Search results for: real-coded genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4766

Search results for: real-coded genetic algorithm

3476 Control Algorithm for Home Automation Systems

Authors: Marek Długosz, Paweł Skruch

Abstract:

One of purposes of home automation systems is to provide appropriate comfort to the users by suitable air temperature control and stabilization inside the rooms. The control of temperature level is not a simple task and the basic difficulty results from the fact that accurate parameters of the object of control, that is a building, remain unknown. Whereas the structure of the model is known, the identification of model parameters is a difficult task. In this paper, a control algorithm allowing the present temperature to be reached inside the building within the specified time without the need to know accurate parameters of the building itself is presented.

Keywords: control, home automation system, wireless networking, automation engineering

Procedia PDF Downloads 618
3475 An Optimized Approach to Generate the Possible States of Football Tournaments Final Table

Authors: Mouslem Damkhi

Abstract:

This paper focuses on possible states of a football tournament final table according to the number of participating teams. Each team holds a position in the table with which it is possible to determine the highest and lowest points for that team. This paper proposes an optimized search space based on the minimum and maximum number of points which can be gained by each team to produce and enumerate the possible states for a football tournament final table. The proposed search space minimizes producing the invalid states which cannot occur during a football tournament. The generated states are filtered by a validity checking algorithm which seeks to reach a tournament graph based on a generated state. Thus, the algorithm provides a way to determine which team’s wins, draws and loses values guarantee a particular table position. The paper also presents and discusses the experimental results of the approach on the tournaments with up to eight teams. Comparing with a blind search algorithm, our proposed approach reduces generating the invalid states up to 99.99%, which results in a considerable optimization in term of the execution time.

Keywords: combinatorics, enumeration, graph, tournament

Procedia PDF Downloads 123
3474 Fast Return Path Planning for Agricultural Autonomous Terrestrial Robot in a Known Field

Authors: Carlo Cernicchiaro, Pedro D. Gaspar, Martim L. Aguiar

Abstract:

The agricultural sector is becoming more critical than ever in view of the expected overpopulation of the Earth. The introduction of robotic solutions in this field is an increasingly researched topic to make the most of the Earth's resources, thus going to avoid the problems of wear and tear of the human body due to the harsh agricultural work, and open the possibility of a constant careful processing 24 hours a day. This project is realized for a terrestrial autonomous robot aimed to navigate in an orchard collecting fallen peaches below the trees. When it receives the signal indicating the low battery, it has to return to the docking station where it will replace its battery and then return to the last work point and resume its routine. Considering a preset path in orchards with tree rows with variable length by which the robot goes iteratively using the algorithm D*. In case of low battery, the D* algorithm is still used to determine the fastest return path to the docking station as well as to come back from the docking station to the last work point. MATLAB simulations were performed to analyze the flexibility and adaptability of the developed algorithm. The simulation results show an enormous potential for adaptability, particularly in view of the irregularity of orchard field, since it is not flat and undergoes modifications over time from fallen branch as well as from other obstacles and constraints. The D* algorithm determines the best route in spite of the irregularity of the terrain. Moreover, in this work, it will be shown a possible solution to improve the initial points tracking and reduce time between movements.

Keywords: path planning, fastest return path, agricultural autonomous terrestrial robot, docking station

Procedia PDF Downloads 135
3473 Implementation of Invisible Digital Watermarking

Authors: V. Monisha, D. Sindhuja, M. Sowmiya

Abstract:

Over the decade, the applications about multimedia have been developed rapidly. The advancement in the communication field at the faster pace, it is necessary to protect the data during transmission. Thus, security of multimedia contents becomes a vital issue, and it is a need for protecting the digital content against malfunctions. Digital watermarking becomes the solution for the copyright protection and authentication of data in the network. In multimedia applications, embedded watermarks should be robust, and imperceptible. For improving robustness, the discrete wavelet transform is used. Both encoding and extraction algorithm can be done using MATLAB R2012a. In this Discrete wavelet transform (DWT) domain of digital image, watermarking algorithm is used, and hardware implementation can be done on Xilinx based FPGA.

Keywords: digital watermarking, DWT, robustness, FPGA

Procedia PDF Downloads 414
3472 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete

Authors: Jiaqi Huang, Lu Jin

Abstract:

Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.

Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete

Procedia PDF Downloads 182
3471 Genetic Divergence Study of Rice on the Basis of Various Morphological Traits

Authors: Muhammad Ashfaq, Muhammad Saleem Haider, Muhammad Ali, Muhammad Sajjad, Amna Ali, Urooj Mubashar

Abstract:

Phenotypic diversity was confirmed by measuring different morphological traits i.e. seed traits (seed length, seed width, seed thickness, seed length-width ratio, 1000 grain weight) and root-shoot traits (shoot length, root length, shoot fresh weight, root fresh weight, root-shoot ratio, root numbers and root thickness). Variance and association study of desirable traits determine the genotypic differences among the rice germplasm. All the traits showed significant differences among the genotypes. The traits were studied in Randomized complete block design (RCBD) at different water levels. Some traits showed positive correlation with each other and beneficial for increasing the yield and production of the crop. Seed thickness has positive correlation with seed length and seed width (r= 0.104**, r=0.246**). On the other hand, various root shoot traits showed positive highly significant association at different water levels i.e. root length, fresh root weight, root thickness, shoot thickness and root numbers. Our main focus to study the performance/correlation of root shoots traits under stress condition. Fresh root weight, shoot thickness and root numbers showed positive significant association with shoot length, root length, fresh root and shoot weight (r=0.2530**, r=0.2891**, r=0.4626**, r=0.4515**, r=0.5781**, r=0.7164**, r=0.0603**, r= 0.5570**, r=0.5824**). Long root length genotypes favors and suitable for drought stress conditions and screening of diverse genotypes for the further development of new plant material that performing well under different environmental conditions. After screening genetic diversity of potential rice, lines were studied to check the polymorphism by using some SSR markers. DNA was extracted, and PCR analyses were done to study PIC values and allelic diversity of the genotypes. The main objective of this study is to screen out the genotypes on the basis of various genotypic and phenotypic traits.

Keywords: rice, morphological traits, association, germplasm, genetic diversity, water levels, variation

Procedia PDF Downloads 322
3470 Whole Exome Sequencing in Characterizing Mysterious Crippling Disorder in India

Authors: Swarkar Sharma, Ekta Rai, Ankit Mahajan, Parvinder Kumar, Manoj K Dhar, Sushil Razdan, Kumarasamy Thangaraj, Carol Wise, Shiro Ikegawa M.D., K.K. Pandita M.D.

Abstract:

Rare disorders are poorly understood hence, remain uncharacterized or patients are misdiagnosed and get poor medical attention. A rare mysterious skeletal disorder that remained unidentified for decades and rendered many people physically challenged and disabled for life has been reported in an isolated remote village ‘Arai’ of Poonch district of Jammu and Kashmir. This village is located deep in mountains and the population residing in the region is highly consanguineous. In our survey of the region, 70 affected people were reported, showing similar phenotype, in the village with a population of approximately 5000 individuals. We were able to collect samples from two multi generational extended families from the village. Through Whole Exome sequencing (WES), we identified a rare variation NM_003880.3:c.156C>A NP_003871.1:p.Cys52Ter, which results in introduction of premature stop codon in WISP3 gene. We found this variation perfectly segregating with the disease in one of the family. However, this variation was absent in other family. Interestingly, a novel splice site mutation at position c.643+1G>A of WISP3 gene, perfectly segregating with the disease was observed in the second family. Thus, exploiting WES and putting different evidences together (familial histories and genetic data, clinical features, radiological and biochemical tests and findings), the disease has finally been diagnosed as a very rare recessive hereditary skeletal disease “Progressive Pseudorheumatoid Arthropathy of Childhood” (PPAC) also known as “Spondyloepiphyseal Dysplasia Tarda with Progressive Arthropathy” (SEDT-PA). This genetic characterization and identification of the disease causing mutations will aid in genetic counseling, critically required to curb this rare disorder and to prevent its appearance in future generations in the population. Further, understanding of the role of WISP3 gene the biological pathways should help in developing treatment for the disorder.

Keywords: whole exome sequencing, Next Generation Sequencing, rare disorders

Procedia PDF Downloads 412
3469 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 81
3468 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach

Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik

Abstract:

We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.

Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping

Procedia PDF Downloads 408
3467 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 509
3466 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants

Authors: Lamis Naddaf, Yuval Tabach

Abstract:

In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.

Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles

Procedia PDF Downloads 97
3465 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment

Authors: Jonathan Heng, Yoong Cheah Huei

Abstract:

A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.

Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters

Procedia PDF Downloads 181
3464 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 106
3463 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 174
3462 Water Detection in Aerial Images Using Fuzzy Sets

Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho

Abstract:

This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.

Keywords: aerial images, fuzzy clustering, image processing, pattern recognition

Procedia PDF Downloads 484
3461 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 481
3460 Liver and Liver Lesion Segmentation From Abdominal CT Scans

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer- aided diagnosis applications. Segmentation of liver and liver lesion is regarded as a major primary step in computer aided diagnosis of liver diseases. Precise liver segmentation in abdominal CT images is one of the most important steps for the computer-aided diagnosis of liver pathology. In this papers, a semi- automated method for medical image data is presented for the liver and liver lesion segmentation data using mathematical morphology. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological filters to extract the liver. The second step consists to detect the liver lesion. In this task; we proposed a new method developed for the semi-automatic segmentation of the liver and hepatic lesions. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to improve the quality of the original image and image gradient by applying the spatial filter followed by the morphological filters. The second step consists to calculate the internal and external markers of the liver and hepatic lesions. Thereafter we proceed to the liver and hepatic lesions segmentation by the watershed transform controlled by markers. The validation of the developed algorithm is done using several images. Obtained results show the good performances of our proposed algorithm

Keywords: anisotropic diffusion filter, CT images, hepatic lesion segmentation, Liver segmentation, morphological filter, the watershed algorithm

Procedia PDF Downloads 451
3459 Mapping QTLs Associated with Salinity Tolerance in Maize at Seedling Stage

Authors: Mohammad Muhebbullah Ibne Hoque, Zheng Jun, Wang Guoying

Abstract:

Salinity stress is one of the most important abiotic factors contributing to crop growth and yield loss. Exploring the genetic basis is necessary to develop maize varieties with salinity tolerance. In order to discover the inherent basis for salinity tolerance traits in maize, 121 polymorphic SSR markers were used to analyze 163 F2 individuals derived from a single cross of inbred line B73 (a salt susceptible inbred line) and CZ-7 (a salt tolerant inbred line). A linkage map was constructed and the map covered 1195.2 cM of maize genome with an average distance of 9.88 cM between marker loci. Ten salt tolerance traits at seedling stage were evaluated for QTL analysis in maize seedlings. A total of 41 QTLs associated with seedling shoot and root traits were detected, with 16 and 25 QTLs under non-salinity and salinity condition, respectively. And only 4 major stable QTLs were detected in two environments. The detected QTLs were distributed on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, and chromosome 10. Phenotypic variability for the identified QTLs for all the traits was in the range from 6.27 to 21.97%. Fourteen QTLs with more than 10% contributions were observed. Our results and the markers associated with the major QTL detected in this study have the potential application for genetic improvement of salt tolerance in maize through marker-assisted selection.

Keywords: salt tolerance, seedling stage, root shoot traits, quantitative trait loci, simple sequence repeat, maize

Procedia PDF Downloads 322
3458 Adaptive Control Approach for an Unmanned Aerial Manipulator

Authors: Samah Riache, Madjid Kidouche

Abstract:

In this paper, we propose a nonlinear controller for Aerial Manipulator (AM) consists of a Quadrotor equipped with two degrees of freedom robotic arm. The kinematic and dynamic models were developed by considering the aerial manipulator as a coupled system. The proposed controller was designed using Nonsingular Terminal Sliding Mode Control. The objective of our approach is to improve performances and attenuate the chattering drawback using an adaptive algorithm in the discontinuous control part. Simulation results prove the effectiveness of the proposed control strategy compared with Sliding Mode Controller.

Keywords: adaptive algorithm, quadrotor, robotic arm, sliding mode control

Procedia PDF Downloads 186
3457 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification

Procedia PDF Downloads 278
3456 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems

Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh

Abstract:

It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.

Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property

Procedia PDF Downloads 208
3455 Cellulose Enhancement in Wood Used in Pulp Production by Overexpression of Korrigan and Sucrose Synthase Genes

Authors: Anil Kumar, Diwakar Aggarwal, M. Sudhakara Reddy

Abstract:

The wood of Eucalyptus, Populus and bamboos are some important species used as raw material for the manufacture of pulp. However, higher levels of lignin pose a problem during Kraft pulping and yield of pulp is also lower. In order to increase the yield of pulp per unit wood and reduce the use of chemicals during kraft pulping it is important to reduce the lignin content and/or increase cellulose content in wood. Cellulose biosynthesis in wood takes place by the coordinated action of many enzymes. The two important enzymes are KORRIGAN and SUCROSE SYNTHASE. KORRIGAN (Endo-1,4--glucanase) is implicated in the process of editing growing cellulose chains and improvement of the crystallinity of produced cellulose, whereas SUCROSE SYNTHASE is involved in providing substrate (UDP-glucose) for growing cellulose chains. The present study was aimed at the cloning, characterization and overexpression of these genes in Eucalyptus and Populus. An efficient shoot organogenesis protocol from leaf explants taken from micro shoots of the species has been developed. Agrobacterium mediated genetic transformation using Agrobacterium tumefaciens strain EHA105 and LBA4404 harboring binary vector pBI121 was achieved. Both the genes were cloned from cDNA library of Populus deltoides. These were subsequently characterized using various bioinformatics tools. The cloned genes were then inserted into pBI121 under the CaMV35S promotors replacing GUS gene. The constructs were then mobilized into above strains of Agrobacterium and used for the transformation work. Subsequently, genetic transformation of these clones with target genes following already developed protocol is in progress. Four transgenic lines of Eucalyptus tereticornis overexpressing Korrigan gene under the strong constitutive promoters CaMV35S have been developed, which are being further evaluated. Work on development of more transgenic lines overexpressing these genes in Populus and Eucalyptus is also in progress. This presentation will focus on important developments in this direction.

Keywords: Eucalyptus tereticornis, genetic transformation, Kraft pulping Populus deltoides

Procedia PDF Downloads 141
3454 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller

Procedia PDF Downloads 240
3453 THRAP2 Gene Identified as a Candidate Susceptibility Gene of Thyroid Autoimmune Diseases Pedigree in Tunisian Population

Authors: Ghazi Chabchoub, Mouna Feki, Mohamed Abid, Hammadi Ayadi

Abstract:

Autoimmune thyroid diseases (AITDs), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are inherited as complex traits. Genetic factors associated with AITDs have been tentatively identified by candidate gene and genome scanning approaches. We analysed three intragenic microsatellite markers in the thyroid hormone receptor associated protein 2 gene (THRAP2), mapped near D12S79 marker, which have a potential role in immune function and inflammation [THRAP2-1(TG)n, THRAP2-2 (AC)n and THRAP2-3 (AC)n]. Our study population concerned 12 patients affected with AITDs belonging to a multiplex Tunisian family with high prevalence of AITDs. Fluorescent genotyping was carried out on ABI 3100 sequencers (Applied Biosystems USA) with the use of GENESCAN for semi-automated fragment sizing and GENOTYPER peak-calling software. Statistical analysis was performed using the non parametric Lod score (NPL) by Merlin software. Merlin outputs non-parametric NPLall (Z) and LOD scores and their corresponding asymptotic P values. The analysis for three intragenic markers in the THRAP2 gene revealed strong evidence for linkage (NPL=3.68, P=0.00012). Our results suggested the possible role of THRAP2 gene in AITDs susceptibility in this family.

Keywords: autoimmunity, autoimmune disease, genetic, linkage analysis

Procedia PDF Downloads 126
3452 Whole Coding Genome Inter-Clade Comparisons to Predict Global Cancer-Protecting Variants

Authors: Lamis Naddaf, Yuval Tabach

Abstract:

We identified missense genetic variants with the potential to enhance resistance against cancer. Such a field has not been widely explored as researchers tend to investigate the mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and have significant implications for improved risk estimation, diagnostics, prognosis, and even personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and selected the alleles that showed a correlation with the species’ cancer resistance. Interestingly, we found several amino acids that are more generally preferred (like the Proline) or avoided (like the Cysteine) by the resistant species. Furthermore, Cancer resistance in mammals and reptiles is significantly predicted by the number of the predicted protecting variants (PVs) a species has. Moreover, PVs-enriched-genes are enriched in pathways relevant to tumor suppression. For example, they are enriched in the Hedgehog signaling and silencing pathways, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are mostly more abundant in healthy people compared to cancer patients within different human races.

Keywords: cancer resistance, protecting variant, naked mole rat, comparative genomics

Procedia PDF Downloads 112
3451 MMP-2 Gene Polymorphism and Its Influence on Serum MMP-2 Levels in Pre-Eclampsia in Indian Population

Authors: Ankush Kalra, Mirza Masroor, Usha Manaktala, B. C. Koner, T. K. Mishra

Abstract:

Introduction: Pre-eclampsia affects 3-5% of pregnancies worldwide and increases maternal-fetal morbidity and mortality. Reduced placental perfusion induces the release of biomolecules by the placenta into maternal circulation causing endothelial dysfunction. Zinc dependent matrix metalloproteinase-2 (MMP-2) may be up-regulated and interact with circulating factors of oxidative stress and inflammation to produce endothelial dysfunction in pre-eclampsia. Aim: To study the functional genetic polymorphism of MMP-2 gene (g-1306 C>T) in pre-eclampsia and its effect on serum MMP-2 levels in these patients. Method: Hundred pre-eclampsia patients and hundred age and gestation period matched healthy pregnant women with their consent were recruited in the study. Serum MMP-2 levels in all subjects were estimated using standard ELISA kits. MMP-2 gene (g.- 1306 C>T) SNPs were genotyped using whole blood by ASO-PCR. Result: The pre-eclampsia patients had higher serum levels of MMP-2 compared to the healthy pregnant (p < 0.05). Also the MMP-2 genotype was associated with significant alteration in the serum MMP-2 concentration in these patients (p < 0.05). Conclusion: This study results suggest an association of MMP-2 genetic polymorphism and serum levels of MMP-2 to the path physiology of hypertensive disorder of pregnancy.

Keywords: allele specific oligonucleotide polymerase chain reaction (ASO-PCR), enzyme linked immunosorbent assay (ELISA), matrix metalloproteinase-2 (MMP-2), pre-eclampsia

Procedia PDF Downloads 329
3450 Exploring the Genetic Architecture of Chicken Resistance to Avian Influenza Virus

Authors: Haile Berihulay, Chenglong Luo

Abstract:

Avian influenza, commonly known as bird flu, is a highly contagious viral disease primarily affecting poultry and wild birds, with significant implications for both animal health and public safety. The influenza virus (IV) is notorious for its ability to mutate and infect multiple species, including humans, leading to severe consequences. Avian influenza poses considerable pandemic risks due to the potential evolution of low pathogenic avian influenza (LPAI) into highly pathogenic avian influenza (HPAI), which can cause rapid outbreaks in domestic flocks. While AVI viruses typically do not replicate well in humans, strains such as H5N1 and H7N9 have crossed the species barrier, raising alarm over human infections. The recent documentation of human transmission of the H5N8 strain from birds underscores the ongoing threat posed by avian influenza. This review necessitates a thorough discussion about the genetic foundation of viral pathogens, identifying key candidate genes linked to disease resilience, and discussing powerful tools. This review can help researchers to comprehensively overview the disease severity and combat related to AIV, which causes significant economic impact and set effective control strategies to mitigate the risks associated with avian influenza outbreaks.

Keywords: Avian, candidate genes, chicken, molecular, pathogen, virus

Procedia PDF Downloads 22
3449 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems

Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi

Abstract:

The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.

Keywords: mobile databases, synchronization, cache, response time

Procedia PDF Downloads 407
3448 Sustainable Harvesting, Conservation and Analysis of Genetic Diversity in Polygonatum Verticillatum Linn.

Authors: Anchal Rana

Abstract:

Indian Himalayas with their diverse climatic conditions are home to many rare and endangered medicinal flora. One such species is Polygonatum verticillatum Linn., popularly known as King Solomon’s Seal or Solomon’s Seal. Its mention as an incredible medicinal herb comes from 5000 years ago in Indian Materia Medica as a component of Ashtavarga, a poly-herbal formulation comprising of eight herbs illustrated as world’s first ever revitalizing and rejuvenating nutraceutical food, which is now commercialised in the name ‘Chaywanprash’. It is an erect tall (60 to 120 cm) perennial herb with sessile, linear leaves and white pendulous flowers. The species grows well in an altitude range of 1600 to 3600 m amsl, and propagates mostly through rhizomes. The rhizomes are potential source for significant phytochemicals like flavonoids, phenolics, lectins, terpenoids, allantoin, diosgenin, β-Sitosterol and quinine. The presence of such phytochemicals makes the species an asset for antioxidant, cardiotonic, demulcent, diuretic, energizer, emollient, aphrodisiac, appetizer, glactagogue, etc. properties. Having profound concentrations of macro and micronutrients, species has fine prospects of being used as a diet supplement. However, due to unscientific and gregarious uprooting, it has been assigned a status of ‘vulnerable’ and ‘endangered’ in the Conservation Assessment and Management Plan (CAMP) process conducted by Foundation for Revitalisation of Local Health Traditions (FRLHT) during 2010, according to IUCN Red-List Criteria. Further, destructive harvesting, land use disturbances, heavy livestock grazing, climatic changes and habitat fragmentation have substantially contributed towards anomaly of the species. It, therefore, became imperative to conserve the diversity of the species and make judicious use in future research and commercial programme and schemes. A Gene Bank was therefore established at High Altitude Herbal Garden of the Forest Research Institute, Dehradun, India situated at Chakarata (30042’52.99’’N, 77051’36.77’’E, 2205 m amsl) consisting 149 accessions collected from thirty-one geographical locations spread over three Himalayan States of Jammu and Kashmir, Himachal Pradesh, and Uttarakhand. The present investigations purport towards sampling and collection of divergent germplasm followed by planting and cultivation techniques. The ultimate aim is thereby focussed on analysing genetic diversity of the species and capturing promising genotypes for carrying out further genetic improvement programme so to contribute towards sustainable development and healthcare.

Keywords: Polygonatum verticillatum Linn., phytochemicals, genetic diversity, conservation, gene bank

Procedia PDF Downloads 173
3447 Metaheuristic to Align Multiple Sequences

Authors: Lamiche Chaabane

Abstract:

In this study, a new method for solving sequence alignment problem is proposed, which is named ITS (Improved Tabu Search). This algorithm is based on the classical Tabu Search (TS). ITS is implemented in order to obtain results of multiple sequence alignment. Several ideas concerning neighbourhood generation, move selection mechanisms and intensification/diversification strategies for our proposed ITS is investigated. ITS have generated high-quality results in terms of measure of scores in comparison with the classical TS and simple iterative search algorithm.

Keywords: multiple sequence alignment, tabu search, improved tabu search, neighbourhood generation, selection mechanisms

Procedia PDF Downloads 305