Search results for: real-coded genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4766

Search results for: real-coded genetic algorithm

3446 Genetic Diversity of Norovirus Strains in Outpatient Children from Rural Communities of Vhembe District, South Africa, 2014-2015

Authors: Jean Pierre Kabue, Emma Meader, Afsatou Ndama Traore, Paul R. Hunter, Natasha Potgieter

Abstract:

Norovirus is now considered the most common cause of outbreaks of nonbacterial gastroenteritis. Limited data are available for Norovirus strains in Africa, especially in rural and peri-urban areas. Despite the excessive burden of diarrhea disease in developing countries, Norovirus infections have been to date mostly reported in developed countries. There is a need to investigate intensively the role of viral agents associated with diarrhea in different settings in Africa continent. To determine the prevalence and genetic diversity of Norovirus strains circulating in the rural communities in the Limpopo Province, South Africa and investigate the genetic relationship between Norovirus strains, a cross-sectional study was performed on human stools collected from rural communities. Between July 2014 and April 2015, outpatient children under 5 years of age from rural communities of Vhembe District, South Africa, were recorded for the study. A total of 303 stool specimens were collected from those with diarrhea (n=253) and without (n=50) diarrhea. NoVs were identified using real-time one-step RT-PCR. Partial Sequence analyses were performed to genotype the strains. Phylogenetic analyses were performed to compare identified NoVs genotypes to the worldwide circulating strains. Norovirus detection rate was 41.1% (104/253) in children with diarrhea. There was no significant difference (OR=1.24; 95% CI 0.66-2.33) in Norovirus detection between symptomatic and asymptomatic children. Comparison of the median CT values for NoV in children with diarrhea and without diarrhea revealed significant statistical difference of estimated GII viral load from both groups, with a much higher viral burden in children with diarrhea. To our knowledge, this is the first study reporting on the differences in estimated viral load of GII and GI NoV positive cases and controls. GII.Pe (n=9) were the predominant genotypes followed by GII.Pe/GII.4 Sydney 2012 (n=8) suspected recombinant and GII.4 Sydney 2012 variants(n=7). Two unassigned GII.4 variants and an unusual RdRp genotype GII.P15 were found. With note, the rare GIIP15 identified in this study has a common ancestor with GIIP15 strain from Japan previously reported as GII/untypeable recombinant strain implicated in a gastroenteritis outbreak. To our knowledge, this is the first report of this unusual genotype in the African continent. Though not confirmed predictive of diarrhea disease in this study, the high detection rate of NoV is an indication of subsequent exposure of children from rural communities to enteric pathogens due to poor sanitation and hygiene practices. The results reveal that the difference between asymptomatic and symptomatic children with NoV may possibly be related to the NoV genogroups involved. The findings emphasize NoV genetic diversity and predominance of GII.Pe/GII.4 Sydney 2012, indicative of increased NoV activity. An uncommon GII.P15 and two unassigned GII.4 variants were also identified from rural settings of the Vhembe District/South Africa. NoV surveillance is required to help to inform investigations into NoV evolution, and to support vaccine development programmes in Africa.

Keywords: asymptomatic, common, outpatients, norovirus genetic diversity, sporadic gastroenteritis, South African rural communities, symptomatic

Procedia PDF Downloads 196
3445 An Approach to Maximize the Influence Spread in the Social Networks

Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel

Abstract:

In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.

Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network

Procedia PDF Downloads 251
3444 Genetic Characteristics of Chicken Anemia Virus Circulating in Northern Vietnam

Authors: Hieu Van Dong, Giang Thi Huong Tran, Giap Van Nguyen, Tung Duy Dao, Vuong Nghia Bui, Le Thi My Huynh, Yohei Takeda, Haruko Ogawa, Kunitoshi Imai

Abstract:

Chicken anemia virus (CAV) has a ubiquitous and worldwide distribution in chicken production. Our group previously reported high seroprevalence of CAV in chickens in northern Vietnam. In the present study, 330 tissue samples collected from commercial and breeder chicken farms in eleven provinces in northern Vietnam were tested for the CAV infection. We found that 157 out of 330 (47.58%) chickens were positive with CAV genes by real-time PCR method. Nine CAV strains obtained from the different location and time were forwarded to the full-length sequence of CAV VP1 gene. Phylogenetic analysis of the Vietnamese CAV vp1 gene indicated that the CAVs circulating in northern Vietnam were divided into three distinct genotypes, II, III, and V, but not clustered with the vaccine strains. Among the three genotypes, genotype III was the major one widely spread in Vietnam, and that included three sub-genotypes, IIIa, IIIb, and IIIc. The Vietnamese CAV strains were closely related to the Chinese, Taiwanese, and USA strains. All the CAV isolates had glutamine at amino acid position 394 in the VP1 gene, suggesting that they might be highly pathogenic strains. One strain was defined to be genotype V, which had not been reported for Vietnamese CAVs. Additional studies are required to further evaluate the pathogenicity of CAV strains circulating in Vietnam.

