Search results for: multi-layers decision engine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4751

Search results for: multi-layers decision engine

3461 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 227
3460 Biodiesel Production from Palm Oil Using an Oscillatory Baffled Reactor

Authors: Malee Santikunaporn, Tattep Techopittayakul, Channarong Asavatesanupap

Abstract:

Biofuel production especially that of biodiesel has gained tremendous attention during the last decade due to environmental concerns and shortage in petroleum oil reservoir. This research aims to investigate the influences of operating parameters, such as the alcohol-to-oil molar ratio (4:1, 6:1, and 9:1) and the amount of catalyst (1, 1.5, and 2 wt.%) on the trans esterification of refined palm oil (RPO) in a medium-scale oscillatory baffle reactor.  It has been shown that an increase in the methanol-to-oil ratio resulted in an increase in fatty acid methyl esters (FAMEs) content. The amount of catalyst has an insignificant effect on the FAMEs content. Engine testing was performed on B0 (100 v/v% diesel) and blended fuel or B50 (50 v/v% diesel). Combustion of B50 was found to give lower torque compared to pure diesel. Exhaust gas from B50 was found to contain lower concentration of CO and CO2.

Keywords: biodiesel, palm oil, transesterification, oscillatory baffled reactor

Procedia PDF Downloads 177
3459 Discover Your Power: A Case for Contraceptive Self-Empowerment

Authors: Oluwaseun Adeleke, Samuel Ikan, Anthony Nwala, Mopelola Raji, Fidelis Edet

Abstract:

Background: The risks associated with each pregnancy is carried almost entirely by a woman; however, the decision about whether and when to get pregnant is a subject that several others contend with her to make. The self-care concept offers women of reproductive age the opportunity to take control of their health and its determinants with or without the influence of a healthcare provider, family, and friends. DMPA-SC Self-injection (SI) is becoming the cornerstone of contraceptive self-care and has the potential to expand access and create opportunities for women to take control of their reproductive health. Methodology: To obtain insight into the influences that interfere with a woman’s capacity to make contraceptive choices independently, the Delivering Innovations in Selfcare (DISC) project conducted two intensive rounds of qualitative data collection and triangulation that included provider, client, and community mobilizer interviews, facility observations, and routine program data collection. Respondents were sampled according to a convenience sampling approach and data collected analyzed using a codebook and Atlas-TI. The research team members came together for participatory analysis workshop to explore and interpret emergent themes. Findings: Insights indicate that women are increasingly finding their voice and independently seek services to prevent a deterioration of their economic situation and achieve personal ambitions. Women who hold independent decision-making power still prefer to share decision making power with their male partners. Male partners’ influence on women’s use of family planning and self-inject was most dominant. There were examples of men’s support for women’s use of contraception to prevent unintended pregnancy, as well as men withholding support. Other men outrightly deny their partners from obtaining contraceptive services and their partners cede this sexual and reproductive health right without objection. A woman’s decision to initiate family planning is affected by myths and misconceptions, many of which have cultural and religious origins. Some tribes are known for their reluctance to use contraception and often associate stigma with the pursuit of family planning (FP) services. Information given by the provider is accepted, and, in many cases, clients cede power to providers to shape their SI user journey. A provider’s influence on a client’s decision to self-inject is reinforced by their biases and concerns. Clients are inhibited by the presence of peers during group education at the health facility. Others are motivated to seek FP services by the interest expressed by peers. There is also a growing trend in the influence of social media on FP uptake, particularly Facebook fora. Conclusion: The convenience of self-administration at home is a benefit for those that contend with various forms of social influences as well as covert users. Beyond increasing choice and reducing barriers to accessing Sexual and Reproductive Health (SRH) services, it can initiate the process of self-discovery and agency in the contraceptive user journey.

