Search results for: innovation maturity models
7268 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments
Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora
Abstract:
Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver
Procedia PDF Downloads 3157267 Investigation of Active Modified Atmosphere and Nanoparticle Packaging on Quality of Tomatoes
Authors: M. Ghasemi-Varnamkhasti, S. H. Yoosefian, A. Mohammad-Razdari
Abstract:
This study investigated the effects of Ag nanoparticle polyethylene film and active modified atmosphere on the postharvest quality of tomatoes stored at 6 ºC. The atmosphere composition used in the packaging was 7% O2 + 7% CO2 + 86% N2, and synthetic air (control). The variables measured were weight loss, firmness, color and respiration rate over 21 days. The results showed that the combination of Ag nanoparticle polyethylene film and modified atmosphere could extend the shelf life of tomatoes to 21 days and could influence the postharvest quality of tomatoes. Also, existence of Ag nanoparticles caused preventing from increasing weight loss, a*, b*, Chroma, Hue angle and reducing firmness and L*. As well as, tomatoes at Ag nanoparticle polyethylene films had lower respiration rate than Polyethylene and paper bags to 13.27% and 23.50%, respectively. The combination of Ag nanoparticle polyethylene film and active modified atmosphere was effective with regard to delaying maturity during the storage period, and preserving the quality of tomatoes.Keywords: ag nanoparticles, modified atmosphere, polyethylene film, tomato
Procedia PDF Downloads 2767266 Marketing Social Innovation: Finding Competitive Advantage in Social Enterprise Methodology
Authors: Ted Gournelos
Abstract:
Marketing approaches in practice and academic literature usually foreground the importance of product and brand awareness in strategy. Decisions emphasize justifications and promotions of existing projects, which has the unintended consequence of pushing marketing, public relations, and other communications to secondary strategies and tactics rather than as inherent pieces of organizational development. In other words, marketers implement what others have already decided. This is a challenge not only for the communications field, but also for the organizations themselves, since integrated communications employees are often the primary, if not the only, touchpoints for client/customer/user research and interaction. Organizations thus become increasingly out of touch, raising the risk of public or human resources crisis and decreasing the focus on opportunities for development and growth. This paper will discuss the potential for social entrepreneurship to refocus marketing and communications professionals on primary strategy, and suggest best practices for developing initiatives not only to impact marketing efforts themselves, but also the guiding organizational approaches to project management, human resources, corporate social responsibility, and research. It will provide a comparative analysis of social media marketing efforts conducted by food security non-governmental organizations from several countries, pointing out both flaws and areas of opportunity for integration with for-profit organizational strategy, and discuss the implications of descriptive, proactive, and interactive messaging.Keywords: social enterprise, strategy, innovation, social media
Procedia PDF Downloads 3197265 Agricultural Education by Media in Yogyakarta, Indonesia
Authors: Retno Dwi Wahyuningrum, Sunarru Samsi Hariadi
Abstract:
Education in agriculture is very significant; in a way that it can support farmers to improve their business. This can be done through certain media, such as printed, audio, and audio-visual media. To find out the effects of the media toward the knowledge, attitude, and motivation of farmers in order to adopt innovation, the study was conducted on 342 farmers, randomly selected from 12 farmer-groups, in the districts of Sleman and Bantul, Special Region of Yogyakarta Province. The study started from October 2014 to November 2015 by interviewing the respondents using a questionnaire which included 20 questions on knowledge, 20 questions on attitude, and 20 questions on adopting motivation. The data for the attitude and the adopting motivation were processed into Likert scale, then it was tested for validity and reliability. Differences in the levels of knowledge, attitude, and motivation were tested based on percentage of average score intervals of them and categorized into five interpretation levels. The results show that printed, audio, and audio-visual media give different impacts to the farmers. First, all media make farmers very aware to agricultural innovation, but the highest percentage is on theatrical play. Second, the most effective media to raise the attitude is interactive dialogue on Radio. Finally, printed media, especially comic, is the most effective way to improve the adopting motivation of farmers.Keywords: agricultural education, printed media, audio media, audio-visual media, farmer knowledge, farmer attitude, farmer adopting motivation
Procedia PDF Downloads 2117264 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1497263 Productivity of Grain Sorghum-Cowpea Intercropping System: Climate-Smart Approach
Authors: Mogale T. E., Ayisi K. K., Munjonji L., Kifle Y. G.
