Search results for: washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3059

Search results for: washing machine

1739 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 77
1738 Extraction of Dye from Coconut Husk and Its Application on Wool and Silk

Authors: Deepali Rastogi

Abstract:

Natural dyes are considered to be eco-friendly as they cause no pollution and are safe to use. With the growing interest in natural dyes, new sources of natural dyes are being explored. Coconut (Cocos nucifera) is native to tropical eastern region. It is abundantly available in Asia, Africa and South America. While coconut has tremendous commercial value in food, oil, pharmaceutical and cosmetic industry, the most important use of coconut husk has been as coir which is used for making mats, ropes, etc. In the present study an attempt has been made to extract dye from the coconut husk and study its application on wool and silk. Dye was extracted from coconut husk in an aqueous medium at three different pH. The coconut husk fibres were boiled in water at different pH of 4, 7 and 9 for one hour. On visual inspection of the extracted dye solution, maximum colour was found to be extracted at pH 9. The solution was obtained in neutral medium whereas, no dye was extracted in acidic medium. Therefore, alkaline medium at pH 9 was selected for the extraction of dye from coconut husk. The extracted dye was applied on wool and silk at three different pH, viz., 4, 7 and 9. The effect of pre- and post- mordanting with alum and ferrous sulphate on the colour value of coconut husk dye was also studied. The L*a*b*/L*c*h* values were measured to see the effect of the mordants on the colour values of all the dyed and mordanted samples. Bright golden brown to dark brown colours were obtained at pH 4 on both wool and silk. The colour yield was not very good at pH 7 and 9. Mordanting with alum resulted in darker and brighter shades of brown, whereas mordanting with ferrous sulphate resulted in darker and duller shades. All the samples were tested for colourfastness to light, rubbing, washing and perspiration. Both wool and silk dyed with dye extracted from coconut husk exhibited good to excellent wash, rub and perspiration fastness. Fastness to light was moderate to good.

Keywords: coconut husk, wool, silk, natural dye, mordants

Procedia PDF Downloads 429
1737 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 148
1736 Smart Safari: Safari Guidance Mobile Application

Authors: D. P. Lawrence, T. M. M. D. Ariyarathna, W. N. K. De Silva, M. D. S. C. De Silva, Lasantha Abeysiri, Pradeep Abeygunawardhna

Abstract:

Safari traveling is one of the most famous hobbies all over the world. In Sri Lanka, 'Yala' is the second-largest national park, which is a better place to go for a safari. Many number of local and foreign travelers are coming to go for a safari in 'Yala'. But 'Yala' does not have a mobile application that is made to facilitate the traveler with some important features that the traveler wants to achieve in the safari experience. To overcome these difficulties, the proposed mobile application by adding those identified features to make travelers, guiders, and administration's works easier. The proposed safari traveling guidance mobile application is called 'SMART SAFARI' for the 'Yala' National Park in Sri Lanka. There are four facilities in this mobile application that provide for travelers as well as the guiders. As the first facility, the guider and traveler can view the created map of the park, and the guider can add temporary locations of animals and special locations on the map. This is a Geographic Information System (GIS) to capture, analyze, and display geographical data. And as the second facility is to generate optimal paths according to the travelers' requirements through the park by using machine learning techniques. In the third part, the traveler can get information about animals using an animal identification system by capturing the animal. As in the other facility, the traveler will be facilitated to add reviews and a rate and view those comments under categorized sections and pre-defined score range. With those facilities, this user-friendly mobile application provides the user to get a better experience in safari traveling, and it will probably help to develop tourism culture in Sri Lanka.

Keywords: animal identification system, geographic information system, machine learning techniques, pre defined score range

Procedia PDF Downloads 133
1735 Roll Forming Process and Die Design for a Large Size Square Tube

Authors: Jinn-Jong Sheu, Cang-Fu Liang, Cheng-Hsien Yu

Abstract:

This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making.