Keywords: chicken anemia virus, genotype, genetic characteristics, Vietnam

Procedia PDF Downloads 167
3443 Task Scheduling and Resource Allocation in Cloud-based on AHP Method

Authors: Zahra Ahmadi, Fazlollah Adibnia

Abstract:

Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).

Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow

Procedia PDF Downloads 146
3442 Using Econometric Methods to Explore Obesity Stigma and Avoidance of Breast and Cervical Cancer Screening

Authors: Stephanie A. Schauder, Gosia Sylwestrzak

Abstract:

Overweight and obese women report avoiding preventive care due to fear of weight-related bias from medical professionals. Gynecological exams, due to their sensitive and personally invasive nature, are especially susceptible to avoidance. This research investigates the association between body mass index (BMI) and screening rates for breast and cervical cancer using claims data from 1.3 million members of a large health insurance company. Because obesity is associated with increased cancer risk, screenings for these cancers should increase as BMI increases. However, this paper finds that the distribution of cancer screening rates by BMI take an inverted U-shape with underweight and obese members having the lowest screening rates. For cervical cancer screening, those in the target population with a BMI of 23 have the highest screening rate at 68%, while Obese Class III members have a screening rate of 50%. Those in the underweight category have a screening rate of 58%. This relationship persists even after controlling for health and demographic covariates in regression analysis. Interestingly, there is no association between BMI and BRCA (BReast CAncer gene) genetic testing. This is consistent with the narrative that stigma causes avoidance because genetic testing does not involve any assessment of a person’s body. More work must be done to determine how to increase cancer screening rates in those who may feel stigmatized due to their weight.

Keywords: cancer screening, cervical cancer, breast cancer, weight stigma, avoidance of care

Procedia PDF Downloads 202
3441 An Ant Colony Optimization Approach for the Pollution Routing Problem

Authors: P. Parthiban, Sonu Rajak, N. Kannan, R. Dhanalakshmi

Abstract:

This paper deals with the Vehicle Routing Problem (VRP) with environmental considerations which is called Pollution Routing Problem (PRP). The objective is to minimize the operational and environmental costs. It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. In this context, we presented an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the PRP. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage a SOA is run on the resulting VRPTW solutions. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm is able to provide good solutions.

Keywords: ant colony optimization, CO2 emissions, combinatorial optimization, speed optimization, vehicle routing

Procedia PDF Downloads 324
3440 Exploring Factors That May Contribute to the Underdiagnosis of Hereditary Transthyretin Amyloidosis in African American Patients

Authors: Kelsi Hagerty, Ami Rosen, Aaliyah Heyward, Nadia Ali, Emily Brown, Erin Demo, Yue Guan, Modele Ogunniyi, Brianna McDaniels, Alanna Morris, Kunal Bhatt

Abstract:

Hereditary transthyretin amyloidosis (hATTR) is a progressive, multi-systemic, and life-threatening disease caused by a disruption in the TTR protein that delivers thyroxine and retinol to the liver. This disruption causes the protein to misfold into amyloid fibrils, leading to the accumulation of the amyloid fibrils in the heart, nerves, and GI tract. Over 130 variants in the TTR gene are known to cause hATTR. The Val122Ile variant is the most common in the United States and is seen almost exclusively in people of African descent. TTR variants are inherited in an autosomal dominant fashion and have incomplete penetrance and variable expressivity. Individuals with hATTR may exhibit symptoms from as early as 30 years to as late as 80 years of age. hATTR is characterized by a wide range of clinical symptoms such as cardiomyopathy, neuropathy, carpal tunnel syndrome, and GI complications. Without treatment, hATTR leads to progressive disease and can ultimately lead to heart failure. hATTR disproportionately affects individuals of African descent; the estimated prevalence of hATTR among Black individuals in the US is 3.4%. Unfortunately, hATTR is often underdiagnosed and misdiagnosed because many symptoms of the disease overlap with other cardiac conditions. Due to the progressive nature of the disease, multi-systemic manifestations that can lead to a shortened lifespan, and the availability of free genetic testing and promising FDA-approved therapies that enhance treatability, early identification of individuals with a pathogenic hATTR variant is important, as this can significantly impact medical management for patients and their relatives. Furthermore, recent literature suggests that TTR genetic testing should be performed in all patients with suspicion of TTR-related cardiomyopathy, regardless of age, and that follow-up with genetic counseling services is recommended. Relatives of patients with hATTR benefit from genetic testing because testing can identify carriers early and allow relatives to receive regular screening and management. Despite the striking prevalence of hATTR among Black individuals, hATTR remains underdiagnosed in this patient population, and germline genetic testing for hATTR in Black individuals seems to be underrepresented, though the reasons for this have not yet been brought to light. Historically, Black patients experience a number of barriers to seeking healthcare that has been hypothesized to perpetuate the underdiagnosis of hATTR, such as lack of access and mistrust of healthcare professionals. Prior research has described a myriad of factors that shape an individual’s decision about whether to pursue presymptomatic genetic testing for a familial pathogenic variant, such as family closeness and communication, family dynamics, and a desire to inform other family members about potential health risks. This study explores these factors through 10 in-depth interviews with patients with hATTR about what factors may be contributing to the underdiagnosis of hATTR in the Black population. Participants were selected from the Emory University Amyloidosis clinic based on having a molecular diagnosis of hATTR. Interviews were recorded and transcribed verbatim, then coded using MAXQDA software. Thematic analysis was completed to draw commonalities between participants. Upon preliminary analysis, several themes have emerged. Barriers identified include i) Misdiagnosis and a prolonged diagnostic odyssey, ii) Family communication and dynamics surrounding health issues, iii) Perceptions of healthcare and one’s own health risks, and iv) The need for more intimate provider-patient relationships and communication. Overall, this study gleaned valuable insight from members of the Black community about possible factors contributing to the underdiagnosis of hATTR, as well as potential solutions to go about resolving this issue.

Keywords: cardiac amyloidosis, heart failure, TTR, genetic testing

Procedia PDF Downloads 99
3439 The Role of Metaheuristic Approaches in Engineering Problems

Authors: Ferzat Anka

Abstract:

Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.

Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems

Procedia PDF Downloads 77
3438 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting

Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi

Abstract:

An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.

Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power

Procedia PDF Downloads 412
3437 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model

Authors: Fatemah A. Alqallaf, Debasis Kundu

Abstract:

The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.

Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators

Procedia PDF Downloads 143
3436 All Types of Base Pair Substitutions Induced by γ-Rays in Haploid and Diploid Yeast Cells

Authors: Natalia Koltovaya, Nadezhda Zhuchkina, Ksenia Lyubimova

Abstract:

We study the biological effects induced by ionizing radiation in view of therapeutic exposure and the idea of space flights beyond Earth's magnetosphere. In particular, we examine the differences between base pair substitution induction by ionizing radiation in model haploid and diploid yeast Saccharomyces cerevisiae cells. Such mutations are difficult to study in higher eukaryotic systems. In our research, we have used a collection of six isogenic trp5-strains and 14 isogenic haploid and diploid cyc1-strains that are specific markers of all possible base-pair substitutions. These strains differ from each other only in single base substitutions within codon-50 of the trp5 gene or codon-22 of the cyc1 gene. Different mutation spectra for two different haploid genetic trp5- and cyc1-assays and different mutation spectra for the same genetic cyc1-system in cells with different ploidy — haploid and diploid — have been obtained. It was linear function for dose-dependence in haploid and exponential in diploid cells. We suggest that the differences between haploid yeast strains reflect the dependence on the sequence context, while the differences between haploid and diploid strains reflect the different molecular mechanisms of mutations.

Keywords: base pair substitutions, γ-rays, haploid and diploid cells, yeast Saccharomyces cerevisiae

Procedia PDF Downloads 156
3435 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.