Abstract:
Grain sorghum and cowpea are important staple crops in many areas of South Africa, particularly the Limpopo Province. The two crops are produced under a wide range of unsustainable conventional methods, which reduces productivity in the long run. Climate-smart traditional methods such as intercropping can be adopted to ensure sustainable production of these important two crops in the province. A no-tillage field experiment was laid out in a randomised complete block design (RCBD) with four replications over two seasons in two distinct agro-ecological zones, Syferkuil and Ofcolacoin, the province to assess the productivity of sorghum-cowpea intercropped under two cowpea densities.LCi Ultra compact photosynthesis machine was used to collect photosynthetic rate data biweekly between 11h00 and 13h00 until physiological maturity. Biomass and grain yield of the component crops in binary and sole cultures were determined at harvest maturity from middle rows of 2.7 m2 area. The biomass was oven dried in the laboratory at 65oC till constant weight. To obtain grain yield, harvested sorghum heads and cowpea pods were threshed, cleaned, and weighed. Harvest index (HI) and land equivalent ratio (LER) of the two crops were calculated to assess intercrop productivity relative to sole cultures. Data was analysed using the statistical analysis software system (SAS) 9.4 version, followed by mean separation using the least significant difference method. The photosyntheticrate of sorghum-cowpea intercrop was influenced by cowpea density and sorghum cultivar. Photosynthetic rate under low density was higher compared to high density, but this was dependent on the growing conditions. Dry biomass accumulation, grain yield, and harvest index differed among the sorghum cultivars and cowpea in both binary and sole cultures at the two test locations during the 2018/19 and 2020/21 growing seasons. Cowpea grain and dry biomass yields werein excess of 60% under high density compared to low density in both binary and sole cultures. The results revealed that grain yield accumulation of sorghum cultivars was influenced by the density of the companion cowpea crop as well as the production season. For instant, at Syferkuil, Enforcer and Ns5511 accumulated high yield under low density, whereas, at Ofcolaco, the higher yield was recorded under high density. Generally, under low cowpea density, cultivar Enforcer produced relatively higher grain yield whereas, under higher density, Titan yield was superior. The partial and total LER varied with growing season and the treatments studied. The total LERs exceeded 1.0 at the two locations across seasons, ranging from 1.3 to 1.8. From the results, it can be concluded that resources were used more efficiently in sorghum-cowpea intercrop at both Syferkuil and Ofcolaco. Furthermore, intercropping system improved photosynthetic rate, grain yield, and dry matter accumulation of sorghum and cowpea depending on growing conditions and density of cowpea. Hence, the sorghum-cowpea intercropping system can be adopted as a climate-smart practice for sustainable production in the Limpopo province.Keywords: cowpea, climate-smart, grain sorghum, intercropping
Procedia PDF Downloads 2217262 Relation between Physical and Mechanical Properties of Concrete Paving Stones Using Neuro-Fuzzy Approach
Authors: Erion Luga, Aksel Seitllari, Kemal Pervanqe
Abstract:
This study investigates the relation between physical and mechanical properties of concrete paving stones using neuro-fuzzy approach. For this purpose 200 samples of concrete paving stones were selected randomly from different sources. The first phase included the determination of physical properties of the samples such as water absorption capacity, porosity and unit weight. After that the indirect tensile strength test and compressive strength test of the samples were performed. İn the second phase, adaptive neuro-fuzzy approach was employed to simulate nonlinear mapping between the above mentioned physical properties and mechanical properties of paving stones. The neuro-fuzzy models uses Sugeno type fuzzy inference system. The models parameters were adapted using hybrid learning algorithm and input space was fuzzyfied by considering grid partitioning. It is concluded based on the observed data and the estimated data through ANFIS models that neuro-fuzzy system exhibits a satisfactory performance.Keywords: paving stones, physical properties, mechanical properties, ANFIS
Procedia PDF Downloads 3427261 The Effects of Yield and Yield Components of Some Quality Increase Applications on Ismailoglu Grape Type in Turkey
Authors: Yaşar Önal, Aydın Akın
Abstract:
This study was conducted Ismailoglu grape type (Vitis vinifera L.) and its vine which was aged 15 was grown on its own root in a vegetation period of 2013 in Nevşehir province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 cluster tip reduction (1/3 CTR), shoot tip reduction (STR), 1/3 CTR + STR, TKI-HUMAS (TKI-HM) (Soil) (S), TKI-HM (Foliar) (F), TKI-HM (S + F), 1/3 CTR + TKI-HM (S), 1/3 CTR + TKI-HM (F), 1/3 CTR + TKI-HM (S+F), STR + TKI-HM (S), STR + TKI-HM (F), STR + TKI-HM (S + F), 1/3 CTR + STR+TKI-HM (S), 1/3 CTR + STR + TKI-HM (F), 1/3 CTR + STR + TKI-HM (S + F) on yield and yield components of Ismailoglu grape type. The results were obtained as the highest fresh grape yield (16.15 kg/vine) with TKI-HM (S), as the highest cluster weight (652.39 g) with 1/3 CTR + STR, as the highest 100 berry weight (419.07 g) with 1/3 CTR + STR + TKI-HM (F), as the highest maturity index (44.06) with 1/3 CTR, as the highest must yield (810.00 ml) with STR + TKI-HM (F), as the highest intensity of L* color (42.04) with TKI-HM (S + F), as the highest intensity of a* color (2.60) with 1/3 CTR + TKI-HM (S), as the highest intensity of b* color (7.16) with 1/3 CTR + TKI-HM (S) applications. To increase the fresh grape yield of Ismailoglu grape type can be recommended TKI-HM (S) application.Keywords: 1/3 cluster tip reduction, shoot tip reduction, TKI-Humas application, yield and yield components
Procedia PDF Downloads 3997260 Cloud Computing: Major Issues and Solutions
Authors: S. Adhirai Subramaniyam, Paramjit Singh
Abstract:
This paper presents major issues in cloud computing. The paper describes different cloud computing deployment models and cloud service models available in the field of cloud computing. The paper then concentrates on various issues in the field. The issues such as cloud compatibility, compliance of the cloud, standardizing cloud technology, monitoring while on the cloud and cloud security are described. The paper suggests solutions for these issues and concludes that hybrid cloud infrastructure is a real boon for organizations.Keywords: cloud, cloud computing, mobile cloud computing, private cloud, public cloud, hybrid cloud, SAAS, PAAS, IAAS, cloud security
Procedia PDF Downloads 3437259 Models Comparison for Solar Radiation
Authors: Djelloul Benatiallah
Abstract:
Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.Keywords: solar radiation, renewable energy, fossil, photovoltaic systems
Procedia PDF Downloads 797258 The Impact of Monetary Policy on Aggregate Market Liquidity: Evidence from Indian Stock Market
Authors: Byomakesh Debata, Jitendra Mahakud
Abstract:
The recent financial crisis has been characterized by massive monetary policy interventions by the Central bank, and it has amplified the importance of liquidity for the stability of the stock market. This paper empirically elucidates the actual impact of monetary policy interventions on stock market liquidity covering all National Stock Exchange (NSE) Stocks, which have been traded continuously from 2002 to 2015. The present study employs a multivariate VAR model along with VAR-granger causality test, impulse response functions, block exogeneity test, and variance decomposition to analyze the direction as well as the magnitude of the relationship between monetary policy and market liquidity. Our analysis posits a unidirectional relationship between monetary policy (call money rate, base money growth rate) and aggregate market liquidity (traded value, turnover ratio, Amihud illiquidity ratio, turnover price impact, high-low spread). The impulse response function analysis clearly depicts the influence of monetary policy on stock liquidity for every unit innovation in monetary policy variables. Our results suggest that an expansionary monetary policy increases aggregate stock market liquidity and the reverse is documented during the tightening of monetary policy. To ascertain whether our findings are consistent across all periods, we divided the period of study as pre-crisis (2002 to 2007) and post-crisis period (2007-2015) and ran the same set of models. Interestingly, all liquidity variables are highly significant in the post-crisis period. However, the pre-crisis period has witnessed a moderate predictability of monetary policy. To check the robustness of our results we ran the same set of VAR models with different monetary policy variables and found the similar results. Unlike previous studies, we found most of the liquidity variables are significant throughout the sample period. This reveals the predictability of monetary policy on aggregate market liquidity. This study contributes to the existing body of literature by documenting a strong predictability of monetary policy on stock liquidity in an emerging economy with an order driven market making system like India. Most of the previous studies have been carried out in developing economies with quote driven or hybrid market making system and their results are ambiguous across different periods. From an eclectic sense, this study may be considered as a baseline study to further find out the macroeconomic determinants of liquidity of stocks at individual as well as aggregate level.Keywords: market liquidity, monetary policy, order driven market, VAR, vector autoregressive model
Procedia PDF Downloads 3747257 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 3327256 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 2217255 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 1827254 Clinical Cases of Rare Types of 'Maturity Onset Diabetes of the Young' Diabetes
Authors: Alla Ovsyannikova, Oksana Rymar, Elena Shakhtshneider, Mikhail Voevoda
Abstract:
In Siberia endocrinologists increasingly noted young patients with the course of diabetes mellitus differing from 1 and 2 types. Therefore we did a molecular genetic study for this group of patients to verify the monogenic forms of diabetes mellitus in them and researched the characteristics of this pathology. When confirming the monogenic form of diabetes, we performed a correction therapy for many patients (transfer from insulin to tablets), prevented specific complications, examined relatives and diagnosed their diabetes at the preclinical stage, revealed phenotypic characteristics of the pathology which led to the high significance of this work. Materials and Methods: We observed 5 patients (4 families). We diagnosed MODY (Maturity Onset Diabetes of the Young) during the molecular genetic testing (direct automatic sequencing). All patients had a full clinical examination, blood samples for biochemical research, determination of C-peptide and TSH, antibodies to b-cells, microalbuminuria, abdominal ultrasound, heart and thyroid ultrasound, examination of ophthalmologist. Results: We diagnosed 3 rare types of MODY: two women had MODY8, one man – MODY6 and man and his mother - MODY12. Patients with types 8 and 12 had clinical features. Age of onset hyperglycemia ranged from 26 to 34 years. In a patient with MODY6 fasting hyperglycemia was detected during a routine examination. Clinical symptoms, complications were not diagnosed. The patient observes a diet. In the first patient MODY8 was detected during first pregnancy, she had itchy skin and mostly postprandial hyperglycemia. Upon examination we determined glycated hemoglobin 7.5%, retinopathy, non-proliferative stage, peripheral neuropathy. She uses a basic bolus insulin therapy. The second patient with MODY8 also had clinical manifestations of hyperglycemia (pruritus, thirst), postprandial hyperglycemia and diabetic nephropathy, a stage of microalbuminuria. The patient was diagnosed autoimmune thyroiditis. She used inhibitors of DPP-4. The patient with MODY12 had an aggressive course. In the detection of hyperglycemia he had complaints of visual impairment, intense headaches, leg cramps. The patient had a history of childhood convulsive seizures of non-epileptic genesis, without organic pathology, which themselves were stopped at the age of 12 years. When we diagnosed diabetes a patient was 28 years, he had hypertriglyceridemia, atherosclerotic plaque in the carotid artery, proliferative retinopathy (lacerocoagulation). Diabetes and early myocardial infarction were observed in three cases in family. We prescribe therapy with sulfonylureas and SGLT-2 inhibitors with a positive effect. At the patient's mother diabetes began at a later age (30 years) and a less aggressive course was observed. She also has hypertriglyceridemia and uses oral hypoglycemic drugs. Conclusions: 1) When young patients with hyperglycemia have extrapancreatic pathologies and diabetic complications with a short duration of diabetes we can assume they have one of type of MODY diabetes. 2) In patients with monogenic forms of diabetes mellitus, the clinical manifestations of hyperglycemia in each succeeding generation are revealed at an earlier age. Research had increased our knowledge of the monogenic forms of diabetes. The reported study was supported by RSCF, research project No. 14-15-00496-P.Keywords: diabetes mellitus, MODY diabetes, monogenic forms, young patients
Procedia PDF Downloads 2447253 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón
Abstract:
Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.Keywords: aerial thermography, data processing, drone, low-cost, point cloud
Procedia PDF Downloads 1437252 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction
Procedia PDF Downloads 1647251 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 157250 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 1207249 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence
Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang
Abstract:
Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sublfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of filters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-filter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying filter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The significance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II filters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the filter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic filter, aspect ratios (AR) ranging from 1 to 16 in LES filters are evaluated. The findings highlight the DDM's proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as filter anisotropy intensify, the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all filter-anisotropy scenarios. The findings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence
Procedia PDF Downloads 757248 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model
Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi
Abstract:
The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.Keywords: Besag2, CAR models, disease mapping, INLA, spatial models
Procedia PDF Downloads 2807247 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss
Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy
Abstract:
One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.
