Search results for: edge computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1791

Search results for: edge computing

471 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado

Abstract:

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces

Procedia PDF Downloads 382
470 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications

Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong

Abstract:

This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.

Keywords: asymptotically quasi-nonexpansive nonself-mapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space

Procedia PDF Downloads 261
469 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi

Procedia PDF Downloads 545
468 Survey of Methods for Solutions of Spatial Covariance Structures and Their Limitations

Authors: Joseph Thomas Eghwerido, Julian I. Mbegbu

Abstract:

In modelling environment processes, we apply multidisciplinary knowledge to explain, explore and predict the Earth's response to natural human-induced environmental changes. Thus, the analysis of spatial-time ecological and environmental studies, the spatial parameters of interest are always heterogeneous. This often negates the assumption of stationarity. Hence, the dispersion of the transportation of atmospheric pollutants, landscape or topographic effect, weather patterns depends on a good estimate of spatial covariance. The generalized linear mixed model, although linear in the expected value parameters, its likelihood varies nonlinearly as a function of the covariance parameters. As a consequence, computing estimates for a linear mixed model requires the iterative solution of a system of simultaneous nonlinear equations. In other to predict the variables at unsampled locations, we need to know the estimate of the present sampled variables. The geostatistical methods for solving this spatial problem assume covariance stationarity (locally defined covariance) and uniform in space; which is not apparently valid because spatial processes often exhibit nonstationary covariance. Hence, they have globally defined covariance. We shall consider different existing methods of solutions of spatial covariance of a space-time processes at unsampled locations. This stationary covariance changes with locations for multiple time set with some asymptotic properties.

Keywords: parametric, nonstationary, Kernel, Kriging

Procedia PDF Downloads 256
467 myITLab as an Implementation Instance of Distance Education Technologies

Authors: Leila Goosen

Abstract:

The research problem reported on in this paper relates to improving success in Computer Science and Information Technology subjects where students are learning applications, especially when teaching occurs in a distance education context. An investigation was launched in order to address students’ struggles with applications, and improve their assessment in such subjects. Some of the main arguments presented centre on formulating and situating significant concepts within an appropriate conceptual framework. The paper explores the experiences and perceptions of computing instructors, teaching assistants, students and higher education institutions on how they are empowered by using technologies such as myITLab. They also share how they are working with the available features to successfully teach applications to their students. The data collection methodology used is then described. The paper includes discussions on how myITLab empowers instructors, teaching assistants, students and higher education institutions. Conclusions are presented on the way in which this paper could make an original and significant contribution to the promotion and development of knowledge in fields related to successfully teaching applications for student learning, including in a distance education context. The paper thus provides a forum for practitioners to highlight and discuss insights and successes, as well as identify new technical and organisational challenges, lessons and concerns regarding practical activities related to myITLab as an implementation instance of distance education technologies.

Keywords: distance, education, myITLab, technologies

Procedia PDF Downloads 361
466 A Proposed Model of E-Marketing Service-Oriented Architecture (E-MSOA)

Authors: Hussein Moselhy, Islam Salam

Abstract:

There have been some challenges and problems which hinder the implementation of the e-marketing systems such as the high cost of information systems infrastructure and maintenance as well as their unavailability within the institution. Also, there is no system which supports all programming languages and different platforms. Another problem is the lack of integration between these systems on one hand and the operating systems and different web browsers on the other hand. No system for customer relationship management is established which recognizes their desires and puts them in consideration while performing e-marketing functions is available. Therefore, the service-oriented architecture emerged as one of the most important techniques and methodologies to build systems that integrate with various operating systems and different platforms and other technologies. This technology allows realizing the data exchange among different applications. The service-oriented architecture represents distributed computing concepts to demonstrate its success in achieving the requirements of systems through web services. It also reflects the appropriate design for the services to use different web services in supporting the requirements of business processes and software users. In a service-oriented environment, web services are deployed on the web in the form of independent services to be accessed without knowledge of the nature of the programs and systems with in. This Paper presents a proposal for a new model which contributes to the application of methods and means of e-marketing with the integration of marketing mix elements to improve marketing efficiency (E-MSOA). And apply it in the educational city of one of the Egyptian sector.

