Search results for: sustainable water supply
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13667

Search results for: sustainable water supply

497 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems

Authors: Marine Shavlakadze

Abstract:

Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.

Keywords: hydroponics, micro-fertilizers, manganese-containing materials, industrial wastes

Procedia PDF Downloads 113
496 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 81
495 Microplastics in Fish from Grenada, West Indies: Problems and Opportunities

Authors: Michelle E. Taylor, Clare E. Morrall

Abstract:

Microplastics are small particles produced for industrial purposes or formed by breakdown of anthropogenic debris. Caribbean nations import large quantities of plastic products. The Caribbean region is vulnerable to natural disasters and Climate Change is predicted to bring multiple additional challenges to island nations. Microplastics have been found in an array of marine environments and in a diversity of marine species. Occurrence of microplastic in the intestinal tracts of marine fish is a concern to human and ecosystem health as pollutants and pathogens can associate with plastics. Studies have shown that the incidence of microplastics in marine fish varies with species and location. Prevalence of microplastics (≤ 5 mm) in fish species from Grenadian waters (representing pelagic, semi-pelagic and demersal lifestyles) harvested for human consumption have been investigated via gut analysis. Harvested tissue was digested in 10% KOH and particles retained on a 0.177 mm sieve were examined. Microplastics identified have been classified according to type, colour and size. Over 97% of fish examined thus far (n=34) contained microplastics. Current and future work includes examining the invasive Lionfish (Pterois spp.) for microplastics, investigating marine invertebrate species as well as examining environmental sources of microplastics (i.e. rivers, coastal waters and sand). Owing to concerns of pollutant accumulation on microplastics and potential migration into organismal tissues, we plan to analyse fish tissue for mercury and other persistent pollutants. Despite having ~110,000 inhabitants, the island nation of Grenada imported approximately 33 million plastic bottles in 2013, of which it is estimated less than 5% were recycled. Over 30% of the imported bottles were ‘unmanaged’, and as such are potential litter/marine debris. A revised Litter Abatement Act passed into law in Grenada in 2015, but little enforcement of the law is evident to date. A local Non-governmental organization (NGO) ‘The Grenada Green Group’ (G3) is focused on reducing litter in Grenada through lobbying government to implement the revised act and running sessions in schools, community groups and on local media and social media to raise awareness of the problems associated with plastics. A local private company has indicated willingness to support an Anti-Litter Campaign in 2018 and local awareness of the need for a reduction of single use plastic use and litter seems to be high. The Government of Grenada have called for a Sustainable Waste Management Strategy and a ban on both Styrofoam and plastic grocery bags are among recommendations recently submitted. A Styrofoam ban will be in place at the St. George’s University campus from January 1st, 2018 and many local businesses have already voluntarily moved away from Styrofoam. Our findings underscore the importance of continuing investigations into microplastics in marine life; this will contribute to understanding the associated health risks. Furthermore, our findings support action to mitigate the volume of plastics entering the world’s oceans. We hope that Grenada’s future will involve a lot less plastic. This research was supported by the Caribbean Node of the Global Partnership on Marine Litter.

Keywords: Caribbean, microplastics, pollution, small island developing nation

Procedia PDF Downloads 190
494 Rheological Study of Wheat-Chickpea Flour Blend Bread for People with Type-2 Diabetes

Authors: Tasleem Zafar, Jiwan Sidhu

Abstract:

Introduction: Chickpea flour is known to offer many benefits to diabetic persons, especially in maintaining their blood sugar levels in the acceptable range. Under this project we have studied the chemical composition and antioxidant capacity of white flour (WF), whole wheat flour (WWF) and chickpea flour (BF), in addition to the effect of replacement of WF and WWF with BF on the rheological characteristics of these flour blends, with the ultimate objective of producing acceptable quality flat as well as pan-bread for the diabetic consumers. Methods: WF and WWF were replaced with BF ranging from 0 to 40%, to investigate its effect on the rheological properties and functionality of blended flour dough using farinograph, viscoamylograph, mixograph and falling number apparatus as per the AACC standard methods. Texture Profile Analysis (TPA) was carried on the WF, WWF, and their blends with BF using Stable Micro System Texture Analyzer. Effect of certain additives, such as freeze-dried amla fruit powder (Phyllanthus emblica L.), guar gum, and xanthan gum on the dough rheological properties were also studied. Results: Freeze-dried amla fruit powder was found to be very rich in ascorbic acid and other phenolics having higher antioxidant activity. A decreased farinograph water absorption, increased dough development time, higher mixing tolerance index (i.e., weakening of dough), decreased resistance to extension, lower ratio numbers were obtained when the replacement with BF was increased from 0 to 40%. The BF gave lower peak viscosity, lower paste breakdown, and lower setback values when compared with WF. The falling number values were significantly lower in WWF (meaning higher α-amylase activity) than both the WF and BF. Texture Profile Analysis (TPA) carried on the WF, WWF, and their blends with BF showed significant variations in hardness and compressibility values, dough becoming less hard and less compressible when the replacement of WF and WWF with BF was increased from 0 to 40%. Conclusions: To overcome the deleterious effects of adding BF to WF and WWF on the rheological properties will be an interesting challenge when good quality pan bread and Arabic flatbread have to be commercially produced in a bakery. Use of freeze-dried amla fruit powder, guar gum, and xanthan gum did show some promise to improve the mixing characteristics of WF, WWF, and their blends with BF, and these additives are expected to be useful in producing an acceptable quality flat as well as pan-bread on a commercial scale.

Keywords: wheat flour, chickpea flour, amla fruit, rheology

Procedia PDF Downloads 140
493 SkyCar Rapid Transit System: An Integrated Approach of Modern Transportation Solutions in the New Queen Elizabeth Quay, Perth, Western Australia

Authors: Arfanara Najnin, Michael W. Roach, Jr., Dr. Jianhong Cecilia Xia

Abstract:

The SkyCar Rapid Transit System (SRT) is an innovative intelligent transport system for the sustainable urban transport system. This system will increase the urban area network connectivity and decrease urban area traffic congestion. The SRT system is designed as a suspended Personal Rapid Transit (PRT) system that travels under a guideway 5m above the ground. A driver-less passenger is via pod-cars that hang from slender beams supported by columns that replace existing lamp posts. The beams are setup in a series of interconnecting loops providing non-stop travel from beginning to end to assure journey time. The SRT forward movement is effected by magnetic motors built into the guideway. Passenger stops are at either at line level 5m above the ground or ground level via a spur guideway that curves off the main thoroughfare. The main objective of this paper is to propose an integrated Automated Transit Network (ATN) technology for the future intelligent transport system in the urban built environment. To fulfil the objective a 4D simulated model in the urban built environment has been proposed by using the concept of SRT-ATN system. The methodology for the design, construction and testing parameters of a Technology Demonstrator (TD) for proof of concept and a Simulator (S) has been demonstrated. The completed TD and S will provide an excellent proving ground for the next development stage, the SRT Prototype (PT) and Pilot System (PS). This paper covered by a 4D simulated model in the virtual built environment is to effectively show how the SRT-ATN system works. OpenSim software has been used to develop the model in a virtual environment, and the scenario has been simulated to understand and visualize the proposed SkyCar Rapid Transit Network model. The SkyCar system will be fabricated in a modular form which is easily transported. The system would be installed in increasingly congested city centers throughout the world, as well as in airports, tourist resorts, race tracks and other special purpose for the urban community. This paper shares the lessons learnt from the proposed innovation and provides recommendations on how to improve the future transport system in urban built environment. Safety and security of passengers are prime factors to be considered for this transit system. Design requirements to meet the safety needs to be part of the research and development phase of the project. Operational safety aspects would also be developed during this period. The vehicles, the track and beam systems and stations are the main components that need to be examined in detail for safety and security of patrons. Measures will also be required to protect columns adjoining intersections from errant vehicles in vehicular traffic collisions. The SkyCar Rapid Transit takes advantage of all current disruptive technologies; batteries, sensors and 4G/5G communication and solar energy technologies which will continue to reduce the costs and make the systems more profitable. SkyCar's energy consumption is extremely low compared to other transport systems.