Procedia PDF Downloads 3427246 Testing for Endogeneity of Foreign Direct Investment: Implications for Economic Policy
Authors: Liwiusz Wojciechowski
Abstract:
Research background: The current knowledge does not give a clear answer to the question of the impact of FDI on productivity. Results of the empirical studies are still inconclusive, no matter how extensive and diverse in terms of research approaches or groups of countries analyzed they are. It should also take into account the possibility that FDI and productivity are linked and that there is a bidirectional relationship between them. This issue is particularly important because on one hand FDI can contribute to changes in productivity in the host country, but on the other hand its level and dynamics may imply that FDI should be undertaken in a given country. As already mentioned, a two-way relationship between the presence of foreign capital and productivity in the host country should be assumed, taking into consideration the endogenous nature of FDI. Purpose of the article: The overall objective of this study is to determine the causality between foreign direct investment and total factor productivity in host county in terms of different relative absorptive capacity across countries. In the classic sense causality among variables is not always obvious and requires for testing, which would facilitate proper specification of FDI models. The aim of this article is to study endogeneity of selected macroeconomic variables commonly being used in FDI models in case of Visegrad countries: main recipients of FDI in CEE. The findings may be helpful in determining the structure of the actual relationship between variables, in appropriate models estimation and in forecasting as well as economic policymaking. Methodology/methods: Panel and time-series data techniques including GMM estimator, VEC models and causality tests were utilized in this study. Findings & Value added: The obtained results allow to confirm the hypothesis states the bi-directional causality between FDI and total factor productivity. Although results differ from among countries and data level of aggregation implications may be useful for policymakers in case of providing foreign capital attracting policy.Keywords: endogeneity, foreign direct investment, multi-equation models, total factor productivity
Procedia PDF Downloads 1977245 Estimating the Probability of Winning the Best Actor/Actress Award Conditional on the Best Picture Nomination with Bayesian Hierarchical Models
Authors: Svetlana K. Eden
Abstract:
Movies and TV shows have long become part of modern culture. We all have our preferred genre, story, actors, and actresses. However, can we objectively discern good acting from the bad? As laymen, we are probably not objective, but what about the Oscar academy members? Are their votes based on objective measures? Oscar academy members are probably also biased due to many factors, including their professional affiliations or advertisement exposure. Heavily advertised films bring more publicity to their cast and are likely to have bigger budgets. Because a bigger budget may also help earn a Best Picture (BP) nomination, we hypothesize that best actor/actress (BA) nominees from BP-nominated movies would have higher chances of winning the award than those BA nominees from non-BP-nominated films. To test this hypothesis, three Bayesian hierarchical models are proposed, and their performance is evaluated. The results from all three models largely support our hypothesis. Depending on the proportion of BP nominations among BA nominees, the odds ratios (estimated over expected) of winning the BA award conditional on BP nomination vary from 2.8 [0.8-7.0] to 4.3 [2.0, 15.8] for actors and from 1.5 [0.0, 12.2] to 5.4 [2.7, 14.2] for actresses.Keywords: Oscar, best picture, best actor/actress, bias
Procedia PDF Downloads 2237244 The Confounding Role of Graft-versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review
Authors: Hami Ashraf, Mohammad Heydarnejad
Abstract:
Introduction: The landscape of cancer treatment has been revolutionized by immunotherapy, offering novel therapeutic avenues for diverse cancer types. Animal models play a pivotal role in the development and elucidation of these therapeutic modalities. Nevertheless, the manifestation of Graft-versus-Host Disease (GVHD) in such models poses significant challenges, muddling the interpretation of experimental data within the ambit of cancer immunotherapy. This study is dedicated to scrutinizing the role of GVHD as a confounding factor in animal models used for cancer immunotherapy, alongside proposing viable strategies to mitigate this complication. Method: Employing a systematic review framework, this study undertakes a comprehensive literature survey including academic journals in PubMed, Embase, and Web of Science databases and conference proceedings to collate pertinent research that delves into the impact of GVHD on animal models in cancer immunotherapy. The acquired studies undergo rigorous analysis and synthesis, aiming to assess the influence of GVHD on experimental results while identifying strategies to alleviate its confounding effects. Results: Findings indicate that GVHD incidence significantly skews the reliability and applicability of experimental outcomes, occasionally leading to erroneous interpretations. The literature surveyed also sheds light on various methodologies under exploration to counteract the GVHD dilemma, thereby bolstering the experimental integrity in this domain. Conclusion: GVHD's presence critically affects both the interpretation and validity of experimental findings, underscoring the imperative for strategies to curtail its confounding impacts. Current research endeavors are oriented towards devising solutions to this issue, aiming to augment the dependability and pertinence of experimental results. It is incumbent upon researchers to diligently consider and adjust for GVHD's effects, thereby enhancing the translational potential of animal model findings to clinical applications and propelling progress in the arena of cancer immunotherapy.Keywords: graft-versus-host disease, cancer immunotherapy, animal models, preclinical model
