Search results for: process%20cubes
13971 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process
Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel
Abstract:
In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.Keywords: discrete element method, physical properties of materials, calibration, granular flow
Procedia PDF Downloads 49013970 The Importance of Organized and Non-Organized Bildung for a Comprehensive Term of Bildung
Authors: Christine Pichler
Abstract:
The German word Bildung in a comprehensive understanding can be defined as the development of the personality and as a process, which lasts from birth, or even before birth, until death. Gaining experience, acquiring abilities and knowledge as a lifelong learning process is what Bildung means. The development of the personality is intransitive because of the personality’s development itself, and transitive because of influences on the formation of a person by individuals and institutions. In public and political discussions, the term Bildung is understood with a constricted usage as education at schools. This leads to the research question, which consequences this limited comprehension of the term Bildung implies and how a comprehensive term of Bildung has to be defined. In discussions, Bildung is limited to its formal part. The limited understanding prevents from accurate analyses and discussions as well as adequate actions. This hypothesis and the research issue will be processed by theoretical analyses of the factors of Bildung, guideline-controlled expert interviews and a qualitative content analysis. The limited understanding on the term Bildung is a methodological problem. This results in inaccuracies in the analysis of the processes of Bildung and their effects on the development of personality structures. On the one hand, an individual is influenced by formal structures in the system of Bildung (e.g. schools) and on the other hand an individual is influenced by gained individual and informal personality and character attributes. In general, too little attention is given to these attributes and individual qualifications. The aim of this work is to demonstrate informative terms so the educational process with all its facets could be considered and applicable analyses can be made. If the informative terms can be defined, it´s also possible to identify and discuss the components of a comprehensive term Bildung to enable correct action.Keywords: Bildung, development of personality, education, formative process, organized and non-organized Bildung
Procedia PDF Downloads 12513969 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method
Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga
Abstract:
Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses
Procedia PDF Downloads 26413968 The Need for a Tool to Support Users of E-Science Infrastructures in a Virtual Laboratory Environment
Authors: Hashim Chunpir
Abstract:
Support processes play an important role to facilitate researchers (users) to accomplish their research activities with the help of cyber-infrastructure(s). However, the current user-support process in cyber-infrastructure needs a feasible tool to support users. This tool must enable the users of a cyber-infrastructure to communicate efficiently with the staffs of a cyber-infrastructure in order to get technical and scientific assistance, whilst saving resources at the same time. This research paper narrates the real story of employing various forms of tools to support the user and staff communication. In addition, this paper projects the lessons learned from an exploration of the help-desk tools in the current state of user support process in Earth System Grid Federation (ESGF) from support staffs’ perspective. ESGF is a climate cyber-infrastructure that facilitates Earth System Modeling (ESM) and is taken as a case study in this paper. Finally, this study proposes a need for a tool, a framework or a platform that not only improves the user support process to address support servicing needs of end-users of e-Science infrastructures but also eases the life of staffs in providing assistance to the users. With the help of such a tool; the collaboration between users and the staffs of cyber-infrastructures is made easier. Consequently, the research activities of the users of e-Science infrastructure will thrive as the scientific and technical support will be available to users. Finally, this results into painless and productive e-Research.Keywords: e-Science User Services, e-Research in Earth Sciences, Information Technology Services Management (ITSM), user support process, service desk, management of support activities, help desk tools, application of social media
Procedia PDF Downloads 47713967 System Identification and Quantitative Feedback Theory Design of a Lathe Spindle
Authors: M. Khairudin
Abstract:
This paper investigates the system identification and design quantitative feedback theory (QFT) for the robust control of a lathe spindle. The dynamic of the lathe spindle is uncertain and time variation due to the deepness variation on cutting process. System identification was used to obtain the dynamics model of the lathe spindle. In this work, real time system identification is used to construct a linear model of the system from the nonlinear system. These linear models and its uncertainty bound can then be used for controller synthesis. The real time nonlinear system identification process to obtain a set of linear models of the lathe spindle that represents the operating ranges of the dynamic system. With a selected input signal, the data of output and response is acquired and nonlinear system identification is performed using Matlab to obtain a linear model of the system. Practical design steps are presented in which the QFT-based conditions are formulated to obtain a compensator and pre-filter to control the lathe spindle. The performances of the proposed controller are evaluated in terms of velocity responses of the the lathe machine spindle in corporating deepness on cutting process.Keywords: lathe spindle, QFT, robust control, system identification
Procedia PDF Downloads 54513966 Analysis of Performance Improvement Factors in Supply Chain Manufacturing Using Analytic Network Process and Kaizen
Authors: Juliza Hidayati, Yesie M. Sinuhaji, Sawarni Hasibuan
Abstract:
A company producing drinking water through many incompatibility issues that affect supply chain performance. The study was conducted to determine the factors that affect the performance of the supply chain and improve it. To obtain the dominant factors affecting the performance of the supply chain used Analytic Network Process, while to improve performance is done by using Kaizen. Factors affecting the performance of the supply chain to be a reference to identify the cause of the non-conformance. Results weighting using ANP indicates that the dominant factor affecting the level of performance is the precision of the number of shipments (15%), the ability of the fulfillment of the booking amount (12%), and the number of rejected products when signing (12%). Incompatibility of the factors that affect the performance of the supply chain are identified, so that found the root cause of the problem is most dominant. Based on the weight of Risk Priority Number (RPN) gained the most dominant root cause of the problem, namely the poorly maintained engine, the engine worked for three shifts, machine parts that are not contained in the plant. Improvements then performed using the Kaizen method of systematic and sustainable.Keywords: analytic network process, booking amount, risk priority number, supply chain performance
Procedia PDF Downloads 29813965 Effect of a Mixture of Phenol, O-Cresol, P-Cresol, and M-Cresol on the Nitrifying Process in a Sequencing Batch Reactor
Authors: Adriana Sosa, Susana Rincon, Chérif Ben, Diana Cabañas, Juan E. Ruiz, Alejandro Zepeda
Abstract:
The complex chemical composition (mixtures of ammonium and recalcitrant compounds) of the effluents from the chemical, pharmaceutical and petrochemical industries represents a challenge in their biological treatment. This treatment involves nitrification process that can suffer an inhibition due to the presence of aromatic compounds giving as a result the decrease of the process efficiency. The inhibitory effects on nitrification in the presence of aromatic compounds have already been studied; however a few studies have considered the presence of phenolic compounds in the form of mixtures, which is the form that they are present in real context. For this reason, we realized a kinetic study on the nitrifying process in the presence of different concentrations of a mixture of phenol, o-cresol, m-cresol and p-cresol (0 - 320 mg C/L) in a sequencing batch reactor (SBR). Firstly, the nitrifying process was evaluated in absence of the phenolic mixture (control 1) in a SBR with 2 L working volume and 176 mg/L of nitrogen of microbial protein. Total oxidation of initial ammonium (efficiency; ENH4+ of 100 %) to nitrate (nitrifying yield; YNO3- of 0.95) were obtained with specific rates of ammonium consumption (qN-NH4+) and nitrate production (qN-NO3-) (of 1.11 ± 0.04 h-1 and 0.67 h-1 ± 0.11 respectively. During the phase of acclimation with 40 mg C/L of the phenolic mixture, an inhibitory effect on the nitrifying process was observed, provoking a decrease in ENH4+ and YNO3- (11 and 54 % respectively) as well as in the specific rates (89 y 46 % respectively), being the ammonia oxidizing bacteria (BAO) the most affected. However, in the next cycles without the phenolic mixture (control 2), the nitrifying consortium was able to recover its nitrifying capacity (ENH4+ = 100% and YNO3-=0.98). Afterwards the SBR was fed with 10 mg C/L of the phenolic mixture, obtaining and ENH4+ of 100%, YNO3- and qN-NH4+ 0.62 ± 0.006 and 0.13 ± 0.004 respectively, while the qN-NO3- was 0.49 ± 0.007. Moreover, with the increase of the phenolic concentrations (10-160 mg C/L) and the number of cycles the nitrifying consortium was able to oxidize the ammonia with ENH4+ of 100 % and YNO3- close to 1. However a decrease in the values of the nitrification specific rates and increase in the oxidation in phenolic compounds (70 to 94%) were observed. Finally, in the presence of 320 mg C/L, the nitrifying consortium was able to simultaneously oxidize the ammonia (ENH4+= 100%) and the phenolic mixture (p-cresol>phenol>m-cresol>o-cresol) being the o-cresol the most recalcitrant compound. In all the experiments the use of a SBR allowed a respiratory adaptation of the consortium to oxidize the phenolic mixture achieving greater adaptation of the nitrite-oxidizing bacteria (NOB) than in the ammonia-oxidizing bacteria (AOB).Keywords: cresol, inhibition, nitrification, phenol, sequencing batch reactor
