which are exposed through a cloud vendor load balancer. Finally, the load balancer endpoint is set into other microservices using an environment variable, providing service discovery. The toolkit i2kit reuses the best ideas from container technology to solve problems like reproducible environments, process isolation, and software distribution, and at the same time relies on mature, proven cloud vendor technology for networking, load balancing and persistency. The result is a more robust system with no learning curve for troubleshooting running applications. We have implemented an open source prototype that transforms i2kit definitions into AWS cloud formation templates, where each microservice AMI (Amazon Machine Image) is created on the fly using linuxkit. Even though container cluster management tools have more flexibility for resource allocation optimization, we defend that adding a new control layer implies more important disadvantages. Resource allocation is greatly improved by using linuxkit, which introduces a very small footprint (around 35MB). Also, the system is more secure since linuxkit installs the minimum set of dependencies to run containers. The toolkit i2kit is currently under development at the IMDEA Software Institute.

Keywords: container, deployment, immutable infrastructure, microservice

Procedia PDF Downloads 157
4758 Evaluation of Medication Administration Process in a Paediatric Ward

Authors: Zayed Alsulami, Asma Aldosseri, Ahmed Ezziden, Abdulrahman Alonazi

Abstract:

Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding the medication administration process should be improved.

Keywords: medication sasfety, paediatric, medication errors, paediatric ward

Procedia PDF Downloads 373
4757 Perception Towards Palliative Patients’ Healthcare Needs: A Survey of Patients and Carers

Authors: Che Zarrina Sa'ari, Sheriza Izwa Zainuddin, Hasimah Chik, Sharifah Basirah Syed Muhsin

Abstract:

Palliative care is holistic care for patients with serious illnesses and for the family as well by interdisciplinary specialties to optimize quality of life by preventing, treating, and comforting the suffering and struggling. Palliative care is not a curative treatment but a comprehensive care to ensure the well-being of patients. This study was to identify the perceptions of patients and carers on healthcare needs and any factors related to the needs of palliative patients. Validated questionnaires survey of 254 patients and carers were analysed using a Statistical Package for the Social Sciences (SPSS) version 22. The findings were processed with Cronbach Alpha analysis, frequency, and descriptive to compare the important of each element in healthcare. Open-ended responses were analysed using thematic framework approach. The findings proved that all the items in healthcare needs elements were important because the frequency shown higher values, which were physical needs (5.91), mental needs (6.10), spiritual needs (6.34), emotional needs (6.05), social needs (5.88) and logistics needs (5.05). The total score of Cronbach’s alpha (α) for this study is 0.958, which is suggesting very good internal consistency reliability for the elements for healthcare needs. Professionals and healthcare providers need to ensure healthcare planning is individualised by tailoring it to the values, priorities, and ethnic/cultural/religious context of each person.

Keywords: healthcare, need, holistic, palliative, multi speciality

Procedia PDF Downloads 62
4756 Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor

Authors: Weerinda Appamana, Jirapong Keawkoon, Yamonporn Pacthong, Jirathiti Chitsanguansuk, Yanyong Sookklay

Abstract:

In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production.

Keywords: spinning disc reactor, biodiesel, process intensification, yield efficiency

Procedia PDF Downloads 136
4755 Titanium Nitride Nanoparticles for Biological Applications

Authors: Nicole Nazario Bayon, Prathima Prabhu Tumkur, Nithin Krisshna Gunasekaran, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Titanium nitride (TiN) nanoparticles have sparked interest over the past decade due to their characteristics such as thermal stability, extreme hardness, low production cost, and similar optical properties to gold. In this study, TiN nanoparticles were synthesized via a thermal benzene route to obtain a black powder of nanoparticles. The final product was drop cast onto conductive carbon tape and sputter coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDX) that revealed they were spherical. ImageJ software determined the average size of the TiN nanoparticles was 79 nm in diameter. EDX revealed the elements present in the sample and showed no impurities. Further characterization by X-ray diffraction (XRD) revealed characteristic peaks of cubic phase titanium nitride, and crystallite size was calculated to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size and size distribution of the TiN nanoparticles, with average size being 154 nm. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged. Biocompatibility studies using MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay showed TiN nanoparticles are not cytotoxic at low concentrations (2, 5, 10, 25, 50, 75 mcg/well), and cell viability began to decrease at a concentration of 100 mcg/well.