Keywords: feature matching, k-means clustering, SIFT, RANSAC

Procedia PDF Downloads 359
3434 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine

Procedia PDF Downloads 111
3433 FPGA Implementation of RSA Encryption Algorithm for E-Passport Application

Authors: Khaled Shehata, Hanady Hussien, Sara Yehia

Abstract:

Securing the data stored on E-passport is a very important issue. RSA encryption algorithm is suitable for such application with low data size. In this paper the design and implementation of 1024 bit-key RSA encryption and decryption module on an FPGA is presented. The module is verified through comparing the result with that obtained from MATLAB tools. The design runs at a frequency of 36.3 MHz on Virtex-5 Xilinx FPGA. The key size is designed to be 1024-bit to achieve high security for the passport information. The whole design is achieved through VHDL design entry which makes it a portable design and can be directed to any hardware platform.

Keywords: RSA, VHDL, FPGA, modular multiplication, modular exponential

Procedia PDF Downloads 393
3432 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: face detection algorithm, Haar features, security of ATM

Procedia PDF Downloads 420
3431 Estimation of Heritability and Repeatability for Pre-Weaning Body Weights of Domestic Rabbits Raised in Derived Savanna Zone of Nigeria

Authors: Adewale I. Adeolu, Vivian U. Oleforuh-Okoleh, Sylvester N. Ibe

Abstract:

Heritability and repeatability estimates are needed for the genetic evaluation of livestock populations and consequently for the purpose of upgrading or improvement. Pooled data on 604 progeny from three consecutive parities of purebred rabbit breeds (Chinchilla, Dutch and New Zealand white) raised in Derived Savanna Zone of Nigeria were used to estimate heritability and repeatability for pre-weaning body weights between 1st and 8th week of age. Traits studied include Individual kit weight at birth (IKWB), 2nd week (IK2W), 4th week (IK4W), 6th week (IK6W) and 8th week (IK8W). Nested random effects analysis of (Co)variances as described by Statistical Analysis System (SAS) were employed in the estimation. Respective heritability estimates from the sire component (h2s) and repeatability (R) as intra-class correlations of repeated measurements from the three parties for IKWB, IK2W, IK4W and IK8W are 0.59±0.24, 0.55±0.24, 0.93±0.31, 0.28±0.17, 0.64±0.26 and 0.12±0.14, 0.05±0.14, 0.58±0.02, 0.60±0.11, 0.20±0.14. Heritability and repeatability (except R for IKWB and IK2W) estimates are moderate to high. In conclusion, since pre-weaning body weights in the present study tended to be moderately to highly heritable and repeatable, improvement of rabbits raised in derived savanna zone can be realized through genetic selection criterions.

Keywords: heritability, nested design, parity, pooled data, repeatability

Procedia PDF Downloads 148
3430 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images

Procedia PDF Downloads 219
3429 Case Study: Optimization of Contractor’s Financing through Allocation of Subcontractors

Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.

Keywords: cash flow optimization, payment plan, procurement management, subcontracting plan

Procedia PDF Downloads 136
3428 From Genome to Field: Applying Genome Wide Association Study for Sustainable Ascochyta Blight Management in Faba Beans

Authors: Rabia Faridi, Rizwana Maqbool, Umara Sahar Rana, Zaheer Ahmad

Abstract:

Climate change impacts agriculture, notably in Germany, where spring faba beans predominate. However, improved winter hardiness aligns with milder winters, enabling autumn-sown varieties. Genetic resistance to Ascochyta blight is vital for crop integration. Traditional breeding faces challenges due to complex inheritance. This study assessed 224 homozygous faba bean lines for Ascochyta resistance traits. To achieve h²>70%, 12 replicates were required (realized h²=87%). Genetic variation and strong trait correlations were observed. Five lines outperformed 29H, while three were highly susceptible. A genome-wide association study (GWAS) with 188 inbred lines and 2058 markers, including 17 guide SNP markers, identified 12 markers associated with resistance traits, potentially indicating new resistance genes. One guide marker (Vf-Mt1g014230-001) on chromosome III validated a known QTL. The guided marker approach complemented GWAS, facilitating marker-assisted selection for Ascochyta resistance. The Göttingen Winter Bean Population offers promise for resistance breeding.

Keywords: genome wide association studies, marker assisted breeding, faba bean, ascochyta blight

Procedia PDF Downloads 60
3427 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks

Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem

Abstract:

Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.

Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule

Procedia PDF Downloads 101
3426 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 114
3425 Development of a Decision Model to Optimize Total Cost in Food Supply Chain

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

All along the length of the supply chain, fresh food firms face the challenge of managing both product quality, due to the perishable nature of the products, and product cost. This paper develops a method to assist logistics managers upstream in the fresh food supply chain in making cost optimized decisions regarding transportation, with the objective of minimizing the total cost while maintaining the quality of food products above acceptable levels. Considering the case of multiple fresh food products collected from multiple farms being transported to a warehouse or a retailer, this study develops a total cost model that includes various costs incurred during transportation. The practical application of the model is illustrated by using several computational intelligence approaches including Genetic Algorithms (GA), Fuzzy Genetic Algorithms (FGA) as well as an improved Simulated Annealing (SA) procedure applied with a repair mechanism for efficiency benchmarking. We demonstrate the practical viability of these approaches by using a simulation study based on pertinent data and evaluate the simulation outcomes. The application of the proposed total cost model was demonstrated using three approaches of GA, FGA and SA with a repair mechanism. All three approaches are adoptable; however, based on the performance evaluation, it was evident that the FGA is more likely to produce a better performance than the other two approaches of GA and SA. This study provides a pragmatic approach for supporting logistics and supply chain practitioners in fresh food industry in making important decisions on the arrangements and procedures related to the transportation of multiple fresh food products to a warehouse from multiple farms in a cost-effective way without compromising product quality. This study extends the literature on cold supply chain management by investigating cost and quality optimization in a multi-product scenario from farms to a retailer and, minimizing cost by managing the quality above expected quality levels at delivery. The scalability of the proposed generic function enables the application to alternative situations in practice such as different storage environments and transportation conditions.

Keywords: cost optimization, food supply chain, fuzzy sets, genetic algorithms, product quality, transportation

Procedia PDF Downloads 224
3424 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm

Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo

Abstract:

Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.

Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation

Procedia PDF Downloads 81
3423 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform

Authors: Temidayo Otunniyi

Abstract:

This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.

Keywords: software defined radio, channelization, critical sample rate, over-sample rate

Procedia PDF Downloads 150
3422 Genomic Diversity and Relationship among Arabian Peninsula Dromedary Camels Using Full Genome Sequencing Approach

Authors: H. Bahbahani, H. Musa, F. Al Mathen

Abstract:

The dromedary camels (Camelus dromedarius) are single-humped even-toed ungulates populating the African Sahara, Arabian Peninsula, and Southwest Asia. The genome of this desert-adapted species has been minimally investigated using autosomal microsatellite and mitochondrial DNA markers. In this study, the genomes of 33 dromedary camel samples from different parts of the Arabian Peninsula were sequenced using Illumina Next Generation Sequencing (NGS) platform. These data were combined with Genotyping-by-Sequencing (GBS) data from African (Sudanese) dromedaries to investigate the genomic relationship between African and Arabian Peninsula dromedary camels. Principle Component Analysis (PCA) and average genome-wide admixture analysis were be conducted on these data to tackle the objectives of these studies. Both of the two analyses conducted revealed phylogeographic distinction between these two camel populations. However, no breed-wise genetic classification has been revealed among the African (Sudanese) camel breeds. The Arabian Peninsula camel populations also show higher heterozygosity than the Sudanese camels. The results of this study explain the evolutionary history and migration of African dromedary camels from their center of domestication in the southern Arabian Peninsula. These outputs help scientists to further understand the evolutionary history of dromedary camels, which might impact in conserving the favorable genetic of this species.

Keywords: dromedary, genotyping-by-sequencing, Arabian Peninsula, Sudan

Procedia PDF Downloads 206
3421 A Case Study of Misinterpretation of Results in Forensic DNA Cases Due to Expression of Y- Chromosome in Females

Authors: Garima Chaudhary

Abstract:

The gender of an individual in forensic DNA analysis is normally accessed by using the STR multiplexes with the incorporated gender based marker amelogenin or in other words by presence or absence of Y-Chromosome, but it may not be true in all the cases. We hereby report an interesting case of a phenotypic female carrying a male karyotype (46XY). In the alleged murder case, the deceased female with XY genotype was noticed. The expression of 18 Y-linked genes was studied to measure the extent of expression. Expression at 4 loci was observed that might have caused the misinterpretation in forensic casework. This clinical situation of the deceased in this case was diagnosed as testicular feminization syndrome, which characterize a female phenotype with a male karyotype (46, XY). Most of these cases have SRY (testis determining factor). The genetic explanation of this phenomenon is not very clear. Here, we are discussing the impact of such situations of genetic discrepancy in forensic interpretation of results. In the presented murder case of a phenotypic female, sexual assault was also suspected. For confirmation vaginal swabs and micro slides were also sent to us for DNA examination. After DNA analysis using STR markers, Y-chromosome was detected in the samples which supporting the suspicion of sexual assault before murder. When the reference blood sample of the deceased was analyzed, it was found to be case of testicular feminization syndrome. Interesting inferences were made from the results obtained.