Keywords: service-oriented architecture, electronic commerce, virtual retailing, unified modeling language

Procedia PDF Downloads 428
465 Experiences of Timing Analysis of Parallel Embedded Software

Authors: Muhammad Waqar Aziz, Syed Abdul Baqi Shah

Abstract:

The execution time analysis is fundamental to the successful design and execution of real-time embedded software. In such analysis, the Worst-Case Execution Time (WCET) of a program is a key measure, on the basis of which system tasks are scheduled. The WCET analysis of embedded software is also needed for system understanding and to guarantee its behavior. WCET analysis can be performed statically (without executing the program) or dynamically (through measurement). Traditionally, research on the WCET analysis assumes sequential code running on single-core platforms. However, as computation is steadily moving towards using a combination of parallel programs and multi-core hardware, new challenges in WCET analysis need to be addressed. In this article, we report our experiences of performing the WCET analysis of Parallel Embedded Software (PES) running on multi-core platform. The primary purpose was to investigate how WCET estimates of PES can be computed statically, and how they can be derived dynamically. Our experiences, as reported in this article, include the challenges we faced, possible suggestions to these challenges and the workarounds that were developed. This article also provides observations on the benefits and drawbacks of deriving the WCET estimates using the said methods and provides useful recommendations for further research in this area.

Keywords: embedded software, worst-case execution-time analysis, static flow analysis, measurement-based analysis, parallel computing

Procedia PDF Downloads 324
464 The Role of Knowledge Management in Global Software Engineering

Authors: Samina Khalid, Tehmina Khalil, Smeea Arshad

Abstract:

Knowledge management is essential ingredient of successful coordination in globally distributed software engineering. Various frameworks, KMSs, and tools have been proposed to foster coordination and communication between virtual teams but practical implementation of these solutions has not been found. Organizations have to face challenges to implement knowledge management system. For this purpose at first, a literature review is arranged to investigate about challenges that restrict organizations to implement KMS and then by taking in account these challenges a problem of need of integrated solution in the form of standardized KMS that can easily store tacit and explicit knowledge, has traced down to facilitate coordination and collaboration among virtual teams. Literature review has been already shown that knowledge is a complex perception with profound meanings, and one of the most important resources that contributes to the competitive advantage of an organization. In order to meet the different challenges caused by not properly managing knowledge related to projects among virtual teams in GSE, we suggest making use of the cloud computing model. In this research a distributed architecture to support KM storage is proposed called conceptual framework of KM as a service in cloud. Framework presented is enhanced and conceptual framework of KM is embedded into that framework to store projects related knowledge for future use.

Keywords: management, Globsl software development, global software engineering

Procedia PDF Downloads 527
463 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 179
462 Cloud Support for Scientific Workflow Execution: Prototyping Solutions for Remote Sensing Applications

Authors: Sofiane Bendoukha, Daniel Moldt, Hayat Bendoukha

Abstract:

Workflow concepts are essential for the development of remote sensing applications. They can help users to manage and process satellite data and execute scientific experiments on distributed resources. The objective of this paper is to introduce an approach for the specification and the execution of complex scientific workflows in Cloud-like environments. The approach strives to support scientists during the modeling, the deployment and the monitoring of their workflows. This work takes advantage from Petri nets and more pointedly the so-called reference nets formalism, which provides a robust modeling/implementation technique. RENEWGRASS is a tool that we implemented and integrated into the Petri nets editor and simulator RENEW. It provides an easy way to support not experienced scientists during the specification of their workflows. It allows both modeling and enactment of image processing workflows from the remote sensing domain. Our case study is related to the implementation of vegetation indecies. We have implemented the Normalized Differences Vegetation Index (NDVI) workflow. Additionally, we explore the integration possibilities of the Cloud technology as a supplementary layer for the deployment of the current implementation. For this purpose, we discuss migration patterns of data and applications and propose an architecture.

Keywords: cloud computing, scientific workflows, petri nets, RENEWGRASS

Procedia PDF Downloads 448
461 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination

Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan

Abstract:

The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.

Keywords: confidence interval, handwriting, kernel density estimator, KDE, logistic regression LoR, repeatability, reproducibility

Procedia PDF Downloads 126
460 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 95
459 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations

Authors: Rima A. Ajlouni

Abstract:

The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.

Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi

Procedia PDF Downloads 403
458 An Approximate Formula for Calculating the Fundamental Mode Period of Vibration of Practical Building

Authors: Abdul Hakim Chikho

Abstract:

Most international codes allow the use of an equivalent lateral load method for designing practical buildings to withstand earthquake actions. This method requires calculating an approximation to the fundamental mode period of vibrations of these buildings. Several empirical equations have been suggested to calculate approximations to the fundamental periods of different types of structures. Most of these equations are knowing to provide an only crude approximation to the required fundamental periods and repeating the calculation utilizing a more accurate formula is usually required. In this paper, a new formula to calculate a satisfactory approximation of the fundamental period of a practical building is proposed. This formula takes into account the mass and the stiffness of the building therefore, it is more logical than the conventional empirical equations. In order to verify the accuracy of the proposed formula, several examples have been solved. In these examples, calculating the fundamental mode periods of several farmed buildings utilizing the proposed formula and the conventional empirical equations has been accomplished. Comparing the obtained results with those obtained from a dynamic computer has shown that the proposed formula provides a more accurate estimation of the fundamental periods of practical buildings. Since the proposed method is still simple to use and requires only a minimum computing effort, it is believed to be ideally suited for design purposes.

Keywords: earthquake, fundamental mode period, design, building

Procedia PDF Downloads 286
457 On the Use of Machine Learning for Tamper Detection

Authors: Basel Halak, Christian Hall, Syed Abdul Father, Nelson Chow Wai Kit, Ruwaydah Widaad Raymode

Abstract:

The attack surface on computing devices is becoming very sophisticated, driven by the sheer increase of interconnected devices, reaching 50B in 2025, which makes it easier for adversaries to have direct access and perform well-known physical attacks. The impact of increased security vulnerability of electronic systems is exacerbated for devices that are part of the critical infrastructure or those used in military applications, where the likelihood of being targeted is very high. This continuously evolving landscape of security threats calls for a new generation of defense methods that are equally effective and adaptive. This paper proposes an intelligent defense mechanism to protect from physical tampering, it consists of a tamper detection system enhanced with machine learning capabilities, which allows it to recognize normal operating conditions, classify known physical attacks and identify new types of malicious behaviors. A prototype of the proposed system has been implemented, and its functionality has been successfully verified for two types of normal operating conditions and further four forms of physical attacks. In addition, a systematic threat modeling analysis and security validation was carried out, which indicated the proposed solution provides better protection against including information leakage, loss of data, and disruption of operation.

Keywords: anti-tamper, hardware, machine learning, physical security, embedded devices, ioT

Procedia PDF Downloads 155
456 [Keynote Speech]: Curiosity, Innovation and Technological Advancements Shaping the Future of Science, Technology, Engineering and Mathematics Education

Authors: Ana Hol

Abstract:

We live in a constantly changing environment where technology has become an integral component of our day to day life. We rely heavily on mobile devices, we search for data via web, we utilise smart home sensors to create the most suited ambiences and we utilise applications to shop, research, communicate and share data. Heavy reliance on technology therefore is creating new connections between STEM (Science, Technology, Engineering and Mathematics) fields which in turn rises a question of what the STEM education of the future should be like? This study was based on the reviews of the six Australian Information Systems students who undertook an international study tour to India where they were given an opportunity to network, communicate and meet local students, staff and business representatives and from them learn about the local business implementations, local customs and regulations. Research identifies that if we are to continue to implement and utilise electronic devices on the global scale, such as for example implement smart cars that can smoothly cross borders, we will need the workforce that will have the knowledge about the cars themselves, their parts, roads and transport networks, road rules, road sensors, road monitoring technologies, graphical user interfaces, movement detection systems as well as day to day operations, legal rules and regulations of each region and country, insurance policies, policing and processes so that the wide array of sensors can be controlled across country’s borders. In conclusion, it can be noted that allowing students to learn about the local conditions, roads, operations, business processes, customs and values in different countries is giving students a cutting edge advantage as such knowledge cannot be transferred via electronic sources alone. However once understanding of each problem or project is established, multidisciplinary innovative STEM projects can be smoothly conducted.