Keywords: biocompatibility, characterization, cytotoxicity, nanoparticles, synthesis, titanium nitride

Procedia PDF Downloads 152
4754 Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance

Authors: Md. Mizanur Rahman, Chu Chi Ming, Mohd Suffian Bin Misaran

Abstract:

Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option.

Keywords: natural draft dhimney, wire mesh screen, natural draft flow, mechanical engineering

Procedia PDF Downloads 300
4753 The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating

Authors: Asma Salman, Brian Gabbitas, Peng Cao, Deliang Zhang

Abstract:

The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment.

Keywords: coating, feedstock, powder processing, thermal shock resistance, thermally spraying

Procedia PDF Downloads 248
4752 A Kinetic Study on Recovery of High-Purity Rutile TiO₂ Nanoparticles from Titanium Slag Using Sulfuric Acid under Sonochemical Procedure

Authors: Alireza Bahramian

Abstract:

High-purity TiO₂ nanoparticles (NPs) with size ranging between 50 nm and 100 nm are synthesized from titanium slag through sulphate route under sonochemical procedure. The effect of dissolution parameters such as the sulfuric acid/slag weight ratio, caustic soda concentration, digestion temperature and time, and initial particle size of the dried slag on the extraction efficiency of TiO₂ and removal of iron are examined. By optimizing the digestion conditions, a rutile TiO₂ powder with surface area of 42 m²/g and mean pore diameter of 22.4 nm were prepared. A thermo-kinetic analysis showed that the digestion temperature has an important effect, while the acid/slag weight ratio and initial size of the slag has a moderate effect on the dissolution rate. The shrinking-core model including both chemical surface reaction and surface diffusion is used to describe the leaching process. A low value of activation energy, 38.12 kJ/mol, indicates the surface chemical reaction model is a rate-controlling step. The kinetic analysis suggested a first order reaction mechanism with respect to the acid concentrations.

Keywords: TiO₂ nanoparticles, titanium slag, dissolution rate, sonochemical method, thermo-kinetic study

Procedia PDF Downloads 236
4751 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape

Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca

Abstract:

ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.

Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)

Procedia PDF Downloads 83
4750 China’s Hedging Strategy in Response to the Russia-Ukraine Conflict

Authors: Zhao Xinlei

Abstract:

The outbreak of the Ukraine crisis has had an important impact on the global political and economic order, especially the global food crisis and energy crisis, thus aggravating social and political conflicts. At the same time, with the intensification of the Ukraine crisis, the United States and European countries have imposed severe economic sanctions on Russia to prevent and contain Russia's special military operations against Ukraine. The essence of the Ukraine crisis is a geopolitical conflict and competition between Russia and the United States. For a long time, the United States has always regarded Russia as a serious strategic crisis and challenge. Therefore, for the United States, the outbreak of the Ukraine crisis is an extremely important opportunity to condemn and stop Russia's actions from an international perspective. In this process, China plays a very special role. This special positioning is not only reflected in the long-term friendly relationship between China and Russia and mutual support and assistance on the international stage but also in the complex economic relationship and interdependence between China and the United States. Therefore, China has adopted a "hedging strategy" in dealing with the Ukrainian crisis, and the use of the hedging strategy not only plays a special role in safeguarding China's own security and interests but also because China can act as an intermediary to coordinate Russia and the United States to promote the resolution of the Ukrainian crisis in a peaceful manner.