Keywords: cold roll forming, FEM analysis, roll forming die design, tube roll forming

Procedia PDF Downloads 311
1734 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 21
1733 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia

Authors: David Robert Irvine

Abstract:

In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.

Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear

Procedia PDF Downloads 160
1732 Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese

Abstract:

Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness.

Keywords: water purification, polyelectrolytes, membrane modification, layer-by-layer coating, ceramic membranes

Procedia PDF Downloads 246
1731 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 229
1730 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research

Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde

Abstract:

Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.

Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing

Procedia PDF Downloads 95
1729 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market

Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago

Abstract:

An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.

Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis

Procedia PDF Downloads 64
1728 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 176
1727 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 111
1726 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
1725 Customized Temperature Sensors for Sustainable Home Appliances

Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy

Abstract:

Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.

Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency

Procedia PDF Downloads 73
1724 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine

Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland

Abstract:

The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.

Keywords: force-velocity, leg-press, power-velocity, profiling, reliability

Procedia PDF Downloads 58
1723 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 90
1722 Development and Characterization of Cobalt Metal Loaded ZSM-5 and H-ZSM-5 Catalyst for Fischer -Tropsch Synthesis

Authors: Shashank Bahri, Divyanshu Arya, Rajni Jain, Sreedevi Upadhyayula

Abstract:

Petroleum products can be obtained from syngas catalytic conversion using Fischer Tropsch Reaction. The liquid fuels obtained from FTS are sulphur and nitrogen free and thus may easily meet the increasing stringent environment regulations. In the present work we have synthesized Meso porous ZSM-5 supported catalyst. Meso structure were created in H-ZSM-5 crystallites by demetalation via subsequent base and acid treatment. Desilication through base treatment provides H-ZSM-5 with pore size and volumes similar to amorphous SiO2 (Conventional Carrier). Modifying the zeolite texture and surface chemistry by Desilication and acid washing alters its accessibility and interactions with metal phase and consequently the CO adsorption behavior and hydrocarbon product distribution. Increasing the mesoporosity via desilication provides the micro porous zeolite with essential surface area to support optimally sized metal crystallites. This improves the metal dispersion and hence improve the activity of the catalyst. Transition metal (Co) was loaded using wet impregnation method. Synthesized catalysts were characterized by Infrared Spectroscopy, Powdered X-Ray Diffraction, Scanning Electron Microscopy (SEM), BET Method analytical techniques. Acidity of the catalyst which plays an important role in FTS reaction was measured by DRIFT setup pyridine adsorption instead of NH3 Temperature Programmed Desorption. The major difference is that, Pyridine Adsorption can distinguish between Lewis acidity and Bronsted Acidity, thus giving their relative strengths in the catalyst sample, whereas TPD gives total acidity including Lewis and Bronsted ones.

Keywords: mesopourus, fischer tropsch reaction, pyridine adsorrption, drift study

Procedia PDF Downloads 300
1721 Effect of Variety and Fibre Type on Functional and organoleptic Properties of Plantain Flour Intended for Food "Fufu"

Authors: C. C. Okafor

Abstract:

The effect of different varieties of plantain (Horn, false horn and French) and fibre types (soy bean residue, cassava sievette and rice bran) on functional and organoleptic properties of plantain-based flour was assessed. Horn, false horn french were processed by washing, peeling with knife, slicing into 3mm thickness and steam blanched at 80℃ for 5minutes, oven dried at 65℃ for 48 hours and milled into flours with attrition mill, sieved with 60 mesh sieve, separately. Fibre sources were processed, milled and fractionated into 60, 40 & 20 mesh sizes. Both flours were blended as 80:20, 70:30 and 60:40. Results obtained indicated that water absorption capacity is highest (2.68) in French plantain variety irrespective of the fibre type used. And in all variety tested the swelling capacity is highest (2.93) when the plantain flour is blended with soy residue (SR) and lowest (1.25) when blended with rice brain (RB). The results show that there is significant variety and fibre type interaction effect at (P < : 0.05). Again the results showed that texture mold ability and overall acceptability were best (7.00) when soy residue was used where as addition of rice bran into plantain flour resulted in fufu with poor texture. This trend was observed in all the verities of plantain tested and in all of the particle size of flour. Using cassava serviette also yield fufu similar to that produced with soy residue in all the parameter tested (mold ability, texture and overall acceptability. Generally, plantain flours from french and false horn yielded better quality fufu in terms of texture mold ability, overall acceptability, irrespective of the fibre type used.