Keywords: STEM, curiosity, innovation, advancements

Procedia PDF Downloads 200
455 The Design of a Smartbrush Oral Health Installation for Aged Care Centres in Australia

Authors: Lukasz Grzegorz Broda, Taiwo Oseni, Andrew Stranieri, Rodrigo Marino, Ronelle Welton, Mark Yates

Abstract:

The oral health of residents in aged care centres in Australia is poor, contributing to infections, hospital admissions, and increased suffering. Although the use of electric toothbrushes has been deployed in many centres, smartbrushes that record and transmit information about brushing patterns and duration are not routinely deployed. Yet, the use of smartbrushes for aged care residents promises better oral care. Thus, a study aimed at investigating the appropriateness and suitability of a smartbrush for aged care residents is currently underway. Due to the peculiarity of the aged care setting, the incorporation of smartbrushes into residents’ care does require careful planning and design considerations. This paper describes an initial design process undertaken through the use of an actor to understand the important elements to be incorporated whilst installing a smartbrush for use in aged care settings. The design covers the configuration settings of the brush and app, including ergonomic factors related to brush and smartphone placement. A design science approach led to an installation re-design and a revised protocol for the planned study, the ultimate aim being to design installations to enhance perceived usefulness, ease of use, and attitudes towards the incorporation of smartbrushes for improving oral health care for aged care residents.

Keywords: smartbrush, applied computing, life and medical sciences, health informatics

Procedia PDF Downloads 172
454 A Low Cost Non-Destructive Grain Moisture Embedded System for Food Safety and Quality

Authors: Ritula Thakur, Babankumar S. Bansod, Puneet Mehta, S. Chatterji

Abstract:

Moisture plays an important role in storage, harvesting and processing of food grains and related agricultural products. It is an important characteristic of most agricultural products for maintenance of quality. Accurate knowledge of the moisture content can be of significant value in maintaining quality and preventing contamination of cereal grains. The present work reports the design and development of microcontroller based low cost non-destructive moisture meter, which uses complex impedance measurement method for moisture measurement of wheat using parallel plate capacitor arrangement. Moisture can conveniently be sensed by measuring the complex impedance using a small parallel-plate capacitor sensor filled with the kernels in-between the two plates of sensor, exciting the sensor at 30 KHz and 100 KHz frequencies. The effects of density and temperature variations were compensated by providing suitable compensations in the developed algorithm. The results were compared with standard dry oven technique and the developed method was found to be highly accurate with less than 1% error. The developed moisture meter is low cost, highly accurate, non-destructible method for determining the moisture of grains utilizing the fast computing capabilities of microcontroller.

Keywords: complex impedance, moisture content, electrical properties, safety of food

Procedia PDF Downloads 463
453 Effects of Artificial Nectar Feeders on Bird Distribution and Erica Visitation Rate in the Cape Fynbos

Authors: Monique Du Plessis, Anina Coetzee, Colleen L. Seymour, Claire N. Spottiswoode

Abstract:

Artificial nectar feeders are used to attract nectarivorous birds to gardens and are increasing in popularity. The costs and benefits of these feeders remain controversial, however. Nectar feeders may have positive effects by attracting nectarivorous birds towards suburbia, facilitating their urban adaptation, and supplementing bird diets when floral resources are scarce. However, this may come at the cost of luring them away from the plants they pollinate in neighboring indigenous vegetation. This study investigated the effect of nectar feeders on an African pollinator-plant mutualism. Given that birds are important pollinators to many fynbos plant species, this study was conducted in gardens and natural vegetation along the urban edge of the Cape Peninsula. Feeding experiments were carried out to compare relative bird abundance and local distribution patterns for nectarivorous birds (i.e., sunbirds and sugarbirds) between feeder and control treatments. Resultant changes in their visitation rates to Erica flowers in the natural vegetation were tested by inspection of their anther ring status. Nectar feeders attracted higher densities of nectarivores to gardens relative to natural vegetation and decreased their densities in the neighboring fynbos, even when floral abundance in the neighboring vegetation was high. The consequent changes to their distribution patterns and foraging behavior decreased their visitation to at least Erica plukenetii flowers (but not to Erica abietina). This study provides evidence that nectar feeders may have positive effects for birds themselves by reducing their urban sensitivity but also highlights the unintended negative effects feeders may have on the surrounding fynbos ecosystem. Given that nectar feeders appear to compete with the flowers of Erica plukenetii, and perhaps those of other Erica species, artificial feeding may inadvertently threaten bird-plant pollination networks.

Keywords: avian nectarivores, bird feeders, bird pollination, indirect effects in human-wildlife interactions, sugar water feeders, supplementary feeding

Procedia PDF Downloads 158
452 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 128
451 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 73
450 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm

Authors: Xiang Jianhong, Wang Cong, Wang Linyu

Abstract:

With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.

Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal

Procedia PDF Downloads 129
449 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: canny pruning, hand recognition, machine learning, skin tracking

Procedia PDF Downloads 185
448 Control of the Sustainability of Fresh Cheese in Order to Extend the Shelf-Life of the Product

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

The fresh cheese is in the group of perishable food which cannot be kept a long period of time. The study of sustainability have been done in order to extend the shelf-life of the product which was 15 days. According to the plan of sustainability it was defined that 35 samples had to be stored for 30 days at 2°C−6°C and analyzed every 7th day from the day of reception until 30th day. Shelf life of the cheese has expired during the study of sustainability in the period between 15th and 30th day of analyses. Cheese samples were subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp., Bacillus cereus, Staphylococcus aureus and total plate count) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579, Bacillus cereus ISO 7932, Staphylococcus aureus ISO 6888-1, and total plate count ISO 4833. Analyses showed that after fifteen days of storage at a temperature defined by the manufacturers and within the product's shelf life, the cheese did not have any noticeable changes in sensory characteristics. Smell and taste are unaffected there was no separation of whey and there was not presence of strange smell or taste. As far as microbiological analyses are concerned neither one pathogen was detected and total plate count was at level of 103 cfu/g. After expiry of shelf life in a period of 15th and 30th day of storage, the analysis showed that there was a separation of whey on the surface. Along the edge of the container was present a dried part of cheese and sour-milky smell and taste were very weakly expressed. Concerning the microbiological analyses there still were not positive results for pathogen microorganisms but the total plate count was at a level of 106cfu/g. Based on the obtained results it can be concluded that this product cannot have longer shelf life than shelf life which is already defined because there are a sensory changes that would certainly have influence on decision of customers when purchase of this product is concerned.

Keywords: sustainability, fresh cheese, shelf-life, product

Procedia PDF Downloads 377
447 Embolism: How Changes in Xylem Sap Surface Tension Affect the Resistance against Hydraulic Failure

Authors: Adriano Losso, Birgit Dämon, Stefan Mayr

Abstract:

In vascular plants, water flows from roots to leaves in a metastable state, and even a small perturbation of the system can lead a sudden transition from the liquid to the vapor phase, resulting in xylem embolism (cavitation). Xylem embolism, induced by drought stress and/or freezing stress is caused by the aspiration of gaseous bubbles into xylem conduits from adjacent gas-filled compartments through pit membrane pores (‘air seeding’). At water potentials less negative than the threshold for air seeding, the surface tension (γ) stabilizes the air-water interface and thus prevents air from passing the pit pores. This hold is probably also true for conifers, where this effect occurs at the edge of the sealed torus. Accordingly, it was experimentally demonstrated that γ influences air seeding, but information on the relevance of this effect under field conditions is missing. In this study, we analyzed seasonal changes in γ of the xylem sap in two conifers growing at the alpine timberline (Picea abies and Pinus mugo). In addition, cut branches were perfused (40 min perfusion at 0.004 MPa) with different γ solutions (i.e. distilled and degassed water, 2, 5 and 15% (v/v) ethanol-water solution corresponding to a γ of 74, 65, 55 and 45 mN m-1, respectively) and their vulnerability to drought-induced embolism analyzed via the centrifuge technique (Cavitron). In both species, xylem sap γ changed considerably (ca. 53-67 and ca. 50-68 mN m-1 in P. abies and P. cembra, respectively) over the season. Branches perfused with low γ solutions showed reduced resistance against drought-induced embolism in both species. A significant linear relationship (P < 0.001) between P12, P50 and P88 (i.e. water potential at 12, 50 and 88% of the loss of conductivity) and xylem sap γ was found. Based on this correlation, a variation in P50 between -3.10 and -3.83 MPa (P. abies) and between -3.21 and -4.11 MPa (P. mugo) over the season could be estimated. Results demonstrate that changes in γ of the xylem sap can considerably influence a tree´s resistance to drought-induced embolism. They indicate that vulnerability analyses, normally conducted at a γ near that of pure water, might often underestimate vulnerabilities under field conditions. For studied timberline conifers, seasonal changes in γ might be especially relevant in winter, when frost drought and freezing stress can lead to an excessive embolism.