Keywords: DNA profiling, forensic case study, Y chromosome, females

Procedia PDF Downloads 228
3420 An MIPSSTWM-based Emergency Vehicle Routing Approach for Quick Response to Highway Incidents

Authors: Siliang Luan, Zhongtai Jiang

Abstract:

The risk of highway incidents is commonly recognized as a major concern for transportation authorities due to the hazardous consequences and negative influence. It is crucial to respond to these unpredictable events as soon as possible faced by emergency management decision makers. In this paper, we focus on path planning for emergency vehicles, one of the most significant processes to avoid congestion and reduce rescue time. A Mixed-Integer Linear Programming with Semi-Soft Time Windows Model (MIPSSTWM) is conducted to plan an optimal routing respectively considering the time consumption of arcs and nodes of the urban road network and the highway network, especially in developing countries with an enormous population. Here, the arcs indicate the road segments and the nodes include the intersections of the urban road network and the on-ramp and off-ramp of the highway networks. An attempt in this research has been made to develop a comprehensive and executive strategy for emergency vehicle routing in heavy traffic conditions. The proposed Cuckoo Search (CS) algorithm is designed by imitating obligate brood parasitic behaviors of cuckoos and Lévy Flights (LF) to solve this hard and combinatorial problem. Using a Chinese city as our case study, the numerical results demonstrate the approach we applied in this paper outperforms the previous method without considering the nodes of the road network for a real-world situation. Meanwhile, the accuracy and validity of the CS algorithm also show better performances than the traditional algorithm.

Keywords: emergency vehicle, path planning, cs algorithm, urban traffic management and urban planning

Procedia PDF Downloads 82
3419 Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm

Authors: H. Rezvani, H. Monsef, A. Hekmati

Abstract:

Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA.

Keywords: renewable energy, wind diesel system, induction generator, energy storage, imperialist competitive algorithm

Procedia PDF Downloads 562
3418 Enhancing the Dynamic Performance of Grid-Tied Inverters Using Manta Ray Foraging Algorithm

Authors: H. E. Keshta, A. A. Ali

Abstract:

Three phase grid-tied inverters are widely employed in micro-grids (MGs) as interphase between DC and AC systems. These inverters are usually controlled through standard decoupled d–q vector control strategy based on proportional integral (PI) controllers. Recently, advanced meta-heuristic optimization techniques have been used instead of deterministic methods to obtain optimum PI controller parameters. This paper provides a comparative study between the performance of the global Porcellio Scaber algorithm (GPSA) based PI controller and Manta Ray foraging optimization (MRFO) based PI controller.

Keywords: micro-grids, optimization techniques, grid-tied inverter control, PI controller

Procedia PDF Downloads 132
3417 Design of Microwave Building Block by Using Numerical Search Algorithm

Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Qing Fang, Mingbin Yu, Guoqiang Lo

Abstract:

With the development of technology, countries gradually allocated more and more frequency spectrums for civilization and commercial usage, especially those high radio frequency bands indicating high information capacity. The field effect becomes more and more prominent in microwave components as frequency increases, which invalidates the transmission line theory and complicate the design of microwave components. Here a modeling approach based on numerical search algorithm is proposed to design various building blocks for microwave circuits to avoid complicated impedance matching and equivalent electrical circuit approximation. Concretely, a microwave component is discretized to a set of segments along the microwave propagation path. Each of the segment is initialized with random dimensions, which constructs a multiple-dimension parameter space. Then numerical searching algorithms (e.g. Pattern search algorithm) are used to find out the ideal geometrical parameters. The optimal parameter set is achieved by evaluating the fitness of S parameters after a number of iterations. We had adopted this approach in our current projects and designed many microwave components including sharp bends, T-branches, Y-branches, microstrip-to-stripline converters and etc. For example, a stripline 90° bend was designed in 2.54 mm x 2.54 mm space for dual-band operation (Ka band and Ku band) with < 0.18 dB insertion loss and < -55 dB reflection. We expect that this approach can enrich the tool kits for microwave designers.

Keywords: microwave component, microstrip and stripline, bend, power division, the numerical search algorithm.

Procedia PDF Downloads 382