Keywords: Ukraine crisis Russia-Ukraine conflict balanced strategy Sino-US competition

Procedia PDF Downloads 60
4749 Transition Metal Carbodiimide vs. Spinel Matrices for Photocatalytic Water Oxidation

Authors: Karla Lienau, Rafael Müller, René Moré, Debora Ressnig, Dan Cook, Richard Walton, Greta R. Patzke

Abstract:

The increasing demand for renewable energy sources and storable fuels underscores the high potential of artificial photosynthesis. The four electron transfer process of water oxidation remains the bottleneck of water splitting, so that special emphasis is placed on the development of economic, stable and efficient water oxidation catalysts (WOCs). Our investigations introduced cobalt carbodiimide CoNCN and its transition metal analogues as WOC types, and further studies are focused on the interaction of different transition metals in the convenient all-nitrogen/carbon matrix. This provides further insights into the nature of the ‘true catalyst’ for cobalt centers in this non-oxide environment. Water oxidation activity is evaluated with complementary methods, namely photocatalytically using a Ru-dye sensitized standard setup as well as electrocatalytically, via immobilization of the WOCs on glassy carbon electrodes. To further explore the tuning potential of transition metal combinations, complementary investigations were carried out in oxidic spinel WOC matrices with more versatile host options than the carbodiimide framework. The influence of the preparative history on the WOC performance was evaluated with different synthetic methods (e.g. hydrothermally or microwave assisted). Moreover, the growth mechanism of nanoscale Co3O4-spinel as a benchmark WOC was investigated with in-situ PXRD techniques.

Keywords: carbodiimide, photocatalysis, spinels, water oxidation

Procedia PDF Downloads 267
4748 Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution

Authors: Mohammed Ali Hjaji, Magdi Mohareb

Abstract:

This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects.

Keywords: asymmetric cross-section, flexural-lateral-torsional response, Vlasov-Timoshenko beam theory, closed form solution

Procedia PDF Downloads 450
4747 SAFECARE: Integrated Cyber-Physical Security Solution for Healthcare Critical Infrastructure

Authors: Francesco Lubrano, Fabrizio Bertone, Federico Stirano

Abstract:

Modern societies strongly depend on Critical Infrastructures (CI). Hospitals, power supplies, water supplies, telecommunications are just few examples of CIs that provide vital functions to societies. CIs like hospitals are very complex environments, characterized by a huge number of cyber and physical systems that are becoming increasingly integrated. Ensuring a high level of security within such critical infrastructure requires a deep knowledge of vulnerabilities, threats, and potential attacks that may occur, as well as defence and prevention or mitigation strategies. The possibility to remotely monitor and control almost everything is pushing the adoption of network-connected devices. This implicitly introduces new threats and potential vulnerabilities, posing a risk, especially to those devices connected to the Internet. Modern medical devices used in hospitals are not an exception and are more and more being connected to enhance their functionalities and easing the management. Moreover, hospitals are environments with high flows of people, that are difficult to monitor and can somehow easily have access to the same places used by the staff, potentially creating damages. It is therefore clear that physical and cyber threats should be considered, analysed, and treated together as cyber-physical threats. This means that an integrated approach is required. SAFECARE, an integrated cyber-physical security solution, tries to respond to the presented issues within healthcare infrastructures. The challenge is to bring together the most advanced technologies from the physical and cyber security spheres, to achieve a global optimum for systemic security and for the management of combined cyber and physical threats and incidents and their interconnections. Moreover, potential impacts and cascading effects are evaluated through impact propagation models that rely on modular ontologies and a rule-based engine. Indeed, SAFECARE architecture foresees i) a macroblock related to cyber security field, where innovative tools are deployed to monitor network traffic, systems and medical devices; ii) a physical security macroblock, where video management systems are coupled with access control management, building management systems and innovative AI algorithms to detect behavior anomalies; iii) an integration system that collects all the incoming incidents, simulating their potential cascading effects, providing alerts and updated information regarding assets availability.

Keywords: cyber security, defence strategies, impact propagation, integrated security, physical security

Procedia PDF Downloads 144
4746 Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies

Authors: Jiyaul Haque, Vandana Srivastava, M. A. Quraishi

Abstract:

The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed.

Keywords: electrochemical impedance spectroscopy, green corrosion inhibitors, mild steel, SEM, quantum chemical calculation, zwitterions

Procedia PDF Downloads 162