Search results for: geometric and topological data models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29414

Search results for: geometric and topological data models

28124 Life Stage Customer Segmentation by Fine-Tuning Large Language Models

Authors: Nikita Katyal, Shaurya Uppal

Abstract:

This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.

Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication

Procedia PDF Downloads 21
28123 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique

Authors: M. A. Ansari, A. Hussain, A. Uddin

Abstract:

A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.

Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir

Procedia PDF Downloads 159
28122 Integration of Resistivity and Seismic Refraction Using Combine Inversion for Ancient River Findings at Sungai Batu, Lembah Bujang, Malaysia

Authors: Rais Yusoh, Rosli Saad, Mokhtar Saidin, Fauzi Andika, Sabiu Bala Muhammad

Abstract:

Resistivity and seismic refraction profiling have become a common method in pre-investigations for visualizing subsurface structure. The integration of the methods could reduce an interpretation ambiguity. Both methods have their individual software packages for data inversion, but potential to combine certain geophysical methods are restricted; however, the research algorithms that have this functionality was existed and are evaluated personally. The interpretation of subsurface were improve by combining inversion data from both methods by influence each other models using closure coupling; thus, by implementing both methods to support each other which could improve the subsurface interpretation. These methods were applied on a field dataset from a pre-investigation for archeology in finding the ancient river. There were no major changes in the inverted model by combining data inversion for this archetype which probably due to complex geology. The combine data analysis provides an additional technique for interpretation such as an alluvium, which can have strong influence on the ancient river findings.

Keywords: ancient river, combine inversion, resistivity, seismic refraction

Procedia PDF Downloads 330
28121 Engaging Students in Learning through Visual Demonstration Models in Engineering Education

Authors: Afsha Shaikh, Mohammed Azizur Rahman, Ibrahim Hassan, Mayur Pal

Abstract:

Student engagement in learning is instantly affected by the sources of learning methods available for them, such as videos showing the applications of the concept or showing a practical demonstration. Specific to the engineering discipline, there exist enormous challenging concepts that can be simplified when they are connected to real-world scenarios. For this study, the concept of heat exchangers was used as it is a part of multidisciplinary engineering fields. To make the learning experience enjoyable and impactful, 3-D printed heat exchanger models were created for students to use while working on in-class activities and assignments. Students were encouraged to use the 3-D printed heat exchanger models to enhance their understanding of theoretical concepts associated with its applications. To assess the effectiveness of the method, feedback was received by students pursuing undergraduate engineering via an anonymous electronic survey. To make the feedback more realistic, unbiased, and genuine, students spent nearly two to three weeks using the models in their in-class assignments. The impact of these tools on their learning was assessed through their performance in their ungraded assignments as well as their interactive discussions with peers. ‘Having to apply the theory learned in class whilst discussing with peers on a class assignment creates a relaxed and stress-free learning environment in classrooms’; this feedback was received by more than half the students who took the survey and found 3-D models of heat exchanger very easy to use. Amongst many ways to enhance learning and make students more engaged through interactive models, this study sheds light on the importance of physical tools that help create a lasting mental representation in the minds of students. Moreover, in this technologically enhanced era, the concept of augmented reality was considered in this research. E-drawings application was recommended to enhance the vision of engineering students so they can see multiple views of the detailed 3-D models and cut through its different sides and angles to visualize it properly. E-drawings could be the next tool to implement in classrooms to enhance students’ understanding of engineering concepts.

Keywords: student engagement, life-long-learning, visual demonstration, 3-D printed models, engineering education

Procedia PDF Downloads 115
28120 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity

Authors: Smail Tigani, Mohamed Ouzzif

Abstract:

This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.

Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation

Procedia PDF Downloads 497
28119 Suitability of Black Box Approaches for the Reliability Assessment of Component-Based Software

Authors: Anjushi Verma, Tirthankar Gayen

Abstract:

Although, reliability is an important attribute of quality, especially for mission critical systems, yet, there does not exist any versatile model even today for the reliability assessment of component-based software. The existing Black Box models are found to make various assumptions which may not always be realistic and may be quite contrary to the actual behaviour of software. They focus on observing the manner in which the system behaves without considering the structure of the system, the components composing the system, their interconnections, dependencies, usage frequencies, etc.As a result, the entropy (uncertainty) in assessment using these models is much high.Though, there are some models based on operation profile yet sometimes it becomes extremely difficult to obtain the exact operation profile concerned with a given operation. This paper discusses the drawbacks, deficiencies and limitations of Black Box approaches from the perspective of various authors and finally proposes a conceptual model for the reliability assessment of software.

Keywords: black box, faults, failure, software reliability

Procedia PDF Downloads 441
28118 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors

Authors: Navid Kaboudi, Ali Shayanfar

Abstract:

Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.

Keywords: logistic regression, breastfeeding, descriptors, penetration

Procedia PDF Downloads 69
28117 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 92
28116 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society

Authors: Weihua Ruan, Kuan-Chou Chen

Abstract:

This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.

Keywords: Hamilton-Jacobi-Bellman equations, infinite-horizon differential games, continuous and discrete state variables, political-economy models

Procedia PDF Downloads 375
28115 Orbit Determination Modeling with Graphical Demonstration

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.

Keywords: orbit determination, STK, Matlab-GUI, satellite tracking

Procedia PDF Downloads 276
28114 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: mining big data, big data, machine learning, telecommunication

Procedia PDF Downloads 407
28113 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models

Authors: Rodrigo Aguiar, Adelino Ferreira

Abstract:

Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.

Keywords: machine learning, artificial intelligence, frequency of accidents, road safety

Procedia PDF Downloads 87
28112 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce

Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron

Abstract:

This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.

Keywords: e-commerce, statistical modeling, regression, empirical research

Procedia PDF Downloads 224
28111 Operations Research Applications in Audit Planning and Scheduling

Authors: Abdel-Aziz M. Mohamed

Abstract:

This paper presents a state-of-the-art survey of the operations research models developed for internal audit planning. Two alternative approaches have been followed in the literature for audit planning: (1) identifying the optimal audit frequency; and (2) determining the optimal audit resource allocation. The first approach identifies the elapsed time between two successive audits, which can be presented as the optimal number of audits in a given planning horizon, or the optimal number of transactions after which an audit should be performed. It also includes the optimal audit schedule. The second approach determines the optimal allocation of audit frequency among all auditable units in the firm. In our review, we discuss both the deterministic and probabilistic models developed for audit planning. In addition, game theory models are reviewed to find the optimal auditing strategy based on the interactions between the auditors and the clients.

Keywords: operations research applications, audit frequency, audit-staff scheduling, audit planning

Procedia PDF Downloads 815
28110 Robust Variable Selection Based on Schwarz Information Criterion for Linear Regression Models

Authors: Shokrya Saleh A. Alshqaq, Abdullah Ali H. Ahmadini

Abstract:

The Schwarz information criterion (SIC) is a popular tool for selecting the best variables in regression datasets. However, SIC is defined using an unbounded estimator, namely, the least-squares (LS), which is highly sensitive to outlying observations, especially bad leverage points. A method for robust variable selection based on SIC for linear regression models is thus needed. This study investigates the robustness properties of SIC by deriving its influence function and proposes a robust SIC based on the MM-estimation scale. The aim of this study is to produce a criterion that can effectively select accurate models in the presence of vertical outliers and high leverage points. The advantages of the proposed robust SIC is demonstrated through a simulation study and an analysis of a real dataset.

Keywords: influence function, robust variable selection, robust regression, Schwarz information criterion

Procedia PDF Downloads 139
28109 An Assessment of Self-Perceived Health after the Death of a Spouse among the Elderly

Authors: Shu-Hsi Ho

Abstract:

The problems of aging and number of widowed peers gradually rise in Taiwan. It is worth to concern the related issues for elderly after the death of a spouse. Hence, this study is to examine the impact of spousal death on the surviving spouse’s self-perceived health and mental health for the elderly in Taiwan. A cross section data design and ordered logistic regression models are applied to investigate whether marriage is associated significantly to self-perceived health and mental health for the widowed older Taiwanese. The results indicate that widowed marriage shows significant negative effects on self-perceived health and mental health regardless of widows or widowers. Among them, widows might be more likely to show worse mental health than widowers. The belief confirms that marriage provides effective sources to promote self-perceived health and mental health, particularly for females. In addition, since the social welfare system is not perfect in Taiwan, the findings also suggest that family and social support reveal strongly association with the self-perceived health and mental health for the widows and widowers elderly.

Keywords: logistic regression models, self-perceived health, widow, widower

Procedia PDF Downloads 461
28108 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 83
28107 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 383
28106 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods

Authors: Khumbuzile M. Ngcobo, Seraphin D. Eyono Obono

Abstract:

Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICT's) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods and the following personality an e-learning related theories constructs: computer self-efficacy, trust in ICT systems, and conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICT's for learning about indigenous foods.

Keywords: e-learning, indigenous foods, information and communication technologies, learning theories, personality

Procedia PDF Downloads 279
28105 Development on the Modeling Driven Architecture

Authors: Sahar Shahsavaripour Ghazanfarpour

Abstract:

As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.

Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation

Procedia PDF Downloads 494
28104 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 10
28103 Runoff Estimation in the Khiyav River Basin by Using the SCS_ CN Model

Authors: F. Esfandyari Darabad, Z. Samadi

Abstract:

The volume of runoff caused by rainfall in the river basin has enticed the researchers in the fields of the water management resources. In this study, first of the hydrological data such as the rainfall and discharge of the Khiyav river basin of Meshkin city in the northwest of Iran collected and then the process of analyzing and reconstructing has been completed. The soil conservation service (scs) has developed a method for calculating the runoff, in which is based on the curve number specification (CN). This research implemented the following model in the Khiyav river basin of Meshkin city by the GIS techniques and concluded the following fact in which represents the usage of weight model in calculating the curve numbers that provides the possibility for the all efficient factors which is contributing to the runoff creation such as; the geometric characteristics of the basin, the basin soil characteristics, vegetation, geology, climate and human factors to be considered, so an accurate estimation of runoff from precipitation to be achieved as the result. The findings also exposed the accident-prone areas in the output of the Khiyav river basin so it was revealed that the Khiyav river basin embodies a high potential for the flood creation.

Keywords: curve number, khiyav river basin, runoff estimation, SCS

Procedia PDF Downloads 619
28102 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers

Authors: Naohiro Nakamura

Abstract:

Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.

Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper

Procedia PDF Downloads 188
28101 Machine Learning Automatic Detection on Twitter Cyberbullying

Authors: Raghad A. Altowairgi

Abstract:

With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.

Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost

Procedia PDF Downloads 130
28100 Review of Numerical Models for Granular Beds in Solar Rotary Kilns for Thermal Applications

Authors: Edgar Willy Rimarachin Valderrama, Eduardo Rojas Parra

Abstract:

Thermal energy from solar radiation is widely present in power plants, food drying, chemical reactors, heating and cooling systems, water treatment processes, hydrogen production, and others. In the case of power plants, one of the technologies available to transform solar energy into thermal energy is by solar rotary kilns where a bed of granular matter is heated through concentrated radiation obtained from an arrangement of heliostats. Numerical modeling is a useful approach to study the behavior of granular beds in solar rotary kilns. This technique, once validated with small-scale experiments, can be used to simulate large-scale processes for industrial applications. This study gives a comprehensive classification of numerical models used to simulate the movement and heat transfer for beds of granular media within solar rotary furnaces. In general, there exist three categories of models: 1) continuum, 2) discrete, and 3) multiphysics modeling. The continuum modeling considers zero-dimensional, one-dimensional and fluid-like models. On the other hand, the discrete element models compute the movement of each particle of the bed individually. In this kind of modeling, the heat transfer acts during contacts, which can occur by solid-solid and solid-gas-solid conduction. Finally, the multiphysics approach considers discrete elements to simulate grains and a continuous modeling to simulate the fluid around particles. This classification allows to compare the advantages and disadvantages for each kind of model in terms of accuracy, computational cost and implementation.

Keywords: granular beds, numerical models, rotary kilns, solar thermal applications

Procedia PDF Downloads 30
28099 Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts

Authors: Piotr Fiszeder, Marcin Fałdziński, Peter Molnár

Abstract:

The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model.

Keywords: volatility, DCC model, high and low prices, range-based models, covariance forecasting

Procedia PDF Downloads 181
28098 Global Emission Inventories of Air Pollutants from Combustion Sources

Authors: Shu Tao

Abstract:

Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.

Keywords: air pollutants, combustion, emission inventory, sectorial information

Procedia PDF Downloads 368
28097 An Approach for Thermal Resistance Prediction of Plain Socks in Wet State

Authors: Tariq Mansoor, Lubos Hes, Vladimir Bajzik

Abstract:

Socks comfort has great significance in our daily life. This significance even increased when we have undergone a work of low or high activity. It causes the sweating of our body with different rates. In this study, plain socks with differential fibre composition were wetted to saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in dry and wet states. Theoretical thermal resistance is predicted by using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fibre) in different models. By this modification, different mathematical models could predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance by different models has reasonable correlation range between (0.84 -0.98) with experimental results in both dry (lab conditions moisture) and wet states. "This work is supported by Technical University of Liberec under SGC-2019. Project number is 21314".

Keywords: thermal resistance, mathematical model, plain socks, moisture loss rate

Procedia PDF Downloads 196
28096 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 99
28095 In-door Localization Algorithm and Appropriate Implementation Using Wireless Sensor Networks

Authors: Adeniran K. Ademuwagun, Alastair Allen

Abstract:

The relationship dependence between RSS and distance in an enclosed environment is an important consideration because it is a factor that can influence the reliability of any localization algorithm founded on RSS. Several algorithms effectively reduce the variance of RSS to improve localization or accuracy performance. Our proposed algorithm essentially avoids this pitfall and consequently, its high adaptability in the face of erratic radio signal. Using 3 anchors in close proximity of each other, we are able to establish that RSS can be used as reliable indicator for localization with an acceptable degree of accuracy. Inherent in this concept, is the ability for each prospective anchor to validate (guarantee) the position or the proximity of the other 2 anchors involved in the localization and vice versa. This procedure ensures that the uncertainties of radio signals due to multipath effects in enclosed environments are minimized. A major driver of this idea is the implicit topological relationship among sensors due to raw radio signal strength. The algorithm is an area based algorithm; however, it does not trade accuracy for precision (i.e the size of the returned area).

Keywords: anchor nodes, centroid algorithm, communication graph, radio signal strength

Procedia PDF Downloads 507