Keywords: SkyCar, rapid transit, Intelligent Transport System (ITS), Automated Transit Network (ATN), urban built environment, 4D Visualization, smart city

Procedia PDF Downloads 201
492 Multi-Objective Optimization of the Thermal-Hydraulic Behavior for a Sodium Fast Reactor with a Gas Power Conversion System and a Loss of off-Site Power Simulation

Authors: Avent Grange, Frederic Bertrand, Jean-Baptiste Droin, Amandine Marrel, Jean-Henry Ferrasse, Olivier Boutin

Abstract:

CEA and its industrial partners are designing a gas Power Conversion System (PCS) based on a Brayton cycle for the ASTRID Sodium-cooled Fast Reactor. Investigations of control and regulation requirements to operate this PCS during operating, incidental and accidental transients are necessary to adapt core heat removal. To this aim, we developed a methodology to optimize the thermal-hydraulic behavior of the reactor during normal operations, incidents and accidents. This methodology consists of a multi-objective optimization for a specific sequence, whose aim is to increase component lifetime by reducing simultaneously several thermal stresses and to bring the reactor into a stable state. Furthermore, the multi-objective optimization complies with safety and operating constraints. Operating, incidental and accidental sequences use specific regulations to control the thermal-hydraulic reactor behavior, each of them is defined by a setpoint, a controller and an actuator. In the multi-objective problem, the parameters used to solve the optimization are the setpoints and the settings of the controllers associated with the regulations included in the sequence. In this way, the methodology allows designers to define an optimized and specific control strategy of the plant for the studied sequence and hence to adapt PCS piloting at its best. The multi-objective optimization is performed by evolutionary algorithms coupled to surrogate models built on variables computed by the thermal-hydraulic system code, CATHARE2. The methodology is applied to a loss of off-site power sequence. Three variables are controlled: the sodium outlet temperature of the sodium-gas heat exchanger, turbomachine rotational speed and water flow through the heat sink. These regulations are chosen in order to minimize thermal stresses on the gas-gas heat exchanger, on the sodium-gas heat exchanger and on the vessel. The main results of this work are optimal setpoints for the three regulations. Moreover, Proportional-Integral-Derivative (PID) control setting is considered and efficient actuators used in controls are chosen through sensitivity analysis results. Finally, the optimized regulation system and the reactor control procedure, provided by the optimization process, are verified through a direct CATHARE2 calculation.

Keywords: gas power conversion system, loss of off-site power, multi-objective optimization, regulation, sodium fast reactor, surrogate model

Procedia PDF Downloads 292
491 An Efficient and Low Cost Protocol for Rapid and Mass in vitro Propagation of Hyssopus officinalis L.

Authors: Ira V. Stancheva, Ely G. Zayova, Maria P. Geneva, Marieta G. Hristozkova, Lyudmila I. Dimitrova, Maria I. Petrova

Abstract:

The study describes a highly efficient and low-cost protocol for rapid and mass in vitro propagation of medicinal and aromatic plant species (Hyssopus officinalis L., Lamiaceae). Hyssop is an important aromatic herb used for its medicinal values because of its antioxidant, anti-inflammatory and antimicrobial properties. The protocol for large-scale multiplication of this aromatic plant was developed using young stem tips explants. The explants were sterilized with 0.04% mercuric chloride (HgCl₂) solution for 20 minutes and washing three times with sterile distilled water in 15 minutes. The cultural media was full and half strength Murashige and Skoog medium containing indole-3-butyric acid. Full and ½ Murashige and Skoog media without auxin were used as controls. For each variant 20 glass tubes with two plants were used. In each tube two tip and nodal explants were inoculated. Maximum shoot and root number were obtained on ½ Murashige and Skoog medium supplemented with 0.1 mg L-1 indole-3-butyric acid at the same time after four weeks of culture. The number of shoots per explant and shoot height were considered. The data on rooting percentage, the number of roots per plant and root length were collected after the same cultural period. The highest percentage of survival 85% for this medicinal plant was recorded in mixture of soil, sand and perlite (2:1:1 v/v/v). This mixture was most suitable for acclimatization of all propagated plants. Ex vitro acclimatization was carried out at 24±1 °C and 70% relative humidity under 16 h illuminations (50 μmol m⁻²s⁻¹). After adaptation period, the all plants were transferred to the field. The plants flowered within three months after transplantation. Phenotypic variations in the acclimatized plants were not observed. An average of 90% of the acclimatized plants survived after transferring into the field. All the in vitro propagated plants displayed normal development under the field conditions. Developed in vitro techniques could provide a promising alternative tool for large-scale propagation that increases the number of homologous plants for field cultivation. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.

Keywords: Hyssopus officinalis L., in vitro culture, micro propagation, acclimatization

Procedia PDF Downloads 302
490 Dietary Anion-Cation Balance of Grass and Net Acid-Base Excretion in Urine of Suckler Cows

Authors: H. Scholz, P. Kuehne, G. Heckenberger

Abstract:

Dietary Anion-Cation Balance (DCAB) in grazing systems under German conditions has a tendency to decrease from May until September and often are measured DCAB lower than 100 meq per kg dry matter. Lower DCAB in grass feeding system can change the metabolic status of suckler cows and often are results in acidotic metabolism. Measurement of acid-base excretion in dairy cows has been proved to a method to evaluate the acid-base status. The hypothesis was that metabolic imbalances could be identified by urine measurement in suckler cows. The farm study was conducted during the grazing seasons 2017 and 2018 and involved 7 suckler cow farms in Germany. Suckler cows were grazing during the whole time of the investigation and had no access to other feeding components. Cows had free access to water and salt block and free access to minerals (loose). The dry matter of the grass was determined at 60 °C and were then analysed for energy and nutrient content and for the Dietary Cation-Anion Balance (DCAB). Urine was collected in 50 ml-glasses and analysed for net acid-base excretion (NSBA) and the concentration of creatinine and urea in the laboratory. Statistical analysis took place with ANOVA with fixed effects of farms (1-7), month (May until September), and number of lactations (1, 2, and ≥ 3 lactations) using SPSS Version 25.0 for windows. An alpha of 0.05 was used for all statistical tests. During the grazing periods of years 2017 and 2018, an average DCAB was observed in the grass of 167 meq per kg DM. A very high mean variation could be determined from -42 meq/kg to +439 meq/kg. Reference values in relation to DCAB were described between 150 meq and 400 meq per kg DM. It was found the high chlorine content with reduced potassium level led to this reduction in DCAB at the end of the grazing period. Between the DCAB of the grass and the NSBA in urine of suckler cows was a correlation according to PEARSON of r = 0.478 (p ≤ 0.001) or after SPEARMAN of r = 0.601 (p ≤ 0.001) observed. For the control of urine values of grazing suckler cows, the wide spread of the values poses a challenge of the interpretation, especially since the DCAB is unknown. The influence of several feeding components such as chlorine, sulfur, potassium, and sodium (ions for the DCAB) and dry matter feed intake during the grazing period of suckler cows should be taken into account in further research. The results obtained show that up a decrease in the DCAB is related to a decrease in NSBA in urine of suckler cows. Monitoring of metabolic disturbances should include analysis of urine, blood, milk, and ruminal fluid.

Keywords: dietary anion-cation balance, DCAB, net acid-base excretion, NSBA, suckler cow, grazing period

Procedia PDF Downloads 138
489 Adaptive Strategies of Clonal Shrub to Sand Dune Environment in Desert-Oasis Transitional Zone

Authors: Weicheng Luo, Wenzhi Zhao

Abstract:

Plants growth in desert often suffered from stresses like water deficit, wind erosion and sand burial. Thus, plants in desert always have unique strategies to adapt these stresses. However, data regarding how clonal shrubs withstand wind erosion and sand burial in natural habitats remain relatively scarce. Therefore, we selected a common clonal shrub Calligonum arborescens to study the adaptive strategies of clonal plants to sand dune environment in a transitional zone of desert and Hexi Oasis of China. Our results show that sand burial is one of the essential prerequisites for the survival of C. arborescens rhizome fragments. Both the time and degrees of sand burial and wind erosion had significantly effects on clonal reproduction and growth of C. arborescens. With increasing burial depth, the number of ramets and biomass production significantly decreased. There is same change trend in severe erosion treatments. However, the number of ramets and biomass production significantly increased in moderate erosion treatments. Rhizome severed greatly decreased ramet number and biomass production under both sand burial and severe erosion treatments. That indicated that both sand burial and severe erosion had negative effects on the clonal growth of C. arborescens, but moderate wind erosion had positive effects. And rhizome connections alleviated the negative effects of sand burial and of severe erosion on the growth and performance of C. arborescens. Most fragments of C. arborescens grew in the directions of northeastern and southwestern. Ramet number and biomass, rhizome length and biomass in these two directions were significantly higher than those found in other directions. Interestingly, these directions were perpendicular to the prevailing wind direction. Distribution of C. arborescens differed in different habitats. The total number of individuals was significantly higher in inter-dune areas and on windward slopes than on the top and leeward slopes of dunes; more clonal ramets were produced on the top of dunes than elsewhere, and a few were found on leeward slopes. The mainly reason is that ramets on windward and top of dunes can easily suffered with moderated wind erosion which promoted clonal growth and reproduction of C. arborescens. These results indicated that C. arborescens adapted sand dune environment through directional growth and patchy distribution, and sand-burial and wind erosion were the key factors which led to the directional growth and patchiness of C. arborescens.

Keywords: adaptive strategy, Calligonum arborescens Litv, clonal fragment, desert-oasis transitional zone, sand burial and wind erosion

Procedia PDF Downloads 224
488 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants

Authors: Zarina Chokparova, Ighor Uzhinsky

Abstract:

Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.

Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture

Procedia PDF Downloads 131
487 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components

Authors: Francesca Gullo, Paola Palmero, Massimo Messori

Abstract:

Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.

Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites

Procedia PDF Downloads 33
486 [Keynote Talk]: Monitoring of Ultrafine Particle Number and Size Distribution at One Urban Background Site in Leicester

Authors: Sarkawt M. Hama, Paul S. Monks, Rebecca L. Cordell

Abstract:

Within the Joaquin project, ultrafine particles (UFP) are continuously measured at one urban background site in Leicester. The main aims are to examine the temporal and seasonal variations in UFP number concentration and size distribution in an urban environment, and to try to assess the added value of continuous UFP measurements. In addition, relations of UFP with more commonly monitored pollutants such as black carbon (BC), nitrogen oxides (NOX), particulate matter (PM2.5), and the lung deposited surface area(LDSA) were evaluated. The effects of meteorological conditions, particularly wind speed and direction, and also temperature on the observed distribution of ultrafine particles will be detailed. The study presents the results from an experimental investigation into the particle number concentration size distribution of UFP, BC, and NOX with measurements taken at the Automatic Urban and Rural Network (AURN) monitoring site in Leicester. The monitoring was performed as part of the EU project JOAQUIN (Joint Air Quality Initiative) supported by the INTERREG IVB NWE program. The total number concentrations (TNC) were measured by a water-based condensation particle counter (W-CPC) (TSI model 3783), the particle number concentrations (PNC) and size distributions were measured by an ultrafine particle monitor (UFP TSI model 3031), the BC by MAAP (Thermo-5012), the NOX by NO-NO2-NOx monitor (Thermos Scientific 42i), and a Nanoparticle Surface Area Monitor (NSAM, TSI 3550) was used to measure the LDSA (reported as μm2 cm−3) corresponding to the alveolar region of the lung between November 2013 and November 2015. The average concentrations of particle number concentrations were observed in summer with lower absolute values of PNC than in winter might be related mainly to particles directly emitted by traffic and to the more favorable conditions of atmospheric dispersion. Results showed a traffic-related diurnal variation of UFP, BC, NOX and LDSA with clear morning and evening rush hour peaks on weekdays, only an evening peak at the weekends. Correlation coefficients were calculated between UFP and other pollutants (BC and NOX). The highest correlation between them was found in winter months. Overall, the results support the notion that local traffic emissions were a major contributor of the atmospheric particles pollution and a clear seasonal pattern was found, with higher values during the cold season.

Keywords: size distribution, traffic emissions, UFP, urban area

Procedia PDF Downloads 317
485 A Static and Dynamic Slope Stability Analysis of Sonapur

Authors: Rupam Saikia, Ashim Kanti Dey

Abstract:

Sonapur is an intense hilly region on the border of Assam and Meghalaya lying in North-East India and is very near to a seismic fault named as Dauki besides which makes the region seismically active. Besides, these recently two earthquakes of magnitude 6.7 and 6.9 have struck North-East India in January and April 2016. Also, the slope concerned for this study is adjacent to NH 44 which for a long time has been a sole important connecting link to the states of Manipur and Mizoram along with some parts of Assam and so has been a cause of considerable loss to life and property since past decades as there has been several recorded incidents of landslide, road-blocks, etc. mostly during the rainy season which comes into news. Based on this issue this paper reports a static and dynamic slope stability analysis of Sonapur which has been carried out in MIDAS GTS NX. The slope being highly unreachable due to terrain and thick vegetation in-situ test was not feasible considering the current scope available so disturbed soil sample was collected from the site for the determination of strength parameters. The strength parameters were so determined for varying relative density with further variation in water content. The slopes were analyzed considering plane strain condition for three slope heights of 5 m, 10 m and 20 m which were then further categorized based on slope angles 30, 40, 50, 60, and 70 considering the possible extent of steepness. Initially static analysis under dry state was performed then considering the worst case that can develop during rainy season the slopes were analyzed for fully saturated condition along with partial degree of saturation with an increase in the waterfront. Furthermore, dynamic analysis was performed considering the El-Centro Earthquake which had a magnitude of 6.7 and peak ground acceleration of 0.3569g at 2.14 sec for the slope which were found to be safe during static analysis under both dry and fully saturated condition. Some of the conclusions were slopes with inclination above 40 onwards were found to be highly vulnerable for slopes of height 10 m and above even under dry static condition. Maximum horizontal displacement showed an exponential increase with an increase in inclination from 30 to 70. The vulnerability of the slopes was seen to be further increased during rainy season as even slopes of minimal steepness of 30 for height 20 m was seen to be on the verge of failure. Also, during dynamic analysis slopes safe during static analysis were found to be highly vulnerable. Lastly, as a part of the study a comparative study on Strength Reduction Method (SRM) versus Limit Equilibrium Method (LEM) was also carried out and some of the advantages and disadvantages were figured out.

Keywords: dynamic analysis, factor of safety, slope stability, strength reduction method

Procedia PDF Downloads 248
484 Polypeptide Modified Carbon Nanotubes – Mediated GFP Gene Transfection for H1299 Cells and Toxicity Assessment

Authors: Pei-Ying Lo, Jing-Hao Ciou, Kai-Cheng Yang, Jia-Huei Zheng, Shih-Hsiang Huang, Kuen-Chan Lee, Er-Chieh Cho

Abstract:

As-produced CNTs are insoluble in all organic solvents and aqueous solutions have imposed limitations to the use of CNTs. Therefore, how to debundle carbon nanotubes and to modify them for further uses is an important issue. There are several methods for the dispersion of CNTs in water using covalent attachment of hydrophilic groups to the surface of tubes. These methods, however, alter the electronic structure of the nanotubes by disrupting the network of sp2 hybridized carbons. In order to keep the nanotubes’ intrinsic mechanical and electrical properties intact, non-covalent interactions are increasingly being explored as an alternative route for dispersion. Apart from conventional surfactants such as sodium dodecylsulfate (SDS) or sodium dodecylbenzenesulfonate (SDBS) which are highly effective in dispersing CNTs, biopolymers have received much attention as dispersing agents due to the anticipated biocompatibility of the dispersed CNTs. Also, The pyrenyl group is known to interact strongly with the basal plane of graphene via π-stacking. In this study, a highly re-dispersible biopolymer is reported for the synthesis of pyrene-modified poly-L-lysine (PBPL) and poly(D-Glu, D-Lys) (PGLP). To provide the evidence of the safety of the PBPL/CNT & PGLP/CNT materials we use in this study, H1299 and HCT116 cells were incubated with PBPL/CNT & PGLP/CNT materials for toxicity analysis, MTS assays. The results from MTS assays indicated that no significant cellular toxicity was shown in H1299 and HCT116 cells. Furthermore, the fluorescence marker fluorescein isothiocyanate (FITC) was added to PBPL & PGLP dispersions. From the fluorescent measurements showed that the chemical functionalisation of the PBPL/CNT & PGLP/CNT conjugates with the fluorescence marker were successful. The fluorescent PBPL/CNT & PGLP/CNT conjugates could find application in medical imaging. In the next step, the GFP gene is immobilized onto PBPL/CNT conjugates by introducing electrostatic interaction. GFP-transfected cells that emitted fluorescence were imaged and counted under a fluorescence microscope. Due to the unique biocompatibility of PBPL modified CNTs, the GFP gene could be transported into H1299 cells without using antibodies. The applicability of such soluble and chemically functionalised polypeptide/CNT conjugates in biomedicine is currently investigated. We expect that this polypeptide/CNT system will be a safe and multi-functional nanomedical delivery platform and contribute to future medical therapy.

Keywords: carbon nanotube, nanotoxicology, GFP transfection, polypeptide/CNT hybrids

Procedia PDF Downloads 327
483 Regional Response of Crop Productivity to Global Warming - A Case Study of the Heat Stress and Cold Stress on UK Rapeseed Crop Over 1961-2020

Authors: Biao Hu, Mark E. J. Cutler, Alexandra C. Morel

Abstract:

Global climate change introduces both opportunities and challenges for crop productivity, with differences in temperature stress across latitudes and crop types, one of the most important meteorological factors impacting crop productivity. The development and productivity of crops are particularly impacted when temperatures occur outwith their preferred ranges, which has implications for global agri-food sector. This study investigated the spatiotemporal dynamics of heat stress and cold stress on UK arable lands for rapeseed cropping between 1961 and 2020, using a 1 km spatial resolution temperature dataset. Stress indices, including heat stress index (fHS) defined as the ratio of “Tmax - Tcrit_h” to “Tlimit_h - Tcrit_h” where Tmax, Tcrit_h and Tlimit_h represent the daily maximum temperature (°C), critical high temperature threshold (°C) and limiting high temperature threshold (°C) of rapeseed crop respectively; cold degree days (CDD) as the difference between daily Tmin (minimum temperature) and Tcrit_l (critical low temperature threshold); and a normalized rapeseed production loss index (fRPL) as the product of fHS and attainable rapeseed yield in the same land pixel were established. The values of fHS and CDD, percentages of days experiencing each stress and fRPL were investigated. Results found increasing fHS and the areas impacted by heat stress during flowering (from April to May) and reproductive (from April to July) stages over time, with the mean fHS being negatively correlated with latitude. This pattern of increased heat stress agrees with previous research on rapeseed cropping, which have been noted at global scale in response to changes in climate. The decreasing number of CDD and frequency of cold stress suggest cold stress decreased during flowering, vegetative (from September to March next year) and reproductive stages, and the magnitude of cold stress in the south of the UK was smaller to that compared to northern regions over the studied periods. The decreasing CDD matches observed declining cold stress of global rapeseed and of other crops such as rice in the northern hemisphere. Notably, compared with previous studies which mainly tracked the trends of heat stress and cold stress individually, this study conducted a comparative analysis of the rate of their changes and found heat stress of rapeseed crops in the UK was increasing at a faster rate than cold stress, which was seen to decrease during flowering. The increasing values of fRPL, with statistically significant differences (p < 0.05) between regions of the UK, suggested an increasing loss in rapeseed due to heat stress in the studied period. The largest increasing trend in heat stress was observed in South-eastern England, where a decreasing cold stress was taking place. While the present study observed a relatively slowly increasing heat stress, there is a worrying trend of increasing heat stress for rapeseed cropping into the future, as the cases of other main rapeseed cropping systems in the northern hemisphere including China, European counties, the US, and Canada. This study demonstrates the negative impact of global warming on rapeseed cropping, highlighting the adaptation and mitigations strategies for sustainable rapeseed cultivation across the globe.

Keywords: rapeseed, UK, heat stress, cold stress, global climate change, spatiotemporal analysis, production loss index

Procedia PDF Downloads 35
482 Use of Geoinformatics and Mathematical Equations to Assess Erosion and Soil Fertility in Cassava Growing Areas in Maha Sarakham Province, Thailand

Authors: Sasirin Srisomkiew, Sireewan Ratsadornasai, Tanomkwan Tipvong, Isariya Meesing

Abstract:

Cassava is an important food source in the tropics and has recently gained attention as a potential source of biofuel that can replace limited fossil fuel sources. As a result, the demand for cassava production to support industries both within the country and abroad has increased. In Thailand, most farmers prefer to grow cassava in sandy and sandy loam areas where the soil has low natural fertility. Cassava is a tuber plant that has large roots to store food, resulting in the absorption of large amounts of nutrients from the soil, such as nitrogen, phosphorus, and potassium. Therefore, planting cassava in the same area for a long period causes soil erosion and decreases soil fertility. The loss of soil fertility affects the economy, society, and food and energy security of the country. Therefore, it is necessary to know the level of soil fertility and the amount of nutrients in the soil. To address this problem, this study applies geo-informatics technology and mathematical equations to assess erosion and soil fertility and to analyze factors affecting the amount of cassava production in Maha Sarakham Province. The results show that the area for cassava cultivation has increased in every district of Maha Sarakham Province between 2015-2022, with the total area increasing to 180,922 rai or 5.47% of the province’s total area during this period. Furthermore, it was found that it is possible to assess areas with soil erosion problems that had a moderate level of erosion in areas with high erosion rates ranging from 5-15 T/rai/year. Soil fertility assessment and information obtained from the soil nutrient map for 2015–2023 reveal that farmers in the area have improved the soil by adding chemical fertilizers along with organic fertilizers, such as manure and green manure, to increase the amount of nutrients in the soil. This is because the soil resources of Maha Sarakham Province mostly have relatively low agricultural potential due to the soil texture being sand and sandy loam. In this scenario, the ability to absorb nutrients is low, and the soil holds little water, so it is naturally low in fertility. Moreover, agricultural soil problems were found, including the presence of saline soil, sandy soil, and acidic soil, which is a serious restriction on land use because it affects the release of nutrients into the soil. The results of this study may be used as a guideline for managing soil resources and improving soil quality to prevent soil degradation problems that may occur in the future.

Keywords: Cassava, geoinformatics, soil erosion, soil fertility, land use change

Procedia PDF Downloads 31
481 Land Use Influence on the 2014 Catastrophic Flood in the Northeast of Peninsular Malaysia

Authors: Zulkifli Yusop

Abstract:

The severity of December 2014 flood on the east coast of Peninsular Malaysia has raised concern over the adequacy of existing land use practices and policies. This article assesses flood responses to selective logging, plantation establishment (oil palm and rubber) and their subsequent management regimes. The hydrological impacts were evaluated on two levels: on-site (mostly in the upstream) and off-site to reflect the cumulative impact at downstream. Results of experimental catchment studies suggest that on-site impact of flood could be kept to a minimum when selecting logging strictly adhere to the existing guidelines. However, increases in flood potential and sedimentation rate were observed with logging intensity and slope steepness. Forest conversion to plantation show the highest impacts. Except on the heavily compacted surfaces, the ground revegetation is usually rapid within two years upon the cessation of the logging operation. The hydrological impacts of plantation opening and replanting could be significantly reduced once the cover crop has fully established which normally takes between three to six months after sowing. However, as oil palms become taller and the canopy gets closer, the cover crop tends to die off due to light competition, and its protecting function gradually diminishes. The exposed soil is further compacted by harvesting machinery which subsequently leads to greater overland flow and erosion rates. As such, the hydrological properties of matured oil palm plantations are generally poorer than in young plantation. In hilly area, the undergrowth in rubber plantation is usually denser compared to under oil palm. The soil under rubber trees is also less compacted as latex collection is done manually. By considering the cumulative effects of land-use over space and time, selective logging seems to pose the least impact on flood potential, followed by planting rubber for latex, oil palm and Latex Timber Clone (LTC). The cumulative hydrological impact of LTC plantation is the most severe because of its shortest replanting rotation (12 to 15 years) compared to oil palm (25 years) and rubber for latex (35 years). Furthermore, the areas gazetted for LTC are mostly located on steeper slopes which are more susceptible to landslide and erosion. Forest has limited capability to store excess rainfall and is only effective in attenuating regular floods. Once the hydrologic storage is exceeded, the excess rainfall will appear as flood water. Therefore, for big floods, rainfall regime has a much bigger influence than land use.

Keywords: selective logging, plantation, extreme rainfall, debris flow

Procedia PDF Downloads 331
480 Identification, Synthesis, and Biological Evaluation of the Major Human Metabolite of NLRP3 Inflammasome Inhibitor MCC950

Authors: Manohar Salla, Mark S. Butler, Ruby Pelingon, Geraldine Kaeslin, Daniel E. Croker, Janet C. Reid, Jong Min Baek, Paul V. Bernhardt, Elizabeth M. J. Gillam, Matthew A. Cooper, Avril A. B. Robertson

Abstract:

MCC950 is a potent and selective inhibitor of the NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome that shows early promise for treatment of inflammatory diseases. The identification of major metabolites of lead molecule is an important step during drug development process. It provides an information about the metabolically labile sites in the molecule and thereby helping medicinal chemists to design metabolically stable molecules. To identify major metabolites of MCC950, the compound was incubated with human liver microsomes and subsequent analysis by (+)- and (−)-QTOF-ESI-MS/MS revealed a major metabolite formed due to hydroxylation on 1,2,3,5,6,7-hexahydro-s-indacene moiety of MCC950. This major metabolite can lose two water molecules and three possible regioisomers were synthesized. Co-elution of major metabolite with each of the synthesized compounds using HPLC-ESI-SRM-MS/MS revealed the structure of the metabolite (±) N-((1-hydroxy-1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)-4-(2-hydroxypropan-2-yl)furan-2-sulfonamide. Subsequent synthesis of individual enantiomers and coelution in HPLC-ESI-SRM-MS/MS using a chiral column revealed the metabolite was R-(+)- N-((1-hydroxy-1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)-4-(2-hydroxypropan-2-yl)furan-2-sulfonamide. To study the possible cytochrome P450 enzyme(s) responsible for the formation of major metabolite, MCC950 was incubated with a panel of cytochrome P450 enzymes. The result indicated that CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C18, CYP2C19, CYP2J2 and CYP3A4 are most likely responsible for the formation of the major metabolite. The biological activity of the major metabolite and the other synthesized regioisomers was also investigated by screening for for NLRP3 inflammasome inhibitory activity and cytotoxicity. The major metabolite had 170-fold less inhibitory activity (IC50-1238 nM) than MCC950 (IC50-7.5 nM). Interestingly, one regioisomer had shown nanomolar inhibitory activity (IC50-232 nM). However, no evidence of cytotoxicity was observed with any of these synthesized compounds when tested in human embryonic kidney 293 cells (HEK293) and human liver hepatocellular carcinoma G2 cells (HepG2). These key findings give an insight into the SAR of the hexahydroindacene moiety of MCC950 and reveal a metabolic soft spot which could be blocked by chemical modification.

Keywords: Cytochrome P450, inflammasome, MCC950, metabolite, microsome, NLRP3

Procedia PDF Downloads 235
479 A Case for Strategic Landscape Infrastructure: South Essex Estuary Park

Authors: Alexandra Steed

Abstract:

Alexandra Steed URBAN was commissioned to undertake the South Essex Green and Blue Infrastructure Study (SEGBI) on behalf of the Association of South Essex Local Authorities (ASELA): a partnership of seven neighboring councils within the Thames Estuary. Located on London’s doorstep, the 70,000-hectare region is under extraordinary pressure for regeneration, further development, and economic expansion, yet faces extreme challenges: sea-level rise and inadequate flood defenses, stormwater flooding and threatened infrastructure, loss of internationally important habitats, significant existing community deprivation, and lack of connectivity and access to green space. The brief was to embrace these challenges in the creation of a document that would form a key part of ASELA’s Joint Strategic Framework and feed into local plans and master plans. Thus, helping to tackle climate change, ecological collapse, and social inequity at a regional scale whilst creating a relationship and awareness between urban communities and the surrounding landscapes and nature. The SEGBI project applied a ‘land-based’ methodology, combined with a co-design approach involving numerous stakeholders, to explore how living infrastructure can address these significant issues, reshape future planning and development, and create thriving places for the whole community of life. It comprised three key stages, including Baseline Review; Green and Blue Infrastructure Assessment; and the final Green and Blue Infrastructure Report. The resulting proposals frame an ambitious vision for the delivery of a new regional South Essex Estuary (SEE) Park – 24,000 hectares of protected and connected landscapes. This unified parkland system will drive effective place-shaping and “leveling up” for the most deprived communities while providing large-scale nature recovery and biodiversity net gain. Comprehensive analysis and policy recommendations ensure best practices will be embedded within planning documents and decisions guiding future development. Furthermore, a Natural Capital Account was undertaken as part of the strategy showing the tremendous economic value of the natural assets. This strategy sets a pioneering precedent that demonstrates how the prioritisation of living infrastructure has the capacity to address climate change and ecological collapse, while also supporting sustainable housing, healthier communities, and resilient infrastructures. It was only achievable through a collaborative and cross-boundary approach to strategic planning and growth, with a shared vision of place, and a strong commitment to delivery. With joined-up thinking and a joined-up region, a more impactful plan for South Essex was developed that will lead to numerous environmental, social, and economic benefits across the region, and enhancing the landscape and natural environs on the periphery of one of the largest cities in the world.

Keywords: climate change, green and blue infrastructure, landscape architecture, master planning, regional planning, social equity

Procedia PDF Downloads 82
478 Signature Bridge Design for the Port of Montreal

Authors: Juan Manuel Macia

Abstract:

The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.

Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability

Procedia PDF Downloads 43
477 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach

Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes

Abstract:

Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.

Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux

Procedia PDF Downloads 153
476 The Scientific Study of the Relationship Between Physicochemical and Microstructural Properties of Ultrafiltered Cheese: Protein Modification and Membrane Separation

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

The loss of curd cohesiveness and syneresis are two common problems in the ultrafiltered cheese industry. In this study, by using membrane technology and protein modification, a modified cheese was developed and its properties were compared with a control sample. In order to decrease the lactose content and adjust the protein, acidity, dry matter and milk minerals, a combination of ultrafiltration, nanofiltration and reverse osmosis technologies was employed. For protein modification, a two-stage chemical and enzymatic reaction was employed before and after ultrafiltration. The physicochemical and microstructural properties of the modified ultrafiltered cheese were compared with the control one. Results showed that the modified protein enhanced the functional properties of the final cheese significantly (pvalue< 0.05), even if the protein content was 50% lower than the control one. The modified cheese showed 21 ± 0.70, 18 ± 1.10 & 25±1.65% higher hardness, cohesiveness and water-holding capacity values, respectively, than the control sample. This behavior could be explained by the developed microstructure of the gel network. Furthermore, chemical-enzymatic modification of milk protein induced a significant change in the network parameter of the final cheese. In this way, the indices of network linkage strength, network linkage density, and time scale of junctions were 10.34 ± 0.52, 68.50 ± 2.10 & 82.21 ± 3.85% higher than the control sample, whereas the distance between adjacent linkages was 16.77 ± 1.10% lower than the control sample. These results were supported by the results of the textural analysis. A non-linear viscoelastic study showed a triangle waveform stress of the modified protein contained cheese, while the control sample showed rectangular waveform stress, which suggested a better sliceability of the modified cheese. Moreover, to study the shelf life of the products, the acidity, as well as molds and yeast population, were determined in 120 days. It’s worth mentioning that the lactose content of modified cheese was adjusted at 2.5% before fermentation, while the lactose of the control one was at 4.5%. The control sample showed 8 weeks shelf life, while the shelf life of the modified cheese was 18 weeks in the refrigerator. During 18 weeks, the acidity of modified and control samples increased from 82 ± 1.50 to 94 ± 2.20 °D and 88 ± 1.64 to 194 ± 5.10 °D, respectively. The mold and yeast populations, with time, followed the semicircular shape model (R2 = 0.92, R2adj = 0.89, RMSE = 1.25). Furthermore, the mold and yeast counts and their growth rate in the modified cheese were lower than those for control one; Aforementioned result could be explained by the shortage of the source of energy for the microorganism in the modified cheese. The lactose content of the modified sample was less than 0.2 ± 0.05% at the end of fermentation, while this was 3.7 ± 0.68% in the control sample.

Keywords: non-linear viscoelastic, protein modification, semicircular shape model, ultrafiltered cheese

Procedia PDF Downloads 61
475 Income Generation and Employment Opportunity of the Entrepreneurs and Farmers Through Production, Processing, and Marketing of Medicinal Plants in Bangladesh

Authors: Md. Nuru Miah, A. F. M. Akhter Uddin

Abstract:

Medicinal plants are grown naturally in a tropical environment in Bangladesh and used as drug and therapeutic agents in the health care system. According to Bangladesh Agricultural Research Institute (BARI), there are 722 species of medicinal plants in the country. Of them, 255 plants are utilized by the manufacturers of Ayurvedic and Unani medicines. Medicinal plants like Aloevera, Ashwagonda, shotomul,Tulsi, Vuikumra, Misridana are extensively cultivated in some selected areas as well; where Aloevera scored the highest position in production. In the early 1980, Ayurvedic and Unani companies procured 80 percent of medicinal plants from natural forests, and the rest 20 percent was imported. Now the scenario has changed; 80 percent is imported, and the rest 20 percent is collected from local products(Source: Astudy on sectorbased need assessment of Business promotion council-Herbal products and medicinal plants, page-4). Uttara Development Program Society, a leading Non- Government development organization in Bangladesh, has been implementing a value chain development project under promoting Agricultural commercialization and Enterprises of Pally Karma Sahayak Foundation (PKSF) funded by the International Fund for Agricultural Development (IFAD) in Natore Sadar Upazila from April 2017 to sustainably develop the technological interventions for products and market development. The ultimate goal of the project is to increase income, generate employment and develop this sector as a sustainable business enterprise. Altogether 10,000 farmers (Nursery owners, growers, input supplier, processors, whole sellers, and retailers) are engaged in different activities of the project. The entrepreneurs engaged in medicinal plant cultivation did not know and follow environmental and good agricultural practices. They used to adopt traditional methodology in production and processing. Locally the farmers didn’t have any positive initiative to expand their business as well as developvalue added products. A lot of diversified products could be possible to develop and marketed with the introduction of post-harvest processing technology and market linkage with the local and global buyer. Training is imparted to the nursery owners and herbal growers on production technologies, sowing method, use of organic fertilizers/compost/pesticides, harvesting procedures, and storage facilities. Different types of herbal tea like Rosella, Moringa, Tulshi, and Basak are being produced and packed locally with a good scope of its marketing in different cities of the country. The project has been able to achieve a significant impact in the development of production technologies, but still, there is room for further improvement in processing, packaging, and marketing level. The core intervention of the current project to develop some entrepreneurs for branding, packaging, promotion, and marketing while considering environment friendly practices. The present strategies will strengthen the knowledge and skills of the entrepreneurs for the production and marketing of their products, maintaining worldwide accepted compliance system for easy access to the global market.

Keywords: aloe vera, herbs and shrubs, market, interventions

Procedia PDF Downloads 75
474 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu

Abstract:

The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.

Keywords: construction contractors, health and well-being, environmental quality, risk management

Procedia PDF Downloads 119
473 Stability Indicating RP – HPLC Method Development, Validation and Kinetic Study for Amiloride Hydrochloride and Furosemide in Pharmaceutical Dosage Form

Authors: Jignasha Derasari, Patel Krishna M, Modi Jignasa G.

Abstract:

Chemical stability of pharmaceutical molecules is a matter of great concern as it affects the safety and efficacy of the drug product.Stability testing data provides the basis to understand how the quality of a drug substance and drug product changes with time under the influence of various environmental factors. Besides this, it also helps in selecting proper formulation and package as well as providing proper storage conditions and shelf life, which is essential for regulatory documentation. The ICH guideline states that stress testing is intended to identify the likely degradation products which further help in determination of the intrinsic stability of the molecule and establishing degradation pathways, and to validate the stability indicating procedures. A simple, accurate and precise stability indicating RP- HPLC method was developed and validated for simultaneous estimation of Amiloride Hydrochloride and Furosemide in tablet dosage form. Separation was achieved on an Phenomenexluna ODS C18 (250 mm × 4.6 mm i.d., 5 µm particle size) by using a mobile phase consisting of Ortho phosphoric acid: Acetonitrile (50:50 %v/v) at a flow rate of 1.0 ml/min (pH 3.5 adjusted with 0.1 % TEA in Water) isocratic pump mode, Injection volume 20 µl and wavelength of detection was kept at 283 nm. Retention time for Amiloride Hydrochloride and Furosemide was 1.810 min and 4.269 min respectively. Linearity of the proposed method was obtained in the range of 40-60 µg/ml and 320-480 µg/ml and Correlation coefficient was 0.999 and 0.998 for Amiloride hydrochloride and Furosemide, respectively. Forced degradation study was carried out on combined dosage form with various stress conditions like hydrolysis (acid and base hydrolysis), oxidative and thermal conditions as per ICH guideline Q2 (R1). The RP- HPLC method has shown an adequate separation for Amiloride hydrochloride and Furosemide from its degradation products. Proposed method was validated as per ICH guidelines for specificity, linearity, accuracy; precision and robustness for estimation of Amiloride hydrochloride and Furosemide in commercially available tablet dosage form and results were found to be satisfactory and significant. The developed and validated stability indicating RP-HPLC method can be used successfully for marketed formulations. Forced degradation studies help in generating degradants in much shorter span of time, mostly a few weeks can be used to develop the stability indicating method which can be applied later for the analysis of samples generated from accelerated and long term stability studies. Further, kinetic study was also performed for different forced degradation parameters of the same combination, which help in determining order of reaction.

Keywords: amiloride hydrochloride, furosemide, kinetic study, stability indicating RP-HPLC method validation

Procedia PDF Downloads 451
472 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 71
471 Identifying Large-Scale Photovoltaic and Concentrated Solar Power Hot Spots: Multi-Criteria Decision-Making Framework

Authors: Ayat-Allah Bouramdane

Abstract:

Solar Photovoltaic (PV) and Concentrated Solar Power (CSP) do not burn fossil fuels and, therefore, could meet the world's needs for low-carbon power generation as they do not release greenhouse gases into the atmosphere as they generate electricity. The power output of the solar PV module and CSP collector is proportional to the temperature and the amount of solar radiation received by their surface. Hence, the determination of the most convenient locations of PV and CSP systems is crucial to maximizing their output power. This study aims to provide a hands-on and plausible approach to the multi-criteria evaluation of site suitability of PV and CSP plants using a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP). Applying the GRI-based AHP approach is meant to specify the criteria and sub-criteria, to identify the unsuitable areas, the low-, moderate-, high- and very high suitable areas for each layer of GRI, to perform the pairwise comparison matrix at each level of the hierarchy structure based on experts' knowledge, and calculate the weights using AHP to create the final map of solar PV and CSP plants suitability in Morocco with a particular focus on the Dakhla city. The results recognize that solar irradiation is the main decision factor for the integration of these technologies on energy policy goals of Morocco but explicitly account for other factors that cannot only limit the potential of certain locations but can even exclude the Dakhla city classified as unsuitable area. We discuss the sensitivity of the PV and CSP site suitability to different aspects, such as the methodology, the climate conditions, and the technology used in each source, and provide the final recommendations to the Moroccan energy strategy by analyzing if actual Morocco's PV and CSP installations are located within areas deemed suitable and by discussing several cases to provide mutual benefits across the Food-Energy-Water nexus. The adapted methodology and conducted suitability map could be used by researchers or engineers to provide helpful information for decision-makers in terms of sites selection, design, and planning of future solar plants, especially in areas suffering from energy shortages, such as the Dakhla city, which is now one of Africa's most promising investment hubs and it is especially attractive to investors looking to root their operations in Africa and import to European markets.

Keywords: analytic hierarchy process, concentrated solar power, dakhla, geographic referenced information, Morocco, multi-criteria decision-making, photovoltaic, site suitability

Procedia PDF Downloads 151
470 Using Participatory Action Research with Episodic Volunteers: Learning from Urban Agriculture Initiatives

Authors: Rebecca Laycock

Abstract:

Many Urban Agriculture (UA) initiatives, including community/allotment gardens, Community Supported Agriculture, and community/social farms, depend on volunteers. However, initiatives supported or run by volunteers are often faced with a high turnover of labour as a result of the involvement of episodic volunteers (a term describing ad hoc, one-time, and seasonal volunteers), leading to challenges with maintaining project continuity and retaining skills/knowledge within the initiative. This is a notable challenge given that food growing is a knowledge intensive activity where the fruits of labour appear months or sometimes years after investment. Participatory Action Research (PAR) is increasingly advocated for in the field of UA as a solution-oriented approach to research, providing concrete results in addition to advancing theory. PAR is a cyclical methodological approach involving researchers and stakeholders collaboratively 'identifying' and 'theorising' an issue, 'planning' an action to address said issue, 'taking action', and 'reflecting' on the process. Through iterative cycles and prolonged engagement, the theory is developed and actions become better tailored to the issue. The demand for PAR in UA research means that understanding how to use PAR with episodic volunteers is of critical importance. The aim of this paper is to explore (1) the challenges of doing PAR in UA initiatives with episodic volunteers, and (2) how PAR can be harnessed to advance sustainable development of UA through theoretically-informed action. A 2.5 year qualitative PAR study on three English case study student-led food growing initiatives took place between 2014 and 2016. University UA initiatives were chosen as exemplars because most of their volunteers were episodic. Data were collected through 13 interviews, 6 workshops, and a research diary. The results were thematically analysed through eclectic coding using Computer-Assisted Qualitative Data Analysis Software (NVivo). It was found that the challenges of doing PAR with transient participants were (1) a superficial understanding of issues by volunteers because of short term engagement, resulting in difficulties ‘identifying’/‘theorising’ issues to research; (2) difficulties implementing ‘actions’ given those involved in the ‘planning’ phase often left by the ‘action’ phase; (3) a lack of capacity of participants to engage in research given the ongoing challenge of maintaining participation; and (4) that the introduction of the researcher acted as an ‘intervention’. The involvement of a long-term stakeholder (the researcher) changed the group dynamics, prompted critical reflections that had not previously taken place, and improved continuity. This posed challenges for providing a genuine understanding the episodic volunteering PAR initiatives, and also challenged the notion of what constitutes an ‘intervention’ or ‘action’ in PAR. It is recommended that researchers working with episodic volunteers using PAR should (1) adopt a first-person approach by inquiring into the researcher’s own experience to enable depth in theoretical analysis to manage the potentially superficial understandings by short-term participants; and (2) establish safety mechanisms to address the potential for the research to impose artificial project continuity and knowledge retention that will end when the research does. Through these means, we can more effectively use PAR to conduct solution-oriented research about UA.

Keywords: community garden, continuity, first-person research, higher education, knowledge retention, project management, transience, university

Procedia PDF Downloads 234
469 Conservation of Ibis Statue Made of Composite Materials Dating to 3RD Intermediate Period - Late Period

Authors: Badawi Mahmoud, Eid Mohamed, Salih Hytham, Tahoun Mamdouh

Abstract:

Cultural properties made of types of materials; we can classify them broadly into three categories. There are organic cultural properties which have their origin in the animal and plant kingdoms. There are the inorganic cultural properties made of metal or stone. Then there are those made of both organic and inorganic materials such as metal with wood. Most cultural properties are made from several materials rather than from one single material. Cultural properties reveal a lot of information about the past and often have great artistic value. It is important to extend the life of cultural properties and preserve themif possible, that is intended to preserve them for future generations. The study of metallic relics usually includes examining the techniques used to make them and the extent to which they have corroded. The conservation science of archaeological artifacts demands an accurate grasp of the interior of the article, which cannot be seen. This is essential to elucidate the method of manufacture and provides information that is important for cleaning, restoration, and other processes of conservation. Conservation treatment does not ensure the prevention of further degradation of the archaeological artifact. Instead, it is an attempt to inhibit further degradation as much as possible. Ancient metallic artifacts are made of many materials. Some are made of a single metal, such as iron, copper, or bronze. There are also composite relics made of several metals. Almost all metals (except gold) corrode while they rest underground. Corrosion is caused by the interaction of oxygen, water, and various ions. Chloride ions play a major role in the advance of corrosion. Excavated metallic relics are usually scientifically examined as to their structure and materials and treated for preservation before being displayed for exhibition or stored in a storehouse. Bird statue hermit body is made of wood and legs and beak bronze, the object broken separated to three parts. This statue came to Grand Egyptian Museum – Conservation Centre (GEM-CC) Inorganic Lab. Statuette representing the god djehoty shaped of the bird (ibis) sculpture made of bronze and wood the body of statues made from wood and bronze from head and leg and founded remains of black resin maybe it found with mummy, the base installed by wooden statue of the ancient writings there dating, the archaeological unit decided the dating is 3rd intermediate period - late period. This study aims to do conservation process for this statue, attempt to inhibit further degradation as much as possible and fill fractures and cracks in the wooden part.

Keywords: inorganic materials, metal, wood, corrosion, ibis

Procedia PDF Downloads 240
468 The Role of Community Activism in Promoting Social Justice around Housing Issues: A Case Study of the Western Cape

Authors: Mapule Maema

Abstract:

The paper aims to highlight the role that community activism has played in promoting social justice around housing issues in the Western Cape. The Western Cape is one of the largest spatially segregated provinces in South Africa which continues to exhibit grave inequalities between cities, townships and farms. These inequalities cut across intersectional issues such as, race, class, gender, and politics. The main challenges facing marginalized communities in the Western Cape include access to housing, land and basic services. This is not peculiar to only the Western Cape, the entire country is facing similar challenges however the Western Cape is seen as a fasted urbanizing province in the country due to tourism. Various social movements have been formed across the country to counter these challenges, however, this paper focuses on the resilience communities have fostered despite the myriad housing and spatial crisis they are faced with. The paper focuses on the Legal Resource’s Centre’s clients from an informal settlement called Imizamo Yethu based in Hout Bay Valley area. The 18 hectare settlement houses approximately 33600 people. On the 21st July 2017, Hout Bay experienced violent protests following an eviction order passed by the City of Cape Town. The protest was characterized by tensions within the community regarding the super-blocking initiative which aims to establish roads in informal settlements to ensure basic services. Residents against the process argued that there were no proper consultations done to educate them on what this process entailed. Public participation is one of the objectives the municipalities aim to promote however it remains a great challenge. In order to highlight the experiences of the LRC clients in relation to what motivated their involvement in the movement, how it felt their participation, and aspirations, the paper will employ qualitative research methods. Qualitative research methods enable the researcher to get a deeper and nuanced understanding of the social world in the eyes of those who experienced it. It is a flexible methodology that enables one to also understand social processes and the significance they generate. Data will be collected through the use of the World Cafe as a focus group method. The World Café is a simple, effective and flexible format for hosting group dialogue. The steps taken when setting up a World Café includes the following: setting the context (why you are bringing people together and what you want to achieve), create hospitality space (make participants feel at home and free to discuss issues), explore questions that matter, connect diverse perspectives (the opportunity to actively contribute your thinking), listen together for patterns and insights, share collective discoveries and learnings. Secondary data will be used to augment the data collected. Stories of impact will be drawn from the exercises. This paper will contribute to the discourse of sustainable housing and urban development and the research outputs will be disseminated to the public for learning.

Keywords: community activism, influence, social justice, development

Procedia PDF Downloads 120