Keywords: conifers, Picea abies, Pinus mugo, timberline

Procedia PDF Downloads 296
446 Corruption, a Prelude to Problems of Governance in Pakistan

Authors: Umbreen Javaid

Abstract:

Pakistan’s experience with nascent, yet to be evolved democratic institutions inherited from the British Empire, has not been a pleasant one when evaluated in terms of good governance, development, and success of anti-corruption mechanisms. The country has remained entangled in a vicious circle of accumulating large budget deficits, dwindling economy, low foreign direct investment, political instability, and rising terrorism. It is thus not surprising that no account of the state aimed at analyzing the six-decade journey since her inception is replete with negative connotations like dysfunctional, failed, fragile or weak state. The limited pool of experience of handling democratic institutions and lack of political will be on the part of country’s political elite to transform the society on democratic footings have left Pakistan as a “limited access order” state. The widespread illiteracy becomes a double edge sword when a largely illiterate electorate elects representatives who mostly come from a semi-educated background with the limited understanding of democratic minutiae and little or no proclivity to resist monetary allures. The prevalence of culture of patronage with widespread poverty coupled with absence of a comprehensive system of investigating, prosecuting and adjudicating cases of corruption encourage the practice that has been eroding the state’s foundations since her inception owing to the unwillingness of the traditional elites who have been strongly resistant towards any attempts aimed at disseminating powers. An analytical study of the historical, political, cultural, economic and administrative hurdles that have been at work in impeding Pakistan’s transition to a democratic, accountable society would be instrumental in understanding the issue of widespread plague of corruption and state’s inefficiency to cope with it effectively. The issue of corruption in Pakistan becomes more important when seen in the context of her vulnerability to terrorism and religious extremism. In this regard, Pakistan needs to learn a lot from developed countries in order to evolve a comprehensive strategy for combating and preventing this pressing issue.

Keywords: Pakistan, corruption, anti-corruption, limited access order

Procedia PDF Downloads 307
445 Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings

Authors: Ali Mohammed Yimer, Ayalew Assen, Youssef Belmabkhout

Abstract:

Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management.

Keywords: functional porous materials, phosphorite residue tailings, adsorption, environmental remediation, sustainable solutions

Procedia PDF Downloads 60
444 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 519
443 Brachypodium: A Model Genus to Study Grass Genome Organisation at the Cytomolecular Level

Authors: R. Hasterok, A. Betekhtin, N. Borowska, A. Braszewska-Zalewska, E. Breda, K. Chwialkowska, R. Gorkiewicz, D. Idziak, J. Kwasniewska, M. Kwasniewski, D. Siwinska, A. Wiszynska, E. Wolny

Abstract:

In contrast to animals, the organisation of plant genomes at the cytomolecular level is still relatively poorly studied and understood. However, the Brachypodium genus in general and B. distachyon in particular represent exceptionally good model systems for such study. This is due not only to their highly desirable ‘model’ biological features, such as small nuclear genome, low chromosome number and complex phylogenetic relations, but also to the rapidly and continuously growing repertoire of experimental tools, such as large collections of accessions, WGS information, large insert (BAC) libraries of genomic DNA, etc. Advanced cytomolecular techniques, such as fluorescence in situ hybridisation (FISH) with evermore sophisticated probes, empowered by cutting-edge microscope and digital image acquisition and processing systems, offer unprecedented insight into chromatin organisation at various phases of the cell cycle. A good example is chromosome painting which uses pools of chromosome-specific BAC clones, and enables the tracking of individual chromosomes not only during cell division but also during interphase. This presentation outlines the present status of molecular cytogenetic analyses of plant genome structure, dynamics and evolution using B. distachyon and some of its relatives. The current projects focus on important scientific questions, such as: What mechanisms shape the karyotypes? Is the distribution of individual chromosomes within an interphase nucleus determined? Are there hot spots of structural rearrangement in Brachypodium chromosomes? Which epigenetic processes play a crucial role in B. distachyon embryo development and selective silencing of rRNA genes in Brachypodium allopolyploids? The authors acknowledge financial support from the Polish National Science Centre (grants no. 2012/04/A/NZ3/00572 and 2011/01/B/NZ3/00177)

Keywords: Brachypodium, B. distachyon, chromosome, FISH, molecular cytogenetics, nucleus, plant genome organisation

Procedia PDF Downloads 351
442 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads

Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan

Abstract:

The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.

Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics

Procedia PDF Downloads 66