Procedia PDF Downloads 36513964 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere
Authors: Gizachew Belay Adugna
Abstract:
Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing
Procedia PDF Downloads 7813963 Influence of IL-1β on Hamster Blastocyst Hatching via Regulation of Hatching Associated Proteases
Authors: Madhulika Pathak, Polani Seshagiri, Vani Venkatappa
Abstract:
Blastocyst hatching is an indispensable process for successful implantation. One of the major reasons for implantation failure in IVF clinic is poor quality of embryo, which are not development/hatching-competent. Therefore, attempts are required to develop or enhance the culture system with a molecule recapitulating the autocrine/paracrine factors containing the environment of in-vivo endometrial milieu. We have tried to explore the functional molecules involved in the hamster hatching phenomenon. Blastocyst hatching is governed by several molecules that are entwined and regulate this process, among which cytokines are known to be expressed and are still least explored. Two of such cytokines we have used for our study are IL-1β and its natural antagonist IL-1ra to understand the functional dynamics of cytokines involved in the hatching process. Using hamster, an intriguing experimental model for hatching behavior, we have shown the mRNA (qPCR) and protein (ICC) expression of IL-1β, IL-1ra and IL-1 receptor type 1 throughout all the stages of morula, blastocyst and hatched blastocyst. Post-asserting the expression, the functional role is shown by supplementation studies, where IL-1β supplementation showed enhancement in hatching level (IL-1β treated: 84.1 ± 4.2% vs control: 63.7 ± 3.1 %, N=11), further confirmed by the diminishing effect of IL-1ra on hatching rate (IL-1ra treated: 27.5 ± 11.1% vs control: 67.9 ± 3.1%). The exogenous supplementation of IL-1ra decreased the survival rate of embryos and affected the viability in dose-dependent manner, establishing the importance of IL-1β in blastocyst cell survival. Previously, the cathepsin L and B were established as the proteases that were involved in the hamster hatching process. The inducing effect of IL-1β was correlated with enhanced mRNA level, as analyzed by qPCR, for both CAT L (by 1.9 ± 0.5 fold) and CAT B (by 3.5 ± 0.1) fold which was diminished in presence of IL-1ra (Cat L by 88 percent and Cat B by 94 percent. Moreover, using a specific fluorescent substrate-based assay kit, the enzymatic activity of these proteases was found to be increased in presence of IL-1β (Cat L by 2.1 ± 0.1 fold and CAT B by 2.3 ± 0.7 fold) and was curtailed in presence of IL-1ra. These observations provide functional insights with respect to the involvement of cytokines in the hatching process. This has implications in understanding the hatching biology and improving the embryo development quality in IVF clinics.Keywords: Blastocyst, Cytokines, Hatching, Interleukin
Procedia PDF Downloads 14813962 Decomposition of the Customer-Server Interaction in Grocery Shops
Authors: Andreas Ahrens, Ojaras Purvinis, Jelena Zascerinska
Abstract:
A successful shopping experience without overcrowded shops and long waiting times undoubtedly leads to the release of happiness hormones and is generally considered the goal of any optimization. Factors influencing the shopping experience can be divided into internal and external ones. External factors are related, e. g. to the arrival of the customers to the shop, whereas internal are linked with the service process itself when checking out (waiting in the queue to the cash register and the scanning of the goods as well as the payment process itself) or any other non-expected delay when changing the status from a visitor to a buyer by choosing goods or items. This paper divides the customer-server interaction into five phases starting with the customer's arrival at the shop, the selection of goods, the buyer waiting in the queue to the cash register, the payment process, and ending with the customer or buyer's departure. Our simulation results show how five phases are intertwined and influence the overall shopping experience. Parameters for measuring the shopping experience are estimated based on the burstiness level in each of the five phases of the customer-server interaction.Keywords: customers’ burstiness, cash register, customers’ wait-ing time, gap distribution function
Procedia PDF Downloads 15113961 New Standardized Framework for Developing Mobile Applications (Based On Real Case Studies and CMMI)
Authors: Ammar Khader Almasri
Abstract:
The software processes play a vital role for delivering a high quality software system that meets the user’s needs. There are many software development models which are used by most system developers, which can be categorized into two categories (traditional and new methodologies). Mobile applications like other desktop applications need appropriate and well-working software development process. Nevertheless, mobile applications have different features which limit their performance and efficiency like application size, mobile hardware features. Moreover, this research aims to help developers in using a standardized model for developing mobile applications.Keywords: software development process, agile methods , moblile application development, traditional methods
Procedia PDF Downloads 39013960 Designing a Pre-Assessment Tool to Support the Achievement of Green Building Certifications
Authors: Jisun Mo, Paola Boarin
Abstract:
The impact of common buildings on climate and environment has prompted people to get involved in the green building standards aimed at implementing rating tools or certifications. Thus, green building rating systems were introduced to the construction industry, and the demand for certified green buildings has increased gradually and succeeded considerably in enhancing people’s environmental awareness. However, the existing certification process has been unsatisfactory in attracting stakeholders and/or professionals who are actively engaged in adopting a rating system. It is because they have faced recurring barriers regarding limited information in understanding the rating process, time-consuming procedures and higher costs, which have a direct influence on pursuing green building rating systems. To promote the achievement of green building certifications within the building industry more successfully, this paper aims at designing a Pre-Assessment Tool (PAT) framework that can help stakeholders and/or professionals engaged in the construction industry to clarify their basic knowledge, timeframe and extra costs needed to activate a green building certification. First, taking the first steps towards the rating tool seems to be complicated because of upfront commitment to understanding the overall rating procedure is required. This conceptual PAT framework can increase basic knowledge of the rating tool and the certification process, mainly in terms of all resources or information of each credit requirements. Second, the assessment process of rating tools is generally known as a “lengthy and time-consuming system”, contributing to unenthusiastic reactions concerning green building projects. The proposed framework can predict the timeframe needed to identify how long it will take for a green project to process each credit requirement and the documentation required from the beginning of the certification process to final approval. Finally, most people often have the initial perception that pursuing green building certification costs more than constructing a non-green building, which makes it more difficult to execute rating tools. To overcome this issue, this PAT will help users to estimate the extra expenses such as certification fees and third-party contributions based on the track of the amount of time it takes to implement the rating tool throughout all the related stages. Also, it can prevent unexpected or hidden costs occurring in the process of assessment. Therefore, this proposed PAT framework can be recommended as an effective method to support the decision-making of inexperienced users and play an important role in promoting green building certification.Keywords: green building rating tools, Pre-Occupancy Evaluation (PrOE), client’s decision-making, certification
Procedia PDF Downloads 25213959 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function
Authors: Pan Hongxia, Wang Zhenhua
Abstract:
In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.Keywords: gearbox, fault diagnosis, ar model, end effect
Procedia PDF Downloads 37113958 Understanding the Coping Experience of Mothers with Childhood Trauma Histories: A Qualitative Study
Authors: Chan Yan Nok
Abstract:
The present study is a qualitative study based on the coping experiences of six Hong Kong Chinese mothers who had childhood trauma from their first-person perspective. Expanding the perspective beyond the dominant discourse of “inter-generation transmission of trauma”, this study explores the experiences and meanings of child trauma embedded in their narratives through the process of thematic analysis and narrative analysis. The interviewees painted a nuanced picture of their process of coping and trauma resolution. First, acknowledgement; second, feel safe and start to tell the story of trauma; third, feel the feelings and expression of emotions; fourth, clarifying and coping with the impacts of trauma; fifth, integration and transformation; and sixth, using their new understanding of experience to have a better life. It was seen that there was no “end” within the process of trauma resolution. Instead, this is an ongoing process with positive healing trajectory. Analysis of the stories of the mothers revealed recurrent themes around continuous self-reflective awareness in the process of trauma coping. Rather than being necessarily negative and detrimental, childhood trauma could highlight the meanings of being a mother and reveal opportunities for continuous personal growth and self-enhancement. Utilizing the sense of inadequacy as a core driver in the trauma recovery process while developing a heightened awareness of the unfinished business embedded in their “automatic pattern” of behaviors, emotions, and thoughts can help these mothers become more flexible to formulate new methods in facing future predicaments. Future social work and parent education practices should help mothers deal with unresolved trauma, make sense of their impacts of childhood trauma and discover the growth embedded in the past traumatic experience. They should be facilitated in “acknowledging the reality of the trauma”, including understanding their complicated emotions arising from the traumatic experiences and voicing their struggles. In addition, helping these mothers to be aware of short-term and long-term trauma impacts (i.e., secondary responses to the trauma) and explore their effective coping strategies in “overcoming secondary responses to the trauma” are crucial for their future positive adjustment and transformation. Through affirming their coping abilities and lessons learnt from past experiences, mothers can reduce feelings of shame and powerlessness and enhance their parental capacity.Keywords: childhood trauma, coping, mothers, self-awareness, self-reflection, trauma resolution
Procedia PDF Downloads 17213957 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets
Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin
Abstract:
The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.Keywords: cooling speed, gravity, homogenous cooling, jet impingement
Procedia PDF Downloads 12613956 Fabricating Sheets of Mg-Zn Alloys by Thermomechanical Process
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
In the present study, hot-rolled sheets of Mg-xZn alloy s(x=6, 8, and 10 weight percent) were produced by employing casting, homogenization heat treatment, hot rolling, and annealing processes subsequently. Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys were also investigated in each process. Through calculation of phase equilibria of Mg-Zn alloys, solution treatment temperature was decided as temperatures from 350 oC, where supersaturated solid solution can be obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling.Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hot rolling
Procedia PDF Downloads 32013955 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing
Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani
Abstract:
The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis
Procedia PDF Downloads 34513954 Trial Version of a Systematic Material Selection Tool in Building Element Design
Authors: Mine Koyaz, M. Cem Altun
Abstract:
Selection of the materials satisfying the expected performances is significantly important for any design. Today, with the constantly evolving and developing technologies, the material options are so wide that the necessity of the use of some support tools in the selection process is arising. Therefore, as a sub process of building element design, a systematic material selection tool is developed, that defines four main steps of the material selection; definition, research, comparison and decision. The main purpose of the tool is being an educational instrument that would show a methodic way of material selection in architectural detailing for the use of architecture students. The tool predefines the possible uses of various material databases and other sources of information on material properties. Hence, it is to be used as a guidance for designers, especially with a limited material knowledge and experience. The material selection tool not only embraces technical properties of materials related with building elements’ functional requirements, but also its sensual properties related with the identity of design and its environmental impacts with respect to the sustainability of the design. The method followed in the development of the tool has two main sections; first the examination and application of the existing methods and second the development of trial versions and their applications. Within the scope of the existing methods; design support tools, methodic approaches for the building element design and material selection process, material properties, material databases, methodic approaches for the decision making process are examined. The existing methods are applied by architecture students and newly graduate architects through different design problems. With respect to the results of these applications, strong and weak sides of the existing material selection tools are presented. A main flow chart of the material selection tool has been developed with the objective to apply the strong aspects of the existing methods and develop their weak sides. Through different stages, a different aspect of the material selection process is investigated and the tool took its final form. Systematic material selection tool, within the building element design process, guides the users with a minimum background information, to practically and accurately determine the ideal material that is to be chosen, satisfying the needs of their design. The tool has a flexible structure that answers different needs of different designs and designers. The trial version issued in this paper shows one of the paths that could be followed and illustrates its application over a design problem.Keywords: architectural education, building element design, material selection tool, systematic approach
Procedia PDF Downloads 35413953 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters
Authors: Komal Kumar, Sreedevi Upadhyayula
Abstract:
In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester
Procedia PDF Downloads 25613952 Intensification of Process Kinetics for Conversion of Organic Volatiles into Syngas Using Non-Thermal Plasma
Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Manomita Mollick, Gartzen Lopez, Martin Olazar
Abstract:
The entire world is skeptical towards a silver line technology of converting plastic waste into valuable synthetic gas. At this junction, besides an adequately studied conventional catalytic process for steam reforming, a non-thermal plasma is being introduced. Organic volatiles are produced in the first step, pyrolysing the plastic materials. Resultant lightweight olefins and carbon monoxide are the major components that undergo a steam reforming process to achieve syngas. A non-thermal plasma consists of ionized gases and free electrons with an electronic temperature as high as 10³ K. Organic volatiles are, in general, endorganics inactive and thus demand huge bond-breaking energy. Conventional catalyst is incapable of providing the required activation energy, leading to poor thermodynamic equilibrium, whereas a non-thermal plasma can actively collide with reactants to produce a rich mix of reactive species, including vibrationally or electronically excited molecules, radicals, atoms, and ions. In addition, non-thermal plasma provides nonequilibrium conditions leading to electric discharge only in certain degrees of freedom without affecting the intrinsic chemical conditions of the participating reactants and products. In this work, we report thermodynamic and kinetic aspects of the conversion of organic volatiles into syngas using a non-thermal plasma. Detailed characteristics of plasma and its effect on the overall yield of the process will be presented.Keywords: non thermal plasma, plasma catalysis, steam reforming, syngas, plastic waste, green energy
Procedia PDF Downloads 7513951 Reducing Defects through Organizational Learning within a Housing Association Environment
Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton
Abstract:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.Keywords: defects, new homes, housing association, organizational learning
Procedia PDF Downloads 31913950 Research on Sensitivity of Geological Disasters in Road Area Based on Analytic Hierarchy Process
Authors: Li Yongyi
Abstract:
In order to explore the distribution of geological disasters within the expressway area of Shaanxi Province, the Analytic Hierarchy Process theory is applied based on the geographic information system technology platform, and the ground elevation, rainfall, vegetation coverage and other indicators are selected for analysis, and the expressway area is sensitive Sexual evaluation. The results show that the highway area disasters in Shaanxi Province are mainly distributed in the southern mountainous areas and are dominated by landslides; the disaster area ratio basically increases with the increase in ground elevation, surface slope, surface undulation, rainfall, and vegetation coverage. The increase in the distance from the river shows a decreasing trend; after grading the disaster sensitivity within 5km of the expressway, the extremely sensitive area, the highly sensitive area, the medium sensitive area, the low sensitive area, and the extremely low sensitive area respectively account for 8.17%、15.80%、22.99%、26.22%、26.82%. Highly sensitive road areas are mainly distributed in southern Shaanxi.Keywords: highway engineering, sensitivity, analytic hierarchy process, geological hazard, road area
Procedia PDF Downloads 10613949 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors
Authors: Huda Al Shuaily, Karen Renaud
Abstract:
Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.Keywords: pattern, SQL, learning, model
Procedia PDF Downloads 25813948 The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum
Authors: Dunwen Zuo, Yongfang Deng, Bo Song
Abstract:
An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin.Keywords: FSJ, force factor, AA2024 aluminum, friction stir joining
Procedia PDF Downloads 49613947 External Store Safe Separation Evaluation Process Implementing CFD and MIL-HDBK-1763
Authors: Thien Bach Nguyen, Nhu-Van Nguyen, Phi-Minh Nguyen, Minh Hien Dao
Abstract:
The external store safe separation evaluation process implementing CFD and MIL-HDBK-1763 is proposed to support the evaluation and compliance of the external store safe separation with the extensive using CFD and the criteria from MIL-HDBK-1763. The criteria of safe separation are researched and investigated for the various standards and handbooks such as MIL-HDBK-1763, MIL-HDBK-244A, AGARD-AG-202 and AGARD-AG-300 to acquire the appropriate and tailored values and limits for the typical applications of external carriages and aircraft fighters. The CFD and 6DOF simulations are extensively used in ANSYS 2023 R1 Software for verification and validation of moving unstructured meshes and solvers by calibrating the position, aerodynamic forces and moments of the existing air-to-ground missile models. The verified CFD and 6DoF simulation separation process is applied and implemented for the investigation of the typical munition separation phenomena and compliance with the tailored requirements of MIL-HDBK-1763. The prediction of munition trajectory parameters under aircraft aerodynamics interference and specified rack unit consideration after munition separation is provided and complied with the tailored requirements to support the safe separation evaluation of improved and newly external store munition before the flight test performed. The proposed process demonstrates the effectiveness and reliability in providing the understanding of the complicated store separation and the reduction of flight test sorties during the improved and new munition development projects by extensively using the CFD and tailoring the existing standards.Keywords: external store separation, MIL-HDBK-1763, CFD, moving meshes, flight test data, munition.
Procedia PDF Downloads 3213946 Adsoption Tests of Two Industrial Dyes by Hydroxyds of Metals
Authors: R. Berrached, H. Ait Mahamed, A. Iddou
Abstract:
Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated sludge, lagoons as biological processes and coagulation-flocculation as a physic-chemical process. These processes are very expensive and a decreasing in efficiency treatment with the increase of the initial pollutants concentration. This is the reason why research has been reoriented towards the use of adsorption process as an alternative solution instead of the other traditional processes. In our study, we have tempted to explore the characteristics of hydroxides of Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.Keywords: metallic hydroxydes, dyes, purification, adsorption
Procedia PDF Downloads 34013945 Using Lean-Six Sigma Philosophy to Enhance Revenues and Improve Customer Satisfaction: Case Studies from Leading Telecommunications Service Providers in India
Authors: Senthil Kumar Anantharaman
Abstract:
Providing telecommunications based network services in developing countries like India which has a population of 1.5 billion people, so that these services reach every individual, is one of the greatest challenges the country has been facing in its journey towards economic growth and development. With growing number of telecommunications service providers in the country, a constant challenge that has been faced by these providers is in providing not only quality but also delightful customer experience while simultaneously generating enhanced revenues and profits. Thus, the role played by process improvement methodologies like Six Sigma cannot be undermined and specifically in telecom service provider based operations, it has provided substantial benefits. Therefore, it advantages are quite comparable to its applications and advantages in other sectors like manufacturing, financial services, information technology-based services and Healthcare services. One of the key reasons that this methodology has been able to reap great benefits in telecommunications sector is that this methodology has been combined with many of its competing process improvement techniques like Theory of Constraints, Lean and Kaizen to give the maximum benefit to the service providers thereby creating a winning combination of organized process improvement methods for operational excellence thereby leading to business excellence. This paper discusses about some of the key projects and areas in the end to end ‘Quote to Cash’ process at big three Indian telecommunication companies that have been highly assisted by applying Six Sigma along with other process improvement techniques. While the telecommunication companies which we have considered, is primarily in India and run by both private operators and government based setups, the methodology can be applied equally well in any other part of developing countries around the world having similar context. This study also compares the enhanced revenues that can arise out of appropriate opportunities in emerging market scenarios, that Six Sigma as a philosophy and methodology can provide if applied with vigour and robustness. Finally, the paper also comes out with a winning framework in combining Six Sigma methodology with Kaizen, Lean and Theory of Constraints that will enhance both the top-line as well as the bottom-line while providing the customers a delightful experience.Keywords: emerging markets, lean, process improvement, six sigma, telecommunications, theory of constraints
Procedia PDF Downloads 16513944 Measuring Stakeholder Engagement and Drivers of Success in Ethiopian Tourism Sector
Authors: Gezahegn Gizaw
Abstract:
The FDRE Tourism Training Institute organizes forums for debates, best practices exchange and focus group discussions to forge a sustainable and growing tourism sector while minimizing negative impacts on the environment, communities, and cultures. This study aimed at applying empirical research method to identify and quantify relative importance of success factors and individual engagement indicators that were identified in these forums. Response to the 12-question survey was collected from a total of 437 respondents in academic training institutes (212), business executive and employee (204) and non-academic government offices (21). Overall, capacity building was perceived as the most important driver of success for stakeholder engagement. Business executive and employee category rated capacity building as the most important driver of success (53%), followed by decision-making process (27%) and community participation (20%). Among educators and students, both capacity building and decision-making process were perceived as the most important factors (40% of respondents), whereas community participation was perceived as the most important success factor only by 20% of respondents. Individual engagement score in capacity building, decision-making process and community participation showed highest variability by educational level of participants (variance of 3.4% - 5.2%, p<0.001). Individual engagement score in capacity building was highly correlated to perceived benefit of training on improved efficiency, job security, higher customer satisfaction and self-esteem. On the other hand, individual engagement score in decision making process was highly correlated to its perceived benefit on lowering business costs, improving ability to meet the needs of a target market, job security, self-esteem and more teamwork. The study provides a set of recommendations that help educators, business executives and policy makers to maximize the individual and synergetic effect of training, decision making process on sustainability and growth of the tourism sector in Ethiopia.Keywords: engagement score, driver of success, capacity building, tourism
Procedia PDF Downloads 8213943 Ionometallurgy for Recycling Silver in Silicon Solar Panel
Authors: Emmanuel Billy
Abstract:
This work is in the CABRISS project (H2020 projects) which aims at developing innovative cost-effective methods for the extraction of materials from the different sources of PV waste: Si based panels, thin film panels or Si water diluted slurries. Aluminum, silicon, indium, and silver will especially be extracted from these wastes in order to constitute materials feedstock which can be used later in a closed-loop process. The extraction of metals from silicon solar cells is often an energy-intensive process. It requires either smelting or leaching at elevated temperature, or the use of large quantities of strong acids or bases that require energy to produce. The energy input equates to a significant cost and an associated CO2 footprint, both of which it would be desirable to reduce. Thus there is a need to develop more energy-efficient and environmentally-compatible processes. Thus, ‘ionometallurgy’ could offer a new set of environmentally-benign process for metallurgy. This work demonstrates that ionic liquids provide one such method since they can be used to dissolve and recover silver. The overall process associates leaching, recovery and the possibility to re-use the solution in closed-loop process. This study aims to evaluate and compare different ionic liquids to leach and recover silver. An electrochemical analysis is first implemented to define the best system for the Ag dissolution. Effects of temperature, concentration and oxidizing agent are evaluated by this approach. Further, a comparative study between conventional approach (nitric acid, thiourea) and the ionic liquids (Cu and Al) focused on the leaching efficiency is conducted. A specific attention has been paid to the selection of the Ionic Liquids. Electrolytes composed of chelating anions are used to facilitate the lixiviation (Cl, Br, I,), avoid problems dealing with solubility issues of metallic species and of classical additional ligands. This approach reduces the cost of the process and facilitates the re-use of the leaching medium. To define the most suitable ionic liquids, electrochemical experiments have been carried out to evaluate the oxidation potential of silver include in the crystalline solar cells. Then, chemical dissolution of metals for crystalline solar cells have been performed for the most promising ionic liquids. After the chemical dissolution, electrodeposition has been performed to recover silver under a metallic form.Keywords: electrodeposition, ionometallurgy, leaching, recycling, silver
Procedia PDF Downloads 24913942 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization
Procedia PDF Downloads 126