Keywords: functional, organoleptic, particle size, sieve mesh, variety

Procedia PDF Downloads 408
1720 Influence of Magnetized Water on the Split Tensile Strength of Concrete

Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa

Abstract:

Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.

Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine

Procedia PDF Downloads 146
1719 Influence of Different Rhizome Sizes and Operational Speed on the Field Capacity and Efficiency of a Three–Row Turmeric Rhizome Planter

Authors: Muogbo Chukwudi Peter, Gbabo Agidi

Abstract:

Influence of different turmeric rhizome sizes and machine operational speed on the field capacity and efficiency of a developed prototype tractor-drawn turmeric planter was studied. This was done with a view to ascertaining how the field capacity and field efficiency were affected by the turmeric rhizome lengths and tractor operational speed. The turmeric rhizome planter consists of trapezoidal hopper, grooved cylindrical metering devise, rectangular frame, ground wheels made of mild steel, furrow opener, chain/sprocket drive system, three linkage point seed delivery tube and press wheel. The experiment was randomized in a factorial design of three levels of rhizome lengths (30, 45 and 60 mm) and operational speeds of 8, 10, and 12 kmh-1. About 3 kg cleaned turmeric rhizomes were introduced into each hopper of the planter and were planted 30 m2 of experimental plot. During the field evaluation of the planter, the effective field capacity, field efficiency, missing index, multiple index and percentage rhizome bruise were evaluated. 30.08% was recorded for maximum percentage bruise on the rhizome. The mean effective field capacity ranged between 0.63 – 0.96hah-1 at operational speeds of 8 and 12kmh-1 respectively and 45 mm rhizome length. The result also shows that the mean efficiency was obtained to be 65.8%. The percentage rhizome bruise decreases with increase in operational speed. The highest and lowest percentage turmeric rhizome miss index of 35% were recorded for turmeric rhizome length of 30 mm at a speed of 10 kmhr-1 and 8 kmhr-1, respectively. The potential implications of the experimental result is to determine the optimal machine process conditions for higher field capacity and gross reduction in mechanical injury (bruise) of planted turmeric rhizomes.

Keywords: rhizome sizes, operational speed, field capacity. field efficiency, turmeric rhizome, planter

Procedia PDF Downloads 62
1718 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 109
1717 Study on the Mechanism of CO₂-Viscoelastic Fluid Synergistic Oil Displacement in Tight Sandstone Reservoirs

