Search results for: out of plane loading
939 Rolling Contact Fatigue Failure Analysis of Ball Bearing in Gear Box
Authors: Piyas Palit, Urbi Pal, Jitendra Mathur, Santanu Das
Abstract:
Bearing is an important machinery part in the industry. When bearings fail to meet their expected life the consequences are increased downtime, loss of revenue and missed the delivery. This article describes the failure of a gearbox bearing in rolling contact fatigue. The investigation consists of visual observation, chemical analysis, characterization of microstructures using optical microscopes and hardness test. The present study also considers bearing life as well as the operational condition of bearings. Surface-initiated rolling contact fatigue, leading to a surface failure known as pitting, is a life-limiting failure mode in many modern machine elements, particularly rolling element bearings. Metallography analysis of crack propagation, crack morphology was also described. Indication of fatigue spalling in the ferrography test was also discussed. The analysis suggested the probable reasons for such kind of failure in operation. This type of spalling occurred due to (1) heavier external loading condition or (2) exceeds its service life.Keywords: bearing, rolling contact fatigue, bearing life
Procedia PDF Downloads 173938 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method
Procedia PDF Downloads 309937 Evaluation of Engineering Cementitious Composites (ECC) with Different Percentage of Fibers
Authors: Bhaumik Merchant, Ajay Gelot
Abstract:
Concrete is good in compression but if any type of strain applied to it, it starts to fail. Where the steel is good tension, it can bear the deflection up to its elastic limits. This project is based on behavior of engineered cementitious composited (ECC) when it is replaced with the different amount of Polyvinyl Alcohol (PVA) Fibers. As for research, PVA fibers is used with cementitious up to 2% to evaluate the optimum amount of fiber on which we can find the maximum compressive, tensile and flexural strength. PVA is basically an adhesive which is used to formulate glue. Generally due to excessive loading, cracks develops which concludes to successive damage to the structural component. In research plasticizer is used to increase workability. With the help of optimum amount of PVA fibers, it can limit the crack widths up to 60µm to 100µm. Also can be used to reduce resources and funds for rehabilitation of structure. At the starting this fiber concrete can be double the cost as compare to conventional concrete but as it can amplify the duration of structure, it will be less costlier than the conventional concrete.Keywords: compressive strength, engineered cementitious composites, flexural strength, polyvinyl alcohol fibers, rehabilitation of structures
Procedia PDF Downloads 290936 Starch-Based Systems for the Nano-Delivery of Quercetin
Authors: Fernando G. Torres, Omar P. Troncoso
Abstract:
Quercetin is a naturally occurring polyphenol found in many vegetables, such as onion, with antioxidant properties. It is a dietary component with a documented role in reducing different human cancers. However, its low bioavailability, poor water solubility, and chemical instability limit its applications. Different nano-delivery systems such as nanoparticles, micelles, and nanohydrogels have been studied in order to improve the bioavailability of quercetin. Nanoparticles based on natural polymers such as starch have the advantage of being biocompatible, biodegradable, and non-toxic. In this study, quercetin was loaded into starch nanoparticles using a nanoprecipitation method. Different routes, using sodium tripolyphosphate and Tween® 80 as tensioactive agents, were tested in order to obtain an optimized starch-based nano-delivery system. The characterization of the nanoparticles loaded with quercetin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that starch-based systems could be successfully used for the nano-delivery of quercetin.Keywords: starch nanoparticles, nanoprecipitation, quercetin, biomedical applications
Procedia PDF Downloads 142935 Development of 35kV SF6 Phase-Control Circuit Breaker Equipped with EFDA
Authors: Duanlei Yuan, Guangchao Yan, Zhanqing Chen, Xian Cheng
Abstract:
This paper mainly focuses on the problem that high voltage circuit breaker’s closing and opening operation at random phase brings harmful electromagnetic transient effects on the power system. To repress the negative transient effects, a 35 kV SF6 phase-control circuit breaker equipped with electromagnetic force driving actuator is designed in this paper. Based on the constructed mathematical and structural models, the static magnetic field distribution and dynamic properties of the under loading actuator are simulated. The prototype of 35 kV SF6 phase-control circuit breaker is developed based on theories analysis and simulation. Tests are carried on to verify the operating reliability of the prototype. The developed circuit breaker can control its operating speed intelligently and switches with phase selection. Results of the tests and simulation prove that the phase-control circuit breaker is feasible for industrial applications.Keywords: phase-control, circuit breaker, electromagnetic force driving actuator, tests and simulation
Procedia PDF Downloads 397934 Prediction of Compressive Strength Using Artificial Neural Network
Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal
Abstract:
Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression
Procedia PDF Downloads 428933 Efficiency and Limits of Physicochemical Treatment of Dairy Wastewater: A Case Study of Dairy Industry in Western Algeria
Authors: Khedidja Benouis
Abstract:
Environmental issues in the food industry are related to the water because it consumes water and release large volumes of wastewater. The treatment of such discharges techniques can be adapted to different situations encountered. For dairy effluents, it is necessary and very effective to use a treatment that eliminates much of the pollutant load,thus, to drastically reduce the organic loading rate. This study aims to evaluate the Efficiency and limitations of physicochemical treatment by coagulation - flocculation of liquid effluent from this type of food industry in Algeria, to give an example of the type and the degree of pollution generated by this sector and in order to reduce pollution and minimize its environmental issues. Coagulation - flocculation-sedimentation was carried out using lime without addition of additive (flocculant), the processing efficiency is indicated by the concentration of pollutants in treated water. The results show that treatment is not sufficient to remove organic pollution, but it has significantly reduced the Total suspended solids (TSS), nitrate (NO3-N) and phosphate (PO4-P).Keywords: Algeria, coagulation-flocculation, dairy effluent, treatment
Procedia PDF Downloads 422932 Effects of Hierarchy on Poisson’s Ratio and Phononic Bandgaps of Two-Dimensional Honeycomb Structures
Authors: Davood Mousanezhad, Ashkan Vaziri
Abstract:
As a traditional cellular structure, hexagonal honeycombs are known for their high strength-to-weight ratio. Here, we introduce a class of fractal-appearing hierarchical metamaterials by replacing the vertices of the original non-hierarchical hexagonal grid with smaller hexagons and iterating this process to achieve higher levels of hierarchy. It has been recently shown that the isotropic in-plane Young's modulus of this hierarchical structure at small deformations becomes 25 times greater than its regular counterpart with the same mass. At large deformations, we find that hierarchy-dependent elastic buckling introduced at relatively early stages of deformation decreases the value of Poisson's ratio as the structure is compressed uniaxially leading to auxeticity (i.e., negative Poisson's ratio) in subsequent stages of deformation. We also show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the propagation of elastic waves within the structure. We find that the hierarchy tends to shift the existing phononic bandgaps (defined as frequency ranges of strong wave attenuation) to lower frequencies while opening up new bandgaps. Deformation is also demonstrated as another mechanism for opening more bandgaps in hierarchical structures. The results provide new insights into the role of structural organization and hierarchy in regulating mechanical properties of materials at both the static and dynamic regimes.Keywords: cellular structures, honeycombs, hierarchical structures, metamaterials, multifunctional structures, phononic crystals, auxetic structures
Procedia PDF Downloads 350931 The Influence of Ice Topography on Sliding over Ice
Authors: Ernests Jansons, Karlis Agris Gross
Abstract:
Winter brings snow and ice in the Northern Europe and with it the need to move safely over ice. It has been customary to select an appropriate material surface for movement over ice, but another way to influence the interaction with ice is to modify the ice surface. The objective of this work was to investigate the influence of ice topography on initiating movement over ice and on sliding velocity over ice in the laboratory and real-life conditions. The ice was prepared smooth, scratched or with solidified ice-droplets to represent the surface of ice after ice rain. In the laboratory, the coefficient of friction and the sliding velocity were measured, but the sliding velocity measured at the skeleton push-start facility. The scratched ice surface increased the resistance to movement and also showed the slowest sliding speed. Sliding was easier on the smooth ice and ice covered with frozen droplets. The contact surface was measured to determine the effect of contact area with sliding. Results from laboratory tests will be compared to loading under heavier loads to show the influence of load on sliding over different ice surfaces. This outcome provides a useful indicator for pedestrians and road traffic on the safety of movement over different ice surfaces as well as a reference for those involved with winter sports.Keywords: contact area, friction, ice topography, sliding velocity
Procedia PDF Downloads 241930 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations
Procedia PDF Downloads 431929 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD
Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy
Abstract:
Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD
Procedia PDF Downloads 379928 Study on Stability and Wear in a Total Hip Prostheses
Authors: Virgil Florescu, Lucian Capitanu
Abstract:
The studies performed by the author and presented here focus mainly on the FE simulation of some relevant phenomena related to stability of orthopedic implants, especially those components of Total Hip Prostheses. The objectives are to study the mechanisms of achieving stability of acetabular prosthetic components and the influence of some characteristic parameters, to evaluate the effect of femoral stem fixation modality on the stability of prosthetic component and to predict long-term behavior, to analyze a critical phenomena which influence the loading transfer mechanism through artificial joints and could lead to aseptic loosening – the wear of joint frictional surfaces. After a theoretical background an application is made considering only three activities: normal walking, stair ascending and stair descending. For each activity, this function is maximized in a different locations: if for normal walking the maxima is in the superior-posterior part of the acetabular cup, for stair descending this maxim value could be located rather in the superior-anterior part, for stair ascending being even closer to the central area of the cup.Keywords: THA, acetabular stability, FEM simulation, stresses and displacements, wear tests, wear simulation
Procedia PDF Downloads 269927 Flexible Laser Reduced Graphene Oxide/MnO2 Electrode for Supercapacitor Applications
Authors: Ingy N. Bkrey, Ahmed A. Moniem
Abstract:
We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50 μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.Keywords: electrode deposition, flexible, graphene oxide, graphene, high power CO2 Laser, MnO2
Procedia PDF Downloads 318926 Laboratory Testing Regime for Quantifying Soil Collapsibility
Authors: Anne C. Okwedadi, Samson Ng’ambi, Ian Jefferson
Abstract:
Collapsible soils go through radical rearrangement of their particles when triggered by water, stress or/and vibration, causing loss of volume. This loss of volume in soil as seen in foundation failures has caused millions of dollars’ worth of damages to public facilities and infrastructure and so has an adverse effect on the society and people. Despite these consequences and the several studies that are available, more research is still required in the study of soil collapsibility. Discerning the pedogenesis (formation) of soils and investigating the combined effects of the different geological soil properties is key to elucidating and quantifying soils collapsibility. This study presents a novel laboratory testing regime that would be undertaken on soil samples where the effects of soil type, compactive variables (moisture content, density, void ratio, degree of saturation) and loading are analyzed. It is anticipated that results obtained would be useful in mapping the trend of the combined effect thus the basis for evaluating soil collapsibility or collapse potentials encountered in construction with volume loss problems attributed to collapse.Keywords: collapsible soil, geomorphological process, soil collapsibility properties, soil test
Procedia PDF Downloads 472925 First-Principles Calculations of Hydrogen Adsorbed in Multi-Layer Graphene
Authors: Mohammad Shafiul Alam, Mineo Saito
Abstract:
Graphene-based materials have attracted much attention because they are candidates for post silicon materials. Since controlling of impurities is necessary to achieve nano device, we study hydrogen impurity in multi-layer graphene. We perform local spin Density approximation (LSDA) in which the plane wave basis set and pseudopotential are used. Previously hydrogen monomer and dimer in graphene is well theoretically studied. However, hydrogen on multilayer graphene is still not clear. By using first-principles electronic structure calculations based on the LSDA within the density functional theory method, we studied hydrogen monomers and dimers in two-layer graphene. We found that the monomers are spin-polarized and have magnetic moment 1 µB. We also found that most stable dimer is much more stable than monomer. In the most stable structures of the dimers in two-layer graphene, the two hydrogen atoms are bonded to the host carbon atoms which are nearest-neighbors. In this case two hydrogen atoms are located on the opposite sides. Whereas, when the two hydrogen atoms are bonded to the same sublattice of the host materials, magnetic moments of 2 µB appear in two-layer graphene. We found that when the two hydrogen atoms are bonded to third-nearest-neighbor carbon atoms, the electronic structure is nonmagnetic. We also studied hydrogen monomers and dimers in three-layer graphene. The result is same as that of two-layer graphene. These results are very important in the field of carbon nanomaterials as it is experimentally difficult to show the magnetic state of those materials.Keywords: first-principles calculations, LSDA, multi-layer gra-phene, nanomaterials
Procedia PDF Downloads 332924 Water Quality at a Ventilated Improved Pit Latrine Sludge Entrenchment Site
Authors: Babatunde Femi Bakare
Abstract:
Groundwater quality was evaluated at a site for three years after the site was used for entrenchment of Ventilated Improved Pit (VIP) latrine sludge. Analysis performed on the soil characteristics at the entrenchment site indicated that, the soils at the entrenchment site are predominantly sandy. Depth of the water table at the entrenchment site was found to be approximately five meters. Five monitoring boreholes were dug along the perimeter of the sludge trenches and water samples taken from these monitoring boreholes were analyzed for pH, conductivity, sodium ions, chloride ions, phosphate, nitrate, ammonia, and bacteriological analysis. The results obtained from the analysis conducted were compared with the South African Bureau of Standards for drinking water and it was found that the parameters analyzed falls below the specified range. The data obtained from this study indicate that, given the relatively high sludge loading rates, poor soil quality, and the duration of the groundwater quality monitoring, it is unlikely that contamination of groundwater at the entrenchment site will be a major concern. However, caution is advised in extrapolating these results to other locations.Keywords: boreholes, contamination, entrenchment, groundwater quality, VIP latrines
Procedia PDF Downloads 410923 The Influence of the Form of Grain on the Mechanical Behaviour of Sand
Authors: Mohamed Boualem Salah
Abstract:
The size and shape of soil particles reflect the formation history of the grains. In turn, the macro scale behavior of the soil mass results from particle level interactions which are affected by particle shape. Sphericity, roundness and smoothness characterize different scales associated to particle shape. New experimental data and data from previously published studies are gathered into two databases to explore the effects of particle shape on packing as well as small and large-strain properties of sandy soils. Data analysis shows that increased particle irregularity (angularity and/or eccentricity) leads to: an increase in emax and emin, a decrease in stiffness yet with increased sensitivity to the state of stress, an increase in compressibility under zero-lateral strain loading, and an increase in critical state friction angle φcs and intercept Γ with a weak effect on slope λ. Therefore, particle shape emerges as a significant soil index property that needs to be properly characterized and documented, particularly in clean sands and gravels. The systematic assessment of particle shape will lead to a better understanding of sand behavior.Keywords: angularity, eccentricity, shape particle, behavior of soil
Procedia PDF Downloads 414922 Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation
Authors: Nima Shafaghi, Gunay Anlaş, C. Can Aydiner
Abstract:
A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation.Keywords: digital image correlation, fracture, martensitic phase transition, mode I, NiTi, transformation zone
Procedia PDF Downloads 354921 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing
Authors: R. I. Liban, N. Tayşi
Abstract:
This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.Keywords: composite steel-concrete beams, external prestressing, finite element analysis, ANSYS
Procedia PDF Downloads 316920 Toughness of a Silt-Based Construction Material Reinforced with Fibers
Authors: Y. Shamas, S. Imanzadeh, A. Jarno, S. Taibi
Abstract:
Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition.Keywords: silt-based material, raw earth concrete, stress-strain curve, energy, toughness
Procedia PDF Downloads 224919 Investigation on an Innovative Way to Connect RC Beam and Steel Column
Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil
Abstract:
An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.Keywords: composite column, reinforced concrete beam, steel column, transfer part
Procedia PDF Downloads 432918 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars
Authors: Jazlah Majeed Sulaiman, Lakshmi P.
Abstract:
Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS
Procedia PDF Downloads 113917 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength
Authors: Asmaa Al Shafiee, Erdin Ibraim
Abstract:
Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization
Procedia PDF Downloads 152916 Numerical Simulations of the Transition Flow of Model Propellers for Predicting Open Water Performance
Authors: Huilan Yao, Huaixin Zhang
Abstract:
Simulations of the transition flow of model propellers are important for predicting hydrodynamic performance and studying scale effects. In this paper, the transition flow of a model propeller under different loadings are simulated using a transition model provided by STAR-CCM+, and the influence of turbulence intensity (TI) on the transition, especially friction and pressure components of propeller performance, was studied. Before that, the transition model was applied to simulate the transition flow of a flat plate and an airfoil. Predicted transitions agree well with experimental results. Then, the transition model was applied for propeller simulations in open water, and the influence of TI was studied. Under the heavy and moderate loadings, thrust and torque of the propeller predicted by the transition model (different TI) and two turbulence models are very close and agree well with measurements. However, under the light loading, only the transition model with low TI predicts the most accurate results. Above all, the friction components of propeller performance predicted by the transition model with different TI have obvious difference.Keywords: transition flow, model propellers, hydrodynamic performance, numerical simulation
Procedia PDF Downloads 263915 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door
Authors: Emin Z. Mahmud
Abstract:
This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz.Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening
Procedia PDF Downloads 132914 Robotic Lingulectomy for Primary Lung Cancer: A Video Presentation
