Search results for: layer chickens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2625

Search results for: layer chickens

1335 The Effects of Boronizing Treatment on the Friction and Wear Behavior of 0.35 VfTiC- Ti3SiC2 Composite

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modity the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 underAl2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.

Keywords: MAX phase, wearing, friction, boronizing

Procedia PDF Downloads 457
1334 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization

Authors: Daham Owaid Matrood, Naqaa Hussein Raheem

Abstract:

Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.

Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization

Procedia PDF Downloads 452
1333 Effect of Graded Level of Nano Selenium Supplementation on the Performance of Broiler Chicken

Authors: Raj Kishore Swain, Kamdev Sethy, Sumanta Kumar Mishra

Abstract:

Selenium is an essential trace element for the chicken with a variety of biological functions like growth, fertility, immune system, hormone metabolism, and antioxidant defense systems. Selenium deficiency in chicken causes exudative diathesis, pancreatic dystrophy and nutritional muscle dystrophy of the gizzard, heart and skeletal muscle. Additionally, insufficient immunity, lowering of production ability, decreased feathering of chickens and increased embryo mortality may occur due to selenium deficiency. Nano elemental selenium, which is bright red, highly stable, soluble and of nano meter size in the redox state of zero, has high bioavailability and low toxicity due to the greater surface area, high surface activity, high catalytic efficiency and strong adsorbing ability. To assess the effect of dietary nano-Se on performance and expression of gene in Vencobb broiler birds in comparison to its inorganic form (sodium selenite), four hundred fifty day-old Vencobb broiler chicks were randomly distributed into 9 dietary treatment groups with two replicates with 25 chicks per replicate. The dietary treatments were: T1 (Control group): Basal diet; T2: Basal diet with 0.3 ppm of inorganic Se; T3: Basal diet with 0.01875 ppm of nano-Se; T4: Basal diet with 0.0375 ppm of nano-Se; T5: Basal diet with 0.075 ppm of nano-Se, T6: Basal diet with 0.15 ppm of nano-Se, T7: Basal diet with 0.3 ppm of nano-Se, T8: Basal diet with 0.60 ppm of nano-Se, T9: Basal diet with 1.20 ppm of nano-Se. Nano selenium was synthesized by mixing sodium selenite with reduced glutathione and bovine serum albumin. The experiment was carried out in two phases: starter phase (0-3 wks), finisher phase (4-5 wk) in deep litter system. The body weight at the 5th week was best observed in T4. The best feed conversion ratio at the end of 5th week was observed in T4. Erythrocytic catalase, glutathione peroxidase and superoxide dismutase activity were significantly (P < 0.05) higher in all the nano selenium treated groups at 5th week. The antibody titers (log2) against Ranikhet diseases vaccine immunization of 5th-week broiler birds were significantly higher (P < 0.05) in the treatments T4 to T7. The selenium levels in liver, breast, kidney, brain, and gizzard were significantly (P < 0.05) increased with increasing dietary nano-Se indicating higher bioavailability of nano-Se compared to inorganic Se. The real time polymer chain reaction analysis showed an increase in the expression of antioxidative gene in T4 and T7 group. Therefore, it is concluded that supplementation of nano-selenium at 0.0375 ppm over and above the basal level can improve the body weight, antioxidant enzyme activity, Se bioavailability and expression of the antioxidative gene in broiler birds.

Keywords: chicken, growth, immunity, nano selenium

Procedia PDF Downloads 177
1332 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading

Procedia PDF Downloads 144
1331 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 139
1330 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques

Authors: Tosin Ige

Abstract:

Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.

Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique

Procedia PDF Downloads 173
1329 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events

Authors: Shawn G. Gallaher, Lilli E. Hirth

Abstract:

As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.

Keywords: Alaska North Slope, arctic rivers, material flux, precipitation

Procedia PDF Downloads 75
1328 The Impact of Space Charges on the Electromechanical Constraints in HVDC Power Cable Containing Defects

Authors: H. Medoukali, B. Zegnini

Abstract:

Insulation techniques in high-voltage cables rely heavily on chemically synapsed polyethylene. The latter may contain manufacturing defects such as small cavities, for example. The presence of the cavity affects the distribution of the electric field at the level of the insulating layer; this change in the electric field is affected by the presence of different space charge densities within the insulating material. This study is carried out by performing simulations to determine the distribution of the electric field inside the insulator. The simulations are based on the creation of a two-dimensional model of a high-voltage cable of 154 kV using the COMSOL Multiphysics software. Each time we study the effect of changing the space charge density of on the electromechanical Constraints.

Keywords: COMSOL multiphysics, electric field, HVDC, microcavities, space charges, XLPE

Procedia PDF Downloads 133
1327 Object-Oriented Program Comprehension by Identification of Software Components and Their Connexions

Authors: Abdelhak-Djamel Seriai, Selim Kebir, Allaoua Chaoui

Abstract:

During the last decades, object oriented program- ming has been massively used to build large-scale systems. However, evolution and maintenance of such systems become a laborious task because of the lack of object oriented programming to offer a precise view of the functional building blocks of the system. This lack is caused by the fine granularity of classes and objects. In this paper, we use a post object-oriented technology namely software components, to propose an approach based on the identification of the functional building blocks of an object oriented system by analyzing its source code. These functional blocks are specified as software components and the result is a multi-layer component based software architecture.

Keywords: software comprehension, software component, object oriented, software architecture, reverse engineering

Procedia PDF Downloads 412
1326 Synergy Surface Modification for High Performance Li-Rich Cathode

Authors: Aipeng Zhu, Yun Zhang

Abstract:

The growing grievous environment problems together with the exhaustion of energy resources put urgent demands for developing high energy density. Considering the factors including capacity, resource and environment, Manganese-based lithium-rich layer-structured cathode materials xLi₂MnO₃⋅(1-x)LiMO₂ (M = Ni, Co, Mn, and other metals) are drawing increasing attention due to their high reversible capacities, high discharge potentials, and low cost. They are expected to be one type of the most promising cathode materials for the next-generation Li-ion batteries (LIBs) with higher energy densities. Unfortunately, their commercial applications are hindered with crucial drawbacks such as poor rate performance, limited cycle life and continuous falling of the discharge potential. With decades of extensive studies, significant achievements have been obtained in improving their cyclability and rate performances, but they cannot meet the requirement of commercial utilization till now. One major problem for lithium-rich layer-structured cathode materials (LLOs) is the side reaction during cycling, which leads to severe surface degradation. In this process, the metal ions can dissolve in the electrolyte, and the surface phase change can hinder the intercalation/deintercalation of Li ions and resulting in low capacity retention and low working voltage. To optimize the LLOs cathode material, the surface coating is an efficient method. Considering the price and stability, Al₂O₃ was used as a coating material in the research. Meanwhile, due to the low initial Coulombic efficiency (ICE), the pristine LLOs was pretreated by KMnO₄ to increase the ICE. The precursor was prepared by a facile coprecipitation method. The as-prepared precursor was then thoroughly mixed with Li₂CO₃ and calcined in air at 500℃ for 5h and 900℃ for 12h to produce Li₁.₂[Ni₀.₂Mn₀.₆]O₂ (LNMO). The LNMO was then put into 0.1ml/g KMnO₄ solution stirring for 3h. The resultant was filtered and washed with water, and dried in an oven. The LLOs obtained was dispersed in Al(NO₃)₃ solution. The mixture was lyophilized to confer the Al(NO₃)₃ was uniformly coated on LLOs. After lyophilization, the LLOs was calcined at 500℃ for 3h to obtain LNMO@LMO@ALO. The working electrodes were prepared by casting the mixture of active material, acetylene black, and binder (polyvinglidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 80: 15: 5 onto an aluminum foil. The electrochemical performance tests showed that the multiple surface modified materials had a higher initial Coulombic efficiency (84%) and better capacity retention (91% after 100 cycles) compared with that of pristine LNMO (76% and 80%, respectively). The modified material suggests that the KMnO₄ pretreat and Al₂O₃ coating can increase the ICE and cycling stability.

Keywords: Li-rich materials, surface coating, lithium ion batteries, Al₂O₃

Procedia PDF Downloads 133
1325 Photo-Thermal Degradation Analysis of Single Junction Amorphous Silicon Solar Module Eva Encapsulation

Authors: Gilbert O. Osayemwenre, Meyer L. Edson

Abstract:

Ethylene vinyl acetate (EVA) encapsulation degradation affects the performance of photovoltaic (PV) module. Hotspot formation causes the EVA encapsulation to undergo photothermal deterioration and molecular breakdown by UV radiation. This leads to diffusion of chemical particles into other layers. During outdoor deployment, the EVA encapsulation in the affect region loses its adhesive strength, when this happen the affected region layer undergoes rapid delamination. The presence of photo-thermal degradation is detrimental to PV modules as it causes both optical and thermal degradation. Also, it enables the encapsulant to be more susceptible to chemicals substance and moisture. Our findings show a high concentration of Sodium, Phosphorus and Aluminium which originate from the glass substrate, cell emitter and back contact respectively.

Keywords: ethylene vinyl acetate (EVA), encapsulation, photo-thermal degradation, thermogravimetric analysis (TGA), scanning probe microscope (SPM)

Procedia PDF Downloads 306
1324 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 669
1323 Investigating the Role of Combined Length Scale Effect on the Mechanical Properties of Ni/Cu Multilayer Structures

Authors: Naresh Radaliyagoda, Nigel M. Jennett, Rong Lan, David Parfitt

Abstract:

A series of length scale engineered multilayer material with temperature robust mechanical properties has been suggested. A range of polycrystalline copper sub-layers with the thickness varying from 1 to 25μm and buried in between two nickel layers was produced using electrodeposition dual bath technique. The structure of the multilayers was characterized using Electron Backscatter Diffraction and Scanning Electron Microscope. The interface effect on the hardness and elastic modulus was tested using Nano-indentation. Results of the grain size and layer thickness measurements, and indentation hardness have been compared. It is found that there is a combined length scale effect that improves mechanical properties in Ni/Cu multilayer structures.

Keywords: nano-indentation, size effect, multilayers, electrodeposition

Procedia PDF Downloads 151
1322 Drying Modeling of Banana Using Cellular Automata

Authors: M. Fathi, Z. Farhaninejad, M. Shahedi, M. Sadeghi

Abstract:

Drying is one of the oldest preservation methods for food and agriculture products. Appropriate control of operation can be obtained by modeling. Limitation of continues models for complex boundary condition and non-regular geometries leading to appearance of discrete novel methods such as cellular automata, which provides a platform for obtaining fast predictions by rule-based mathematics. In this research a one D dimensional CA was used for simulating thin layer drying of banana. Banana slices were dried with a convectional air dryer and experimental data were recorded for validating of final model. The model was programmed by MATLAB, run for 70000 iterations and von-Neumann neighborhood. The validation results showed a good accordance between experimental and predicted data (R=0.99). Cellular automata are capable to reproduce the expected pattern of drying and have a powerful potential for solving physical problems with reasonable accuracy and low calculating resources.

Keywords: banana, cellular automata, drying, modeling

Procedia PDF Downloads 438
1321 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures

Authors: Hamed Khosravi, Reza Eslami-Farsani

Abstract:

Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.

Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption

Procedia PDF Downloads 341
1320 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint

Authors: Richard Colwell, Thomas Englert

Abstract:

In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.

Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface

Procedia PDF Downloads 218
1319 Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers

Authors: Qiong Rao, Xiongqi Peng

Abstract:

In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT.

Keywords: nanofillers, adhesive joints, fracture toughness, cohesive zone model

Procedia PDF Downloads 133
1318 Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates

Authors: H. Fazlinejad, A. Halvaee

Abstract:

In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.

Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO

Procedia PDF Downloads 165
1317 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning

Procedia PDF Downloads 95
1316 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number

Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza

Abstract:

The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.

Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil

Procedia PDF Downloads 386
1315 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu

Abstract:

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

Keywords: photodetection, p-type doping, multilayers, MoS₂

Procedia PDF Downloads 104
1314 Influence of Bragg Reflectors Pairs on Resonance Characteristics of Solidly Mounted Resonators

Authors: Vinita Choudhary

Abstract:

The solidly mounted resonator (SMR) is a bulk acoustic wave-based device consisting of a piezoelectric layer sandwiched between two electrodes upon Bragg reflectors, which then are attached to a substrate. To transform the effective acoustic impedance of the substrate to a near zero value, the Bragg reflectors are composed of alternating high and low acoustic impedance layers of quarter-wavelength thickness. In this work presents the design and investigation of acoustic Bragg reflectors (ABRs) for solidly mounted bulk acoustic wave resonators through analysis and simulation. This performance of the resonator is analyzed using 1D Mason modeling. The performance parameters are the effect of Bragg pairs number on transmissivity, reflectivity, insertion loss, the electromechanical and quality factor of the 5GHz operating resonator.

Keywords: bragg reflectors, SMR, insertion loss, quality factor

Procedia PDF Downloads 98
1313 Electron Beam Effects on Kinetic Alfven Waves in the Cold Homogenous Plasma

Authors: Jaya Shrivastava

Abstract:

The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, growth/damping rate and associated currents in the presence of electron beam in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. The plasma parameters appropriate to plasma sheet boundary layer are used. It is found that downward electron beam affects the dispersion relation, growth/damping-rate and associated currents in cold electron limit.

Keywords: magnetospheric physics, plasma waves and instabilities, electron beam, space plasma physics, wave-particle interactions

Procedia PDF Downloads 394
1312 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 197
1311 Tuning of the Thermal Capacity of an Envelope for Peak Demand Reduction

Authors: Isha Rathore, Peeyush Jain, Elangovan Rajasekar

Abstract:

The thermal capacity of the envelope impacts the cooling and heating demand of a building and modulates the peak electricity demand. This paper presents the thermal capacity tuning of a building envelope to minimize peak electricity demand for space cooling. We consider a 40 m² residential testbed located in Hyderabad, India (Composite Climate). An EnergyPlus model is validated using real-time data. A Parametric simulation framework for thermal capacity tuning is created using the Honeybee plugin. Diffusivity, Thickness, layer position, orientation and fenestration size of the exterior envelope are parametrized considering a five-layered wall system. A total of 1824 parametric runs are performed and the optimum wall configuration leading to minimum peak cooling demand is presented.

Keywords: thermal capacity, tuning, peak demand reduction, parametric analysis

Procedia PDF Downloads 184
1310 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text

Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman

Abstract:

The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.

Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks

Procedia PDF Downloads 262
1309 The Use of Ontology Framework for Automation Digital Forensics Investigation

Authors: Ahmad Luthfi

Abstract:

One of the main goals of a computer forensic analyst is to determine the cause and effect of the acquisition of a digital evidence in order to obtain relevant information on the case is being handled. In order to get fast and accurate results, this paper will discuss the approach known as ontology framework. This model uses a structured hierarchy of layers that create connectivity between the variant and searching investigation of activity that a computer forensic analysis activities can be carried out automatically. There are two main layers are used, namely analysis tools and operating system. By using the concept of ontology, the second layer is automatically designed to help investigator to perform the acquisition of digital evidence. The methodology of automation approach of this research is by utilizing forward chaining where the system will perform a search against investigative steps and atomically structured in accordance with the rules of the ontology.

Keywords: ontology, framework, automation, forensics

Procedia PDF Downloads 342
1308 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades

Authors: Magdi M. E. Zumrawi, Nehla Mansour

Abstract:

This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.

Keywords: geogrid, reinforcement, stabilization, subgrade

Procedia PDF Downloads 320
1307 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study

Authors: Emmanuel Omokhuale

Abstract:

A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.

Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium

Procedia PDF Downloads 141
1306 Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks

Authors: Richard Tanaka, Ying Zhu

Abstract:

This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations.

Keywords: distributed randomized algorithms, peer-to-peer networks, virtual container technology, resilient networks

Procedia PDF Downloads 216