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Tight oil reservoirs have poor physical properties, insufficient formation energy, and low natural productivity; it is necessary to effectively improve their crude oil recovery. CO₂ flooding is an important technical means to enhance oil recovery and achieve effective CO₂ storage in tight oil reservoirs, but its heterogeneity is strong, which makes CO₂ flooding prone to gas channeling and poor recovery. Aiming at the problem of gas injection channeling, combined with the excellent performance of low interfacial tension viscoelastic fluid (GOBTK), the research on CO₂-low interfacial tension viscoelastic fluid synergistic oil displacement in tight reservoirs was carried out, and the synergy of CO₂ and low interfacial tension viscoelastic fluid was discussed. Oil displacement mechanism. Experiments show that GOBTK has good injectability in tight oil reservoirs (Kg=0.141~0.793mD); CO₂-0.4% GOBTK synergistic flooding can improve the recovery factor of low permeability layers (31.41%) under heterogeneous (gradient difference of 10) conditions the) effect is better than that of CO₂ flooding (0.56%) and 0.4% GOBT-water flooding (20.99%); CO₂-GOBT synergistic oil displacement mechanism includes: 1) The formation of CO₂ foam increases the flow resistance of viscoelastic fluid, forcing the displacement fluid to flow 2) GOBTK can emulsify and disperse residual oil into small oil droplets, and smoothly pass through narrow pores to produce; 3) CO₂ dissolved in GOBTK synergistically enhances the water wettability of the core, and the use of viscosity Elastomeric fluid injection and stripping of residual oil; 4) CO₂-GOBTK synergy superimposes multiple mechanisms, effectively improving the swept volume and oil washing efficiency of the injected fluid to the reservoir.

Keywords: tight oil reservoir, CO₂ flooding, low interfacial tension viscoelastic fluid flooding, synergistic oil displacement, EOR mechanism

Procedia PDF Downloads 183
1716 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine

Authors: Adriana Haulica

Abstract:

Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.

Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics

Procedia PDF Downloads 70
1715 Mapping Context, Roles, and Relations for Adjudicating Robot Ethics

Authors: Adam J. Bowen

Abstract:

Abstract— Should robots have rights or legal protections. Often debates concerning whether robots and AI should be afforded rights focus on conditions of personhood and the possibility of future advanced forms of AI satisfying particular intrinsic cognitive and moral attributes of rights-holding persons. Such discussions raise compelling questions about machine consciousness, autonomy, and value alignment with human interests. Although these are important theoretical concerns, especially from a future design perspective, they provide limited guidance for addressing the moral and legal standing of current and near-term AI that operate well below the cognitive and moral agency of human persons. Robots and AI are already being pressed into service in a wide range of roles, especially in healthcare and biomedical contexts. The design and large-scale implementation of robots in the context of core societal institutions like healthcare systems continues to rapidly develop. For example, we bring them into our homes, hospitals, and other care facilities to assist in care for the sick, disabled, elderly, children, or otherwise vulnerable persons. We enlist surgical robotic systems in precision tasks, albeit still human-in-the-loop technology controlled by surgeons. We also entrust them with social roles involving companionship and even assisting in intimate caregiving tasks (e.g., bathing, feeding, turning, medicine administration, monitoring, transporting). There have been advances to enable severely disabled persons to use robots to feed themselves or pilot robot avatars to work in service industries. As the applications for near-term AI increase and the roles of robots in restructuring our biomedical practices expand, we face pressing questions about the normative implications of human-robot interactions and collaborations in our collective worldmaking, as well as the moral and legal status of robots. This paper argues that robots operating in public and private spaces be afforded some protections as either moral patients or legal agents to establish prohibitions on robot abuse, misuse, and mistreatment. We already implement robots and embed them in our practices and institutions, which generates a host of human-to-machine and machine-to-machine relationships. As we interact with machines, whether in service contexts, medical assistance, or home health companions, these robots are first encountered in relationship to us and our respective roles in the encounter (e.g., surgeon, physical or occupational therapist, recipient of care, patient’s family, healthcare professional, stakeholder). This proposal aims to outline a framework for establishing limiting factors and determining the extent of moral or legal protections for robots. In doing so, it advocates for a relational approach that emphasizes the priority of mapping the complex contextually sensitive roles played and the relations in which humans and robots stand to guide policy determinations by relevant institutions and authorities. The relational approach must also be technically informed by the intended uses of the biomedical technologies in question, Design History Files, extensive risk assessments and hazard analyses, as well as use case social impact assessments.