Authors: Abraham J. Rizkalla, Joanne F. Irons, Christopher Q. Cao
Abstract:
Purpose: Lobectomy was considered the standard of care for early-stage non-small lung cancer (NSCLC) after the Lung Cancer Study Group trial demonstrated increased locoregional recurrence for sublobar resections. However, there has been heightened interest in segmentectomies for selected patients with peripheral lesions ≤2cm, as investigated by the JCOG0802 and CALGB140503 trials. Minimally invasive robotic surgery facilitates segmentectomies with improved maneuverability and visualization of intersegmental planes using indocyanine green. We hereby present a patient who underwent robotic lingulectomy for an undiagnosed ground-glass opacity. Methodology: This video demonstrates a robotic portal lingulectomy using three 8mm ports and a 12mm port. Stereoscopic direct vision facilitated the identification of the lingula artery and vein, and intra-operative bronchoscopy was performed to confirm the lingula bronchus. The intersegmental plane was identified by indocyanine green and a near-infrared camera. Thorough lymph node sampling was performed in accordance with international standards. Results: The 18mm lesion was successfully excised with clear margins to achieve R0 resection with no evidence of malignancy in the 8 lymph nodes sampled. Histopathological examination revealed lepidic predominant adenocarcinoma, pathological stage IA. Conclusion: This video presentation exemplifies the standard approach for robotic portal lingulectomy in appropriately selected patients.Keywords: lung cancer, robotic segmentectomy, indocyanine green, lingulectomy
Procedia PDF Downloads 68913 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network
Authors: Sharad Shrivastava, Arun Jalan
Abstract:
In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network
Procedia PDF Downloads 437912 The Optimization of Immobilization Conditions for Biohydrogen Production from Palm Industry Wastewater
Authors: A. W. Zularisam, Sveta Thakur, Lakhveer Singh, Mimi Sakinah Abdul Munaim
Abstract:
Clostridium sp. LS2 was immobilised by entrapment in polyethylene glycol (PEG) gel beads to improve the biohydrogen production rate from palm oil mill effluent (POME). We sought to explore and optimise the hydrogen production capability of the immobilised cells by studying the conditions for cell immobilisation, including PEG concentration, cell loading and curing times, as well as the effects of temperature and K2HPO4 (500–2000 mg/L), NiCl2 (0.1–5.0 mg/L), FeCl2 (100–400 mg/L) MgSO4 (50–200 mg/L) concentrations on hydrogen production rate. The results showed that by optimising the PEG concentration (10% w/v), initial biomass (2.2 g dry weight), curing time (80 min) and temperature (37 °C), as well as the concentrations of K2HPO4 (2000 mg/L), NiCl2 (1 mg/L), FeCl2 (300 mg/L) and MgSO4 (100 mg/L), a maximum hydrogen production rate of 7.3 L/L-POME/day and a yield of 0.31 L H2/g chemical oxygen demand were obtained during continuous operation. We believe that this process may be potentially expanded for sustained and large-scale hydrogen production.Keywords: hydrogen, polyethylene glycol, immobilised cell, fermentation, palm oil mill effluent
Procedia PDF Downloads 272911 In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica
Authors: Damandeep Kaur, O.P. Pandey, M.S. Reddy
Abstract:
In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications.Keywords: rice husk, biosynthesized silica, bioactive glasses, antibacterial studies
Procedia PDF Downloads 117910 Analysis of Ionospheric Variations over Japan during 23rd Solar Cycle Using Wavelet Techniques
Authors: C. S. Seema, P. R. Prince
Abstract:
The characterization of spatio-temporal inhomogeneities occurring in the ionospheric F₂ layer is remarkable since these variations are direct consequences of electrodynamical coupling between magnetosphere and solar events. The temporal and spatial variations of the F₂ layer, which occur with a period of several days or even years, mainly owe to geomagnetic and meteorological activities. The hourly F₂ layer critical frequency (foF2) over 23rd solar cycle (1996-2008) of three ionosonde stations (Wakkanai, Kokunbunji, and Okinawa) in northern hemisphere, which falls within same longitudinal span, is analyzed using continuous wavelet techniques. Morlet wavelet is used to transform continuous time series data of foF2 to a two dimensional time-frequency space, quantifying the time evolution of the oscillatory modes. The presence of significant time patterns (periodicities) at a particular time period and the time location of each periodicity are detected from the two-dimensional representation of the wavelet power, in the plane of scale and period of the time series. The mean strength of each periodicity over the entire period of analysis is studied using global wavelet spectrum. The quasi biennial, annual, semiannual, 27 day, diurnal and 12 hour variations of foF2 are clearly evident in the wavelet power spectra in all the three stations. Critical frequency oscillations with multi-day periods (2-3 days and 9 days in the low latitude station, 6-7 days in all stations and 15 days in mid-high latitude station) are also superimposed over large time scaled variations.Keywords: continuous wavelet analysis, critical frequency, ionosphere, solar cycle
Procedia PDF Downloads 223