Keywords: selfcare, self-empowerment, agency, DMPA-SC, contraception, family planning, influences

Procedia PDF Downloads 71
3458 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 112
3457 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 162
3456 Factors Influencing the Logistics Services Providers' Performance: A Literature Overview

Authors: A. Aguezzoul

Abstract:

The Logistics Services Providers (LSPs) selection and performance is a strategic decision that affects the overall performance of any company as well as its supply chain. It is a complex process, which takes into account various conflicting quantitative and qualitative factors, as well as outsourced logistics activities. This article focuses on the evolution of the weights associated to these factors over the last years in order to better understand the change in the importance that logistics professionals place on them criteria when choosing their LSPs. For that, an analysis of 17 main studies published during 2014-2017 period was carried out and the results are compared to those of a previous literature review on this subject. Our analysis allowed us to deduce the following observations: 1) the LSPs selection is a multi-criteria process; 2) the empirical character of the majority of studies, conducted particularly in Asian countries; 3) the criteria importance has undergone significant changes following the emergence of information technologies that have favored the work in close collaboration and in partnership between the LSPs and their customers, even on a worldwide scale; 4) the cost criterion is relatively less important than in the past; and finally 5) with the development of sustainable supply chains, the factors associated with the logistic activities of return and waste processing (reverse logistics) are becoming increasingly important in this multi-criteria process of selection and evaluation of LSPs performance.

Keywords: logistics outsourcing, logistics providers, multi-criteria decision making, performance

Procedia PDF Downloads 154
3455 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 136
3454 Economies of Scale of Worker's Continuing Professional Development in Selected Universities in South- South, Nigeria

Authors: Jonathan E. Oghenekohwo

Abstract:

The return to scale constitutes a significant investment index in the determination of the quantum of resources that is deployed in investment decision on worker’s continuing professional development. Such investment decision is always predicted on the expected outcomes to the individual, institution and the society in context. Several investments in the development of human capacity on the job have been made, but the return to the scale of such seems not to have been correlated positively with the quantum of resources invested in terms of productivity and performance among workers in many universities. This paper thus found out that, despite the commitment and policy instrument to avail workers the right of continuing professional development, the multiplier effects are not evident in diligence, commitment, honesty, dedication, productivity and improved performance on the job among most administrative staff in Nigerian Universities This author, therefore concludes that, given the policy on the right of workers to get trained on-the job, the outcomes of such training must reflect on the overall performance indices, otherwise, institutions should carry out a forensic analysis of the types of continuing professional development programmes that workers participate in, whether or not, they are consistent with the vision and mission of the institutions in terms of economies of scale of workers professional development to the individual, institution and the nation in context.

Keywords: continuing, professional development, economies of scale, worker’s education, administrative staff

Procedia PDF Downloads 326
3453 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 151
3452 The Restrictions of the Householder’s ‘Double Two-Thirds Principles’ in Decision-Making for Elevators Addition to Existing Condominium

Authors: Haifeng Shi, Kun Song, Yili Zhao

Abstract:

In China, with the extensive promotion of the ‘aging in place’ pension policy as the background, most of the elders will choose to remain in their current homes and communities, finding out of preference or necessity that they will need to remodel their homes to fit their changing needs. This generation elder born in the 1960s to 1970s almost live in the same form of housing-condominium built from 1982 to 2012. Based on the survey of existing multi-family housing, especially in Tianjin, it is found that the current ‘double two-thirds principles’ is becoming the threshold for modification to existing house, particularly in the project of elevators addition to existing condominium (built from 1982 to 2016 without elevators below 6 floors according to the previous building code). Firstly, this article concludes the local policies of elevator addition nationwide, most of which has determined the importance and necessity of the community-based self-organization principle in the operation of the elevator addition. Secondly, by comparing the three existing community management systems (owners' congress, property management system and community committee) in instances, find that the community-based ‘two-thirds’ principle is not conducive to implement for multi-owned property renovation in the community or common accessibility modification in the building. However, analysis the property and other community management related laws, pointing out the shortcomings of the existing community-based ‘two-thirds’ decision-making norms. The analyzation showed that the unit-based and ‘100% principle’ method is more capable of common accessibility in the condominium in China. Differing from existing laws, the unit-based principle will be effective for the process of decision-making and ‘100% principle’ will protect closely profit-related householders for condominium modification in the multi-owned area. These three aspects of the analysis suggest that the establishment of the unit-based self-organization mechanism is a preferred and inevitable method to solve the problem of elevators addition to the existing condominium in China.