Keywords: biomedical robots, robot ethics, robot laws, human-robot interaction

Procedia PDF Downloads 120
1714 Assessment of Maternal Satisfaction Regarding Quality of Care during Labor

Authors: Farida Habib, Haya Alfozan, Eman Miligi, Najla Alotaibi

Abstract:

Background: Women’s satisfaction with maternity services, especially care during labor and birth, has become highly significant to healthcare providers, administrators, and policymakers. Purpose: The aims of this study were to assess maternal satisfaction regarding the quality of care during labor and to compare the level of maternal satisfaction between women who delivered by physicians and those delivered by midwives. Methodology: A descriptive, cross-sectional, correlational design was used. A convenient sample of 180 low-risk cases of immediate postpartum women who delivered at King Abdul-Aziz medical city was recruited. Women whose babies were diagnosed with serious health problems were excluded from the study. Data were collected using a self-administered questionnaire. The validity and reliability of the questionnaire were ensured. The questionnaire included three parts, namely: demographics data, medical history, and obstetrical history, and the last part is the satisfaction assessment tool. Ethical confederations were ensured. Maternal satisfaction during labor was classified in terms of health care, health workers' communication, and the environment. Results: Regarding health care, women were highly satisfied with care received from nurse (M = 4.21 + 0.88), medical care received (M = 4.17 + 0.79), and comfort techniques (M = 4.04 + 0.91). Regarding health workers' communication, women were highly satisfied with the provider to treat with dignity and respect (M = 4.03 + 0.91) and orientation to the toilet, bathroom, washing area (M = 4.00 + 0.93). Regarding the environment, women were highly satisfied with the experience of their baby's birth (M = 4.18 + 0.98) and supplies with drugs and supplies (M = 4.09 + 0.97). There was no statistically significant difference in maternal satisfaction between women who delivered by physicians and those delivered by midwives. Conclusion: Women were generally satisfied with their labor and delivery experience. There was no difference in maternal satisfaction on the labor process between women who delivered by physicians and those delivered by midwives.

Keywords: maternity, satisfaction, labor, delivery

Procedia PDF Downloads 190
1713 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
1712 Computing Machinery and Legal Intelligence: Towards a Reflexive Model for Computer Automated Decision Support in Public Administration

Authors: Jacob Livingston Slosser, Naja Holten Moller, Thomas Troels Hildebrandt, Henrik Palmer Olsen

Abstract:

In this paper, we propose a model for human-AI interaction in public administration that involves legal decision-making. Inspired by Alan Turing’s test for machine intelligence, we propose a way of institutionalizing a continuous working relationship between man and machine that aims at ensuring both good legal quality and higher efficiency in decision-making processes in public administration. We also suggest that our model enhances the legitimacy of using AI in public legal decision-making. We suggest that case loads in public administration could be divided between a manual and an automated decision track. The automated decision track will be an algorithmic recommender system trained on former cases. To avoid unwanted feedback loops and biases, part of the case load will be dealt with by both a human case worker and the automated recommender system. In those cases an experienced human case worker will have the role of an evaluator, choosing between the two decisions. This model will ensure that the algorithmic recommender system is not compromising the quality of the legal decision making in the institution. It also enhances the legitimacy of using algorithmic decision support because it provides justification for its use by being seen as superior to human decisions when the algorithmic recommendations are preferred by experienced case workers. The paper outlines in some detail the process through which such a model could be implemented. It also addresses the important issue that legal decision making is subject to legislative and judicial changes and that legal interpretation is context sensitive. Both of these issues requires continuous supervision and adjustments to algorithmic recommender systems when used for legal decision making purposes.

Keywords: administrative law, algorithmic decision-making, decision support, public law

Procedia PDF Downloads 217
1711 Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process

Authors: Kai-Jui Kou, Tzu-Ling Shen, Ying-Fang Wang

Abstract:

The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles.

Keywords: nanoparticle, particle emission, 3D printing, number concentration

Procedia PDF Downloads 182
1710 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning

Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin

Abstract:

This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.

Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing

Procedia PDF Downloads 27