Procedia PDF Downloads 517243 Microbiological Properties and Mineral Contents of Honeys from Bordj Bou Arreridj Region (Algeria)
Authors: Diafat Abdelouahab, Ekhalfi A Hammoudia, Meribai Abdelmalek A, Bahloul Ahmedb
Abstract:
The present study aimed to characterize 30 honey samples from the Bordj Bou Arreridj region (Algeria) regarding their floral origins, physicochemical parameters, mineral composition and microbial safety. Mean values obtained for physicochemical parameters were: pH 4.11, 17.17% moisture, 0.0061% ash, 370.57μS cm−1 electrical conductivity, 21.98 meq/kg free acidity, and 9.703 mg/kg HMF. The mineral content was determined by atomic absorption spectrometry. The mean values obtained were (mg/kg): Fe, 7.5714; Mg, 37.68; Na, 186,63; Zn, 3,86; Pb, 0,4869 × 10-3 ; Cd, 267 × 10-3. Aerobic mesophiles, fecal coliforms and sulphite-reducing clostridia were the microbial contaminants of interest studied. Microbiologically, the honey quality was considered good and all samples showed to be negative in respect to safety parameters. The results obtained for physicochemical characteristics of Bordj Bou Arreridj honey indicate a good quality level, adequate processing, good maturity and freshness.Keywords: pollen analysis, physicochemical analysis, mineral content, microbial contaminants
Procedia PDF Downloads 897242 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders
Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh
Abstract:
Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches
Procedia PDF Downloads 747241 Cessna Citation X Business Aircraft Stability Analysis Using Linear Fractional Representation LFRs Model
Authors: Yamina Boughari, Ruxandra Mihaela Botez, Florian Theel, Georges Ghazi
Abstract:
Clearance of flight control laws of a civil aircraft is a long and expensive process in the Aerospace industry. Thousands of flight combinations in terms of speeds, altitudes, gross weights, centers of gravity and angles of attack have to be investigated, and proved to be safe. Nonetheless, in this method, a worst flight condition can be easily missed, and its missing would lead to a critical situation. Definitively, it would be impossible to analyze a model because of the infinite number of cases contained within its flight envelope, that might require more time, and therefore more design cost. Therefore, in industry, the technique of the flight envelope mesh is commonly used. For each point of the flight envelope, the simulation of the associated model ensures the satisfaction or not of specifications. In order to perform fast, comprehensive and effective analysis, other varying parameters models were developed by incorporating variations, or uncertainties in the nominal models, known as Linear Fractional Representation LFR models; these LFR models were able to describe the aircraft dynamics by taking into account uncertainties over the flight envelope. In this paper, the LFRs models are developed using the speeds and altitudes as varying parameters; The LFR models were built using several flying conditions expressed in terms of speeds and altitudes. The use of such a method has gained a great interest by the aeronautical companies that have seen a promising future in the modeling, and particularly in the design and certification of control laws. In this research paper, we will focus on the Cessna Citation X open loop stability analysis. The data are provided by a Research Aircraft Flight Simulator of Level D, that corresponds to the highest level flight dynamics certification; this simulator was developed by CAE Inc. and its development was based on the requirements of research at the LARCASE laboratory. The acquisition of these data was used to develop a linear model of the airplane in its longitudinal and lateral motions, and was further used to create the LFR’s models for 12 XCG /weights conditions, and thus the whole flight envelope using a friendly Graphical User Interface developed during this study. Then, the LFR’s models are analyzed using Interval Analysis method based upon Lyapunov function, and also the ‘stability and robustness analysis’ toolbox. The results were presented under the form of graphs, thus they have offered good readability, and were easily exploitable. The weakness of this method stays in a relatively long calculation, equal to about four hours for the entire flight envelope.Keywords: flight control clearance, LFR, stability analysis, robustness analysis
Procedia PDF Downloads 3527240 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework
Authors: Nicola Rubino
Abstract:
This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points
Procedia PDF Downloads 2787239 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics
Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim
Abstract:
A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic
Procedia PDF Downloads 129