Keywords: aging in place, condominium, modification, multi own

Procedia PDF Downloads 148
3451 An Analysis of Gender Competencies of Project Managers in National Capital Region, Philippines using the Mann-Whitney U Test

Authors: Ryan Vincent Teodoro, Adrian Paul Virador, Jan Christopher Cardenas

Abstract:

In the field of construction, managerial positions are completely dominated by males. The researchers conducted this study to see if there is a significant difference between the competencies of male and female project managers in the construction field. To see if there is a significant difference, they subdivided the competency of project managers into three components; decision making, organizing skills, and resiliency. The researchers conducted a five-point Likert scale survey of 28 project managers in the construction field, 18 of them are males and 10 are females. The researchers used Cronbach’s alpha to translate the raw scores of the respondents into competency scores. Then, the competency scores are analyzed using the Mann-Whitney U Test to see if there is a significant difference between the male’s and female’s competency scores. A p-value of 0.808 was calculated, which is greater than 0.05, which means that the null hypothesis is accepted. Therefore, the researchers concluded that there is no significant difference between the competencies of male and female project managers in terms of decision making, organizing skills, and resiliency in the construction field in the National Capital Region, Philippines.

Keywords: competency, resiliency, project managers, Mann-Whitney U test

Procedia PDF Downloads 133
3450 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 332
3449 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 86
3448 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 157
3447 Awareness about Authenticity of Health Care Information from Internet Sources among Health Care Students in Malaysia: A Teaching Hospital Study

Authors: Renjith George, Preethy Mary Donald

Abstract:

Use of internet sources to retrieve health care related information among health care professionals has increased tremendously as the accessibility to internet is made easier through smart phones and tablets. Though there are huge data available at a finger touch, it is doubtful whether all the sources providing health care information adhere to evidence based practice. The objective of this survey was to study the prevalence of use of internet sources to get health care information, to assess the mind-set towards the authenticity of health care information available via internet sources and to study the awareness about evidence based practice in health care among medical and dental students in Melaka-Manipal Medical College. The survey was proposed as there is limited number of studies reported in the literature and this is the first of its kind in Malaysia. A cross sectional survey was conducted among the medical and dental students of Melaka-Manipal Medical College. A total of 521 students including medical and dental students in their clinical years of undergraduate study participated in the survey. A questionnaire consisting of 14 questions were constructed based on data available from the published literature and focused group discussion and was pre-tested for validation. Data analysis was done using SPSS. The statistical analysis of the results of the survey proved that the use of internet resources for health care information are equally preferred over the conventional resources among health care students. Though majority of the participants verify the authenticity of information from internet sources, there was considerable percentage of candidates who feels that all the information from the internet can be utilised for clinical decision making or were not aware about the need of verification of authenticity of such information. 63.7 % of the participants rely on evidence based practice in health care for clinical decision making while 34.2 % were not aware about it. A minority of 2.1% did not agree with the concept of evidence based practice. The observations of the survey reveals the increasing use of internet resources for health care information among health care students. The results warrants the need to move towards evidence based practice in health care as all health care information available online may not be reliable. The health care person should be judicious while utilising the information from such resources for clinical decision making.

Keywords: authenticity, evidence based practice, health care information, internet

Procedia PDF Downloads 446
3446 The Effect of Sustainability Reporting on Company Profitability Using Literature Review Method (Asian Sphere)

Authors: Kesya Terinda Natalie, Marcellina Natasha, Rosinta Ria Panggabean

Abstract:

Purpose: Over the last few years, the company has been implementing sustainability practices to ensure business continuity. However, there are pros and cons regarding the impact of financial reports if companies provide non-financial reports. So this paper aims to prove what the effect of Sustainability Reporting (SR) has on company profitability, as well as things that can be considered as the decision-making of SR disclosure. Methodology: This paper uses the literature review method to describe the results of published articles concerning Sustainability Reporting and Profitability. This study links and analyzes the essence of 50 previous studies related to SR on company profitability, most of which were conducted in Asia. Therefore this research is limited to only 23 studies in Asia. Findings: Sustainability Reporting does not have a significant impact on company profitability because the SR quality of each company varies based on Agency & Legitimacy Theory considerations. Stakeholders are required to focus not only on profitability but also on the long-term of the company. Thus, it is found that SR is used by companies as a sustainable investment, which can improve overall company performance by reducing capital costs and generating positive company value in increasing reputation capital. Value: This paper focuses on how sustainability reporting affects company profitability, as well as things that can be considered as the decision-making of SR disclosure.

Keywords: sustainability reporting, profitability, agency theory, legitimacy theory

Procedia PDF Downloads 89
3445 Renewable Energy and Environment: Design of a Decision Aided Tool for Sustainable Development

Authors: Mustapha Ouardouz, Mina Amharref, Abdessamed Bernoussi

Abstract:

The future energy, for limited energy resources countries, goes through renewable energies (solar, wind etc.). The renewable energies constitute a major component of the energy strategy to cover a substantial part of the growing needs and contribute to environmental protection by replacing fossil fuels. Indeed, sustainable development involves the promotion of renewable energy and the preservation of the environment by the use of clean energy technologies to limit emissions of greenhouse gases and reducing the pressure exerted on the forest cover. So the impact studies, of the energy use on the environment and farm-related risks are necessary. For that, a global approach integrating all the various sectors involved in such project seems to be the best approach. In this paper we present an approach based on the multi criteria analysis and the realization of one pilot to achieve the development of an innovative geo-intelligent environmental platform. An implementation of this platform will collect, process, analyze and manage environmental data in connection with the nature of used energy in the studied region. As an application we consider a region in the north of Morocco characterized by intense agricultural and industrials activities and using diverse renewable energy. The strategic goals of this platform are; the decision support for better governance, improving the responsiveness of public and private companies connected by providing them in real time with reliable data, modeling and simulation possibilities of energy scenarios, the identification of socio-technical solutions to introduce renewable energies and estimate technical and implantable potential by socio-economic analyzes and the assessment of infrastructure for the region and the communities, the preservation and enhancement of natural resources for better citizenship governance through democratization of access to environmental information, the tool will also perform simulations integrating environmental impacts of natural disasters, particularly those linked to climate change. Indeed extreme cases such as floods, droughts and storms will be no longer rare and therefore should be integrated into such projects.

Keywords: renewable energies, decision aided tool, environment, simulation

Procedia PDF Downloads 459
3444 Cutting Tool-Life Test of Ceramic Insert for Engine Sleeve

Authors: Adam Janásek, Marek Pagáč

Abstract:

The article is looking for an experimental determination of tool life tests for ceramic cutting inserts. Mentioned experimental determination should provide an added information about cutting process. The mechanism of tool wear, cutting temperature in machining, quality machined surface and machining process itself is the information, which are important for whole manufacturing process. Mainly, the roughness plays very important role in determining how a real object will interact with its environment. The main aim was to determine the number of machined inserts, tool life and micro-geometry, as well. On the basis of previous tests the tool-wear was measured at constant cutting parameter which is more typical for high volume manufacturing processes.

Keywords: ceramic, insert, machining, surface roughness, tool-life, tool-wear

Procedia PDF Downloads 494
3443 A New Intelligent, Dynamic and Real Time Management System of Sewerage

Authors: R. Tlili Yaakoubi, H.Nakouri, O. Blanpain, S. Lallahem

Abstract:

The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.

Keywords: automation, optimization, paradigm, RTC

Procedia PDF Downloads 299
3442 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare

Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon

Abstract:

This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.

Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty

Procedia PDF Downloads 357
3441 Three Issues for Integrating Artificial Intelligence into Legal Reasoning

Authors: Fausto Morais

Abstract:

Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.

Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning

Procedia PDF Downloads 145
3440 Modelling Railway Noise Over Large Areas, Assisted by GIS

Authors: Conrad Weber

Abstract:

The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.

Keywords: noise, modeling, GIS, rail

Procedia PDF Downloads 122
3439 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors

Authors: Katawut Kaewbanjong

Abstract:

We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.

Keywords: prediction model, statistical analysis, software project, user satisfaction factor

Procedia PDF Downloads 124
3438 Evaluation of Academic Research Projects Using the AHP and TOPSIS Methods

Authors: Murat Arıbaş, Uğur Özcan

Abstract:

Due to the increasing number of universities and academics, the fund of the universities for research activities and grants/supports given by government institutions have increased number and quality of academic research projects. Although every academic research project has a specific purpose and importance, limited resources (money, time, manpower etc.) require choosing the best ones from all (Amiri, 2010). It is a pretty hard process to compare and determine which project is better such that the projects serve different purposes. In addition, the evaluation process has become complicated since there are more than one evaluator and multiple criteria for the evaluation (Dodangeh, Mojahed and Yusuff, 2009). Mehrez and Sinuany-Stern (1983) determined project selection problem as a Multi Criteria Decision Making (MCDM) problem. If a decision problem involves multiple criteria and objectives, it is called as a Multi Attribute Decision Making problem (Ömürbek & Kınay, 2013). There are many MCDM methods in the literature for the solution of such problems. These methods are AHP (Analytic Hierarchy Process), ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation), UTADIS (Utilities Additives Discriminantes), ELECTRE (Elimination et Choix Traduisant la Realite), MAUT (Multiattribute Utility Theory), GRA (Grey Relational Analysis) etc. Teach method has some advantages compared with others (Ömürbek, Blacksmith & Akalın, 2013). Hence, to decide which MCDM method will be used for solution of the problem, factors like the nature of the problem, types of choices, measurement scales, type of uncertainty, dependency among the attributes, expectations of decision maker, and quantity and quality of the data should be considered (Tavana & Hatami-Marbini, 2011). By this study, it is aimed to develop a systematic decision process for the grant support applications that are expected to be evaluated according to their scientific adequacy by multiple evaluators under certain criteria. In this context, project evaluation process applied by The Scientific and Technological Research Council of Turkey (TÜBİTAK) the leading institutions in our country, was investigated. Firstly in the study, criteria that will be used on the project evaluation were decided. The main criteria were selected among TÜBİTAK evaluation criteria. These criteria were originality of project, methodology, project management/team and research opportunities and extensive impact of project. Moreover, for each main criteria, 2-4 sub criteria were defined, hence it was decided to evaluate projects over 13 sub-criterion in total. Due to superiority of determination criteria weights AHP method and provided opportunity ranking great number of alternatives TOPSIS method, they are used together. AHP method, developed by Saaty (1977), is based on selection by pairwise comparisons. Because of its simple structure and being easy to understand, AHP is the very popular method in the literature for determining criteria weights in MCDM problems. Besides, the TOPSIS method developed by Hwang and Yoon (1981) as a MCDM technique is an alternative to ELECTRE method and it is used in many areas. In the method, distance from each decision point to ideal and to negative ideal solution point was calculated by using Euclidian Distance Approach. In the study, main criteria and sub-criteria were compared on their own merits by using questionnaires that were developed based on an importance scale by four relative groups of people (i.e. TUBITAK specialists, TUBITAK managers, academics and individuals from business world ) After these pairwise comparisons, weight of the each main criteria and sub-criteria were calculated by using AHP method. Then these calculated criteria’ weights used as an input in TOPSİS method, a sample consisting 200 projects were ranked on their own merits. This new system supported to opportunity to get views of the people that take part of project process including preparation, evaluation and implementation on the evaluation of academic research projects. Moreover, instead of using four main criteria in equal weight to evaluate projects, by using weighted 13 sub-criteria and decision point’s distance from the ideal solution, systematic decision making process was developed. By this evaluation process, new approach was created to determine importance of academic research projects.

Keywords: Academic projects, Ahp method, Research projects evaluation, Topsis method.

Procedia PDF Downloads 590
3437 Design Intelligence in Garment Design Between Technical Creativity and Artistic Creativity

Authors: Kanwar Varinder Pal Singh

Abstract:

Art is one of the five secondary sciences next to the social sciences. As per the single essential concept in garment design, it is the coexistence and co-creation of two aspects of reality: Ultimate reality and apparent or conventional reality. All phenomena possess two natures: That which is revealed by correct perception and that which is induced by deceptive perception. The object of correct perception is the ultimate reality, the object of deceptive perception is conventional reality. The same phenomenon, therefore, may be perceived according to its ultimate nature or its apparent nature. Ultimate reality is also called ‘emptiness’. Emptiness does not mean that all phenomena are nothing but do not exist in themselves. Although phenomena, the universe, thoughts, beings, time, and so on, seem very real in themselves, ultimately, they are not. Each one of us can perceive the changing and unpredictable nature of existence. This transitory nature of phenomena, impermanence, is the first sign of emptiness. Sometimes, the interdependence of phenomena leads to ultimate reality, which is nothing but emptiness, e.g., a rainbow, which is an effect due to the function of ‘sun rays,’ ‘rain,’ and ‘time.’ In light of the above, to achieve decision-making for the global desirability of garment design, the coexistence of artistic and technical creativity must achieve an object of correct perception, i.e., ultimate reality. This paper mentions the decision-making technique as semiotic engineering, both subjective and objective.

Keywords: global desirability, social desirability, comfort desirability, handle desirability, overall desirability

Procedia PDF Downloads 10
3436 Air Pollutants Assessment across the UAE Using Repeated Measures

Authors: Karam Al-Assaf, Israa Al Khaffaf, Ryan Al Tayeb, Ayman Alzaatreh

Abstract:

A significant, manageable hazard to public health, happiness, and the achievement of sustainable development is air pollution. Outdoor air pollution has increased globally over the previous years, exposing billions of people worldwide to hazardous air. With UAE being no different, there are a variety of pollution-related problems that need to be addressed. Therefore, to gain insights from the government and decision makers, this study aims to analyze the annual trends of the five major air pollutants (NO2, SO2, O3, CO, and PM10) across five emirates in the UAE (Abu Dhabi, Dubai, Sharjah, Ajman, and Ras AL Khaimah) from 2013 to 2020. The results of the analysis revealed that air pollutants NO2, SO2, and PM10 were significantly different across the years and states. Moreover, it was found that the levels of NO2 are significantly different in Dubai across the years. Moreover, the levels of SO2 are significantly different in Sharjah across the years. Furthermore, it was found that PM10 was significantly different in Ajman across the years. Moreover, the analysis of the significant difference in the pollutants in the three areas (Downtown, Residential, Industrial) revealed that there is no significant difference in the pollutant levels across the years in the three different areas. This tool has shown its effectiveness in monitoring pollutant trends, providing valuable data for government investigations and control measures across the UAE. Additionally, it serves as a valuable resource for decision-makers to develop and implement policies aimed at improving pollutant levels.

Keywords: air pollution, air pollutant, repeated measures, MANOVA, UAE

Procedia PDF Downloads 77
3435 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 84
3434 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 549
3433 An Ecological Approach to Understanding Student Absenteeism in a Suburban, Kansas School

Authors: Andrew Kipp

Abstract:

Student absenteeism is harmful to both the school and the absentee student. One approach to improving student absenteeism is targeting contextual factors within the students’ learning environment. However, contemporary literature has not taken an ecological agency approach to understanding student absenteeism. Ecological agency is a theoretical framework that magnifies the interplay between the environment and the actions of people within the environment. To elaborate, the person’s personal history and aspirations and the environmental conditions provide potential outlets or restrictions to their intended action. The framework provides the unique perspective of understanding absentee students’ decision-making through the affordances and constraints found in their learning environment. To that effect, the study was guided by the question, “Why do absentee students decide to engage in absenteeism in a suburban Kansas school?” A case study methodology was used to answer the research question. Four suburban, Kansas high school absentee students in the 2020-2021 school year were selected for the study. The fall 2020 semester was in a remote learning setting, and the spring 2021 semester was in an in-person learning setting. The study captured their decision-making with respect to school attendance throughsemi-structured interviews, prolonged observations, drawings, and concept maps. The data was analyzed through thematic analysis. The findings revealed that peer socialization opportunities, methods of instruction, shifts in cultural beliefs due to COVID-19, manifestations of anxiety and lack of space to escape their anxiety, social media bullying, and the inability to receive academic tutoring motivated the participants’ daily decision to either attend or miss school. The findings provided a basis to improve several institutional and classroom practices. These practices included more student-led instruction and less teacher-led instruction in both in-person and remote learning environments, promoting socialization through classroom collaboration and clubs based on emerging student interests, reducing instances of bullying through prosocial education, safe spaces for students to escape the classroom to manage their anxiety, and more opportunities for one-on-one tutoring to improve grades. The study provides an example of using the ecological agency approach to better understand the personal and environmental factors that lead to absenteeism. The study also informs educational policies and classroom practices to better promote student attendance. Further research should investigate other school contexts using the ecological agency theoretical framework to better understand the influence of the school environment on student absenteeism.

Keywords: student absenteeism, ecological agency, classroom practices, educational policy, student decision-making

Procedia PDF Downloads 143
3432 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization

Procedia